高中数学课下能力提升(二十)人教A版必修4

合集下载

人教A版高中数学必修4课件:1.4.3 正切函数的性质与图象

人教A版高中数学必修4课件:1.4.3 正切函数的性质与图象

[小试身手]
1.判断下列命题是否正确. (正确的打“√”,错误的打“×”) (1)函数 y=Atan(ωx+φ)的周期公式为 T=ωπ.( × ) (2)正切函数在 R 上是单调递增函数.( × ) (3)正切函数是奇函数,原点是唯一的一个对称中心.( × )
2.下列说法正确的是( ) A.y=tan x 是增函数 B.y=tan x 在第一象限是增函数 C.y=tan x 在某一区间上是减函数 D.y=tan x 在区间kπ-π2,kπ+π2(k∈Z)上是增函数
所以函数的定义域为
{x|x∈R 且 x≠kπ-π4,x≠kπ+π2,k∈Z}.
3-tan x>0 (2)要使 y=lg( 3-tan x)有意义,需使x≠kπ+π2k∈Z ,
所以函数的定义域是xkπ-π2<x<kπ+π3,k∈Z

.

求函数的定义域注意函数中分母不等于 0,真数大于 0,正切 函数中的 x≠kπ+π2,k∈Z 等问题.
tan2x+π2+π3,所以 fx+π2=f(x),所以周期为 T=π2. 答案:B
类型一 求函数的定义域
例 1 求下列函数的定义域:
(1)y=1+1tan
; x
(2)y=lg( 3-tan x).
【解析】
(1)要使函数
y=1+1tan
有意义, x
1+tan x≠0, 需使x≠kπ+π2k∈Z,
函数 y=tan x 的图象与性质 解析式
图象
y=tan x
定义域
值域 周期 奇偶性
单调性
x__x_≠__k_π_+_2π_,__k_∈__Z__ __R__ __π__
__奇__函_数___
在开区间__k_π_-__π2_,_k_π_+__2π__,_k_∈__Z_上都是增函数

新人教A版必修4高中数学2.1平面向量的实际背景及其基本概念限时训练

新人教A版必修4高中数学2.1平面向量的实际背景及其基本概念限时训练

高中数学 2.1平面向量的实际背景及其基本概念限时训练 新人教A 版必修41.下列量不是向量的是( ).A .力B .速度C .质量D .加速度2.下列说法错误的是( ).A .向量AB →与BA →的长度相等B .两个相等的向量若起点相同,则终点必相同C .只有零向量的模等于0D .零向量没有方向3.设O 为坐标原点,且|OM →|=1,则动点M 的集合是( ).A .一条线段B .一个圆面C .一个圆D .一个圆弧4.下列命题:(1)若a 是单位向量,b 也是单位向量,则a 与b 的方向相同或相反;(2)若向量AB →是单位向量,则向量BA →也是单位向量;(3)以坐标平面上的定点A 为起点,所有单位向量的终点P 的集合是以A 为圆心的单位圆. 其中正确的个数为( ).A .0B .1C .2D .35.下列命题不正确的是( ).A .零向量没有方向B .零向量只与零向量相等C .零向量的模为0D .零向量与任何向量共线 6.若对任意向量b ,均有a ∥b ,则a 为________.7.如图所示,四边形ABCD 和四边形ABDE 都是平行四边形.(1)与向量ED →相等的向量有________;(2)若|AB →|=3,则向量EC →的模等于________.8.给出下列四个条件:①a =b ;②|a |=|b |;③a 与b 方向相反;④|a |=0或|b |=0.其中能使a ∥b 成立的条件是________.10.在四边形ABCD 中,AB →=DC →,N ,M 是AD ,BC 上的点,且DN =MB .求证:CN →=MA →.11.已知直线l :y =x -22,点A ⎝ ⎛⎭⎪⎪⎫0,-22,B (x ,y )是直线l 上的两点.(1)若AB →为零向量,求x ,y 的值;(2)若AB →为单位向量,求x ,y 的值.。

《成才之路》高一数学(人教A版)必修4能力提升:1-1-1 任意角

《成才之路》高一数学(人教A版)必修4能力提升:1-1-1 任意角

能 力 提 升一、选择题1.给出下列四个命题,其中正确的命题有( )①-75°是第四象限角 ②225°是第三象限角③475°是第二象限角 ④-315°是第一象限角A .1个B .2个C .3个D .4个[答案] D[解析] 由终边相同角的概念知:①②③④都正确,故选D.2.如果角α与x +45°具有同一条终边,角β与x -45°具有同一条终边,则α与β的关系是( )A .α+β=0B .α-β=0C .α+β=k ·360°(k ∈Z )D .α-β=k ·360°+90°(k ∈Z )[答案] D[解析] ∵α=(x +45°)+k ·360°(k ∈Z ),β=(x -45°)+k ·360°(k ∈Z ),∴α-β=k ·360°+90°(k ∈Z ).3.(山东潍坊模块达标)已知α与120°角的终边关于x 轴对称,则α2是( ) A .第二或第四象限角 B .第一或第三象限角C .第三或第四象限角D .第一或第四象限角[答案] A[解析] 由α与120°角的终边关于x 轴对称,可得α=k ·360°-120°,k∈Z,∴α2=k·180°-60°,k∈Z,取k=0,1可确定α2终边在第二或第四象限.4.若角θ是第四象限角,则90°+θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角[答案] A[解析]如图所示,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.5.下列说法中,正确的是()A.第二象限的角是钝角B.第二象限的角必大于第一象限的角C.-150°是第二象限角D.-252°16′,467°44′,1187°44′是终边相同的角[答案] D[解析]第二象限的角中,除包含钝角以外,还包含与钝角相差k·360°(k∈Z)的角,如460°是第二象限的角但不是钝角,故选项A错;460°是第二象限的角,730°是第一象限角,显然460°小于730°,故选项B错;选项C中-150°应为第三象限角,故选项C错;选项D 中三个角相差360°的整数倍,则它们的终边相同.6.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B等于()A.{-36°,54°}B.{-126°,144°}C.{-126°,-36°,54°,144°}D.{-126°,54°}[答案] C[解析]当k=-1时,α=-126°∈B;当k=0时,α=-36°∈B;当k=1时,α=54°∈B;当k=2时,α=144°∈B.二、填空题7.(2011~2012·黑龙江五校联考)与-2013°终边相同的最小正角是________.[答案]147°8.(2011~2012·镇江高一检测)将分针拨快10分钟,则分针所转过的度数为________.[答案]-60°9.已知角β的终边在图中阴影所表示的范围内(不包括边界),那么β∈________.[答案]{α|n·180°+30°<α<n·180°+150°,n∈Z}[解析]在0°~360°范围内,终边落在阴影内的角α的取值范围为30°<α<150°与210°<α<330°,所以所有满足题意的角α的集合为{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|2k·180°+30°<α<2k·180°+150°,k∈Z}∪{α|(2k +1)180°+30°<α<(2k+1)180°+150°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.三、解答题10.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OM上;(2)终边落在直线OM上;(3)终边落在阴影区域内(含边界).[解析](1)终边落在射线OM上的角的集合为A={α|α=45°+k·360°,k∈Z}.(2)终边落在射线OM反向延长线上的角的集合为B={α|α=225°+k·360°,k∈Z},则终边落在直线OM上的角的集合为A∪B={α|α=45°+k·360°,k∈Z}∪{α|α=225°+k·360°,k∈Z} ={α|α=45°+2k·180°,k∈Z}∪{α|α=45°+(2k+1)·180°,k∈Z} ={α|α=45°+n·180°,n∈Z}.(3)同理,得终边落在直线ON上的角的集合为{β|β=60°+n·180°,n∈Z},故终边落在阴影区域内(含边界)的角的集合为{α|45°+n·180°≤α≤60°+n·180°,n∈Z}.11.如图,已知直线l1:y=33x及直线l2:y=-3x,请表示出终边落在直线l1或l2上的角.[解析]由题意知,终边落在直线l1上的角的集合为M1={α|α=30°+k1·360°,k1∈Z}∪{α|α=210°+k2·360°,k2∈Z}={α|α=30°+k·180°,k∈Z};终边落在直线l2上的角的集合为M2={α|α=120°+k1·360°,k1∈Z}∪{α|α=300°+k2·360°,k2∈Z}={α|α=120°+k·180°,k∈Z}.所以终边落在直线l1或l2上的角的集合为M=M1∪M2={α|α=30°+k·180°,k∈Z}∪{α|α=120°+k·180°,k∈Z}={α|α=30°+2k·90°,k∈Z}∪{α|α=30°+(2k+1)·90°,k∈Z}={α|α=30°+n·90°,n∈Z}.12.在角的集合{α|α=k·90°+45°,k∈Z}中,(1)有几种终边不相同的角?(2)若-360°<α<360°,则α共有多少个?[解析](1)在给定的角的集合中,终边不相同的角共有四种,分别是与45°,135°,-135°,-45°终边相同的角.(2)令-360°<k·90°+45°<360°,得-92<k<72.又∵k∈Z,∴k=-4,-3,-2,-1,0,1,2,3. ∴满足条件的角共有8个.。

2020版高中数学人教A版必修4 导学案 《任意角三角函数一》(含答案解析)学生版

2020版高中数学人教A版必修4 导学案 《任意角三角函数一》(含答案解析)学生版

思考 1 角α的正弦、余弦、正切分别等于什么?
思考 2 对确定的锐角α,sin α,cos α,tan α的值是否随 P 点在终边上的位置的改变 而改变?
思考 3 在思考 1 中,当取|OP|=1 时,sin α,cos α,tan α的值怎样表示?
梳理
(1)单位圆
在直角坐标系中,我们称以原点 O 为圆心,以单位长度为半径的圆为单位圆.
位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.
知识点二 正弦、余弦、正切函数的定义域 思考 对于任意角α,sin α,cos α,tan α都有意义吗? 梳理 三角函数的定义域
知识点三 正弦、余弦、正切函数值在各象限的符号 思考 根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗?
四、探究与拓展
14.已知角θ的终边上有一点 P(x,-1)(x≠0),且 tan θ=-x,则 sin θ+cos θ=
.
1
1
15.已知
=-
,且 lg(cos α)有意义.
|sin α| sin α
(1)试判断角α所在的象限;
3 ,m
(2)若角α的终边与单位圆相交于点 M 5 ,求 m 的值及 sin α的值.
C.第三象限角
D.第四象限角


sin ,cos
4.已知角α的终边上一点的坐标为
3
3 ,则角α的最小正值为( )
5π A.
6
2π B.
3
4π C.
3
11π D.
6
3 5.已知角α的终边经过点 P(3,4t),且 sin(2kπ+α)=- (k∈Z),则 t 等于( )
5
9 A.-

【人教A版高一数学必修4《三角函数》知识与能力提升练习】1.5函数y= Asin(ωx+φ)的图象(二)

【人教A版高一数学必修4《三角函数》知识与能力提升练习】1.5函数y= Asin(ωx+φ)的图象(二)

函数y= Asin(ωx+φ)的图象(二)(45分钟70分)一、选择题(每小题5分,共40分)1.某同学用“五点法”画函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在一个周期内的简图时,列表如下:则有( )A.A=0,ω=,φ=0B.A=2,ω=3,φ=C.A=2,ω=3,φ=-D.A=1,ω=3,φ=-2.已知函数y=Asin(ωx+φ)(A>0,ω>0)的振幅为,周期为,初相是,则该函数的解析式是( )A.y=B.y=C.y=D.y=3.(2018·厦门高一检测)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ<)的图象如图所示,f(0)=-,则A的值是( )A.1B.C.D.2【补偿训练】(2018·长春高一检测)已知函数y=sin(ωx+φ)的部分图象如图所示,则点P(ω,φ)的坐标为( )A. B. C. D.4.(2018·北京高一检测)f(x)=Asin(ωx+φ)的图象如图所示.为了得到f(x)的图象,则只要将g(x)=sin2x的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度5.(2018·普宁高一检测)设函数f(x)=sin,则下列结论正确的是( )A.f(x)的图象关于直线x=对称B.f(x)的图象关于点对称C.f(x)的最小正周期为π,且在上为增函数D.把f(x)的图象向右平移个单位,得到一个偶函数的图象6.函数f(x)=sin的图象的一条对称轴是( )A.x=-B.x=C.x=-D.x=【补偿训练】函数y=2sin图象的两相邻对称轴之间的距离是( )A. B.π C. D.7.(2018·石家庄高二检测)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)满足f(-x)=f(x),其图象与直线y=2的某两个交点横坐标为分别为x1,x2,且|x1-x2|的最小值为π,则( )A.ω=,φ=B.ω=2,φ=C.ω=,φ=D.ω=2,φ=8.(2018·大庆高一检测)若函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(2014)+f(2015)+f(2016)的值为( )A. B.0 C.+2 D.不确定【延伸探究】本题条件不变,试求f(x)的对称轴及单调递增区间.二、填空题(每小题5分,共10分)9.(2018·淄博高二检测)已知函数f(x)=Msin(ωx+φ)的部分图象如图所示,其中A,B两点之间的距离为5,那么f(-1)= .10.关于函数f(x)=2sin的结论:①f(x)的最小正周期是π;②f(x)在区间上单调递增;③函数f(x)的图象关于点成中心对称图形;④将函数f(x)的图象向左平移个单位后与y=-2sin2x的图象重合;其中成立的结论序号为.三、解答题(每小题10分,共20分)11.已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为,此点到相邻最低点间的曲线与x轴交于点,若φ∈.(1)试求这条曲线的函数解析式.(2)用“五点法”画出(1)中函数在[0,π]上的图象.12.(2018·湖北高考)某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,并直接写出函数f(x)的解析式.(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.【能力挑战题】已知函数f(x)=Asin(ωx+φ)在一个周期内的图象如图所示.(1)求函数的解析式.(2)设0<x<π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围以及这两个根的和.函数y= Asin(ωx+φ)的图象(二)(答案解析)(45分钟70分)一、选择题(每小题5分,共40分)1.某同学用“五点法”画函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<)在一个周期内的简图时,列表如下:则有( )A.A=0,ω=,φ=0B.A=2,ω=3,φ=C.A=2,ω=3,φ=-D.A=1,ω=3,φ=-【解析】选C.由表可知A=2,又=-=,所以T=,故ω=3,又3×+φ=0,所以φ=-.2.已知函数y=Asin(ωx+φ)(A>0,ω>0)的振幅为,周期为,初相是,则该函数的解析式是( )A.y=B.y=C.y=D.y=【解析】选C.由T==,所以ω=3.A=,φ=,所以y=.3.(2018·厦门高一检测)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ<)的图象如图所示,f(0)=-,则A的值是( )A.1B.C.D.2【解析】选C.由T=2=π,所以ω===2,所以f(x)=Asin,将代入得Asin=0,即φ=kπ-,k∈Z,取k=0,得φ=-,则f(x)=Asin,因为f(0)=-,所以f(0)=Asin=-A=-,所以A=.【补偿训练】(2018·长春高一检测)已知函数y=sin(ωx+φ)的部分图象如图所示,则点P(ω,φ)的坐标为( )A. B. C. D.【解析】选B.因为=-=,所以T=π,因此ω===2.又因为f=-1,即2×π+φ=+2kπ(k∈Z),所以φ=+2kπ(k∈Z).又因为0<φ≤,所以φ=,故P.4.(2018·北京高一检测)f(x)=Asin(ωx+φ)的图象如图所示.为了得到f(x)的图象,则只要将g(x)=sin2x的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【解析】选C.由图象可知A=1,T=4×=π,所以ω=2.又f()=1,所以2×+φ=+2kπ,故φ=,因此f(x)=sin,g(x)=sin2x y=sin2=sin.故选C.【误区警示】解答本题易出现选D的错误,导致出现这种错误的原因是对平移规律掌握的不准确,即y=sin是y=sin2x图象向左平移个单位而不是个单位.5.(2018·普宁高一检测)设函数f(x)=sin,则下列结论正确的是( )A.f(x)的图象关于直线x=对称B.f(x)的图象关于点对称C.f(x)的最小正周期为π,且在上为增函数D.把f(x)的图象向右平移个单位,得到一个偶函数的图象【解析】选C.A中f=sin≠±1,所以x=不是对称轴;B中f=sin=1,所以不是对称点;C中f(x)的周期T==π,x∈时,2x+∈,函数是增函数;D中把f(x)的图象向右平移个单位得y=f=sin=sin2x为奇函数.6.函数f(x)=sin的图象的一条对称轴是( )A.x=-B.x=C.x=-D.x=【解析】选C.由x-=+kπ(k∈Z)得,x=+kπ(k∈Z).当k=-1时,x=-是其一条对称轴.【补偿训练】函数y=2sin图象的两相邻对称轴之间的距离是( ) A. B.π C. D.【解析】选D.函数图象的两相邻对称轴之间的距离等于,即=×=.7.(2018·石家庄高二检测)已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)满足f(-x)=f(x),其图象与直线y=2的某两个交点横坐标为分别为x1,x2,且|x1-x2|的最小值为π,则( )A.ω=,φ=B.ω=2,φ=C.ω=,φ=D.ω=2,φ=【解析】选D.因为已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π),所以函数f(x)的最大值为2,又函数图象与直线y=2的某两个交点横坐标分别为x1,x2,且|x1-x2|的最小值为π,所以函数有周期T==π,所以ω=2,又因为f(-x)=f(x),所以函数f(x)为偶函数,所以φ=,故选D.8.(2018·大庆高一检测)若函数f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(2014)+f(2015)+f(2016)的值为( )A. B.0 C.+2 D.不确定【解析】选B.由图可知T=8,A=2,φ=0,所以ω==,所以f(x)=2sin x,经计算知f(1)+f(2)+…+f(8)=0,所以原式=252×0=0.【延伸探究】本题条件不变,试求f(x)的对称轴及单调递增区间.【解析】由例题解析可知f(x)=2sin x,令x=+kπ(k∈Z),得对称轴为x=2+4k(k∈Z).令-+2kπ≤x≤+2kπ(k∈Z),得-2+8k≤x≤2+8k(k∈Z),所以单调递增区间为[-2+8k,2+8k](k∈Z).二、填空题(每小题5分,共10分)9.(2018·淄博高二检测)已知函数f(x)=Msin(ωx+φ)的部分图象如图所示,其中A,B两点之间的距离为5,那么f(-1)= .【解析】由图象可得A=2,2sinφ=1,即sinφ=,再由0≤φ≤π,结合图象可得φ=,又A,B两点之间的距离为5,可得25=16+,所以,ω=.故函数f(x)=2sin,故f(-1)=2sin=2.答案:210.关于函数f(x)=2sin的结论:①f(x)的最小正周期是π;②f(x)在区间上单调递增;③函数f(x)的图象关于点成中心对称图形;④将函数f(x)的图象向左平移个单位后与y=-2sin2x的图象重合;其中成立的结论序号为.【解析】因为f(x)=2sin,所以①f(x)的最小正周期==π,正确;②因为x∈,所以∈,故函数f(x)在区间上单调递增,正确;③因为f=2sin≠0,所以函数f(x)的图象关于点不成中心对称图形,故不正确;④将函数f(x)的图象向左平移个单位后得到g(x)=f=2sin(2x+π)=-2sin2x,故将函数f(x)的图象向左平移个单位后与y=-2sin2x的图象重合,正确.综上可知:正确的为①②④.答案:①②④三、解答题(每小题10分,共20分)11.已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为,此点到相邻最低点间的曲线与x轴交于点,若φ∈.(1)试求这条曲线的函数解析式.(2)用“五点法”画出(1)中函数在[0,π]上的图象.【解析】(1)由题意知A=,T=4×=π,ω==2,所以y=sin(2x+φ).又因为sin=1,所以+φ=2kπ+,k∈Z,所以φ=2k π+,k ∈Z, 又因为φ∈,所以φ=,所以y=sin.(2)列出x,y 的对应值表:-π ππ2x+0π y描点、连线,如图所示:12.(2018·湖北高考)某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,并直接写出函数f(x)的解析式.(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.【解题指南】(1)根据已知表格中的数据可得方程组解之可得函数f(x)的解析式,进而可补全其表格.(2)由(1)并结合函数图象平移的性质可得函数g(x)的解析式,进而求出其图象的对称中心坐标,取出其距离原点O最近的对称中心即可.【解析】(1)根据表中已知数据可得:A=5,ω+φ=,ω+φ=,解得ω=2,φ=-.函数解析式为f(x)=5sin.数据补全如表:π(2)由(1)知f(x)=5sin,因此g(x)=5sin=5sin.因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+=kπ,k∈Z,解得x=-,k∈Z.即y=g(x)图象的对称中心为,k∈Z,其中离原点O最近的对称中心为.【能力挑战题】已知函数f(x)=Asin(ωx+φ)在一个周期内的图象如图所示.(1)求函数的解析式.(2)设0<x<π,且方程f(x)=m有两个不同的实数根,求实数m的取值范围以及这两个根的和.【解析】(1)观察图象,得A=2,T=×=π,所以ω==2,所以f(x)=2sin(2x+φ).因为函数经过点,2sin=2,即sin=1.又因为|φ|<,所以φ=,所以函数的解析式为f(x)=2sin.(2)因为0<x<π,所以f(x)=m的根的情况,相当于求f(x)=2sin与g(x)=m的交点个数情况,且0<x<π,所以在同一坐标系中画出y=2sin和y=m,m∈R的图象.由图可知,当-2<m<1或1<m<2时,直线y=m与曲线有两个不同的交点,即原方程有两个不同的实数根,所以m的取值范围为-2<m<1或1<m<2;当-2<m<1时,此时两交点关于直线x=对称,两根和为,当1<m<2时,此时两交点关于直线x=对称,两根和为.。

高中数学 人教A版必修4 第2章 2.2.1向量的加法运算及其几何意义

高中数学 人教A版必修4    第2章 2.2.1向量的加法运算及其几何意义

2.2.1
问题 2
想一想,|a+b|与|a|和|b|之间的大小关系如何?
|a|+|b| a, b 同向, 当 a 与 b 同向共线时, a+b 与____ 且|a+b|=_______.
本 课 时 栏 目 开 关
a 的方向相同, 当 a 与 b 反向共线时,若|a|>|b|,则 a+b 与__
|a|-|b| ;若|a|<|b|,则 a+b 与__ b 的方向相同,且 且|a+b|=_______ |b|-|a| |a+b|=_______.
填一填·知识要点、记下疑难点
2.2.1
1.向量的加法法则
本 课 时 栏 目 开 关
(1)三角形法则 如图所示,已知非零向量 a,b,在平面内任取
→ → → AC 一点 A,作AB=a,BC=b,则向量____叫做 a 与 b 的和(或
→ → → a + b 和向量), 记作_____, 即 a+b=AB+BC=_____. AC 上述求两个 向量和的作图法则,叫做向量求和的三角形法则.
本 课 时 栏 目 开 关
2.2.1
2.2.1
【学习要求】
向量加法运算及其几何意义
本 1.理解并掌握加法的概念,了解向量加法的物理意义及其几何 课 时 意义. 栏 目 开 2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运 关
用这两个法则作两个向量的加法运算.
3.了解向量加法的交换律和结合律,并能依几何意义作图解释加 法运算律的合理性.
a a =__. 0 +__ 对于零向量与任一向量 a 的和有 a+0=__
填一填·知识要点、记下疑难点
2.2.1
(2)平行四边形法则 如图所示,已知两个不共线向量 a,b,作 → → OA=a,OB=b,则 O、A、B 三点不共线,

高中数学 人教A版必修4 第2章 2.4.1平面向量数量积的物理背景及含义(二)

高中数学 人教A版必修4    第2章 2.4.1平面向量数量积的物理背景及含义(二)
λ(a· b) =______ a· (λb) (结合律); (2)(λa)· b=______
a· c+b· c (分配律). (3)(a+b)· c=_________
研一研·问题探究、课堂更高效
2.4.1(二)
探究点一
本 课 时 栏 目 开 关
向量数量积运算律的提出 类比实数的运算律,向量的数量积是否具有类似的特
a· b=b· c(b≠0)⇒a=c 不成立,如图所示.
显然 a· b=b· c,且 a≠c.
研一研·问题探究、课堂更高效
2.4.1(二)
探究点二
向量数量积的运算律
已知向量 a,b,c 和实数 λ,向量的数量积满足下列运算律: ①a· b=b· a(交换律);
本 课 时 栏 目 开 关
②(λa)· b=λ(a· b)=a· (λb)(数乘结合律); ③(a+b)· c=a· c+b· c(分配律). 问题 1 证明 a· b=b· a.
|b|cos θ 叫做向量 b 在 a 方向上的投影. 的投影,_________
2.向量数量积的性质 设 a、b 为两个非零向量,e 是与 b 同向的单位向量.
|a|cos〈a,b〉 (1)a· e=e· a=_____________ ;
0 且 a· 0 ⇒a⊥b; (2)a⊥b⇒a· b=__ b=__
问题 1
征?先写出类比后的结论,再判断正误(完成下表):
运算律 交换律 结合律 分配律 实数乘法 ab=ba (ab)c=a(bc) (a+b)c=ac+bc 向量数量积 判断 正误
a· b=b· a (a· b)c=a(b· c) (a+b)· c=a· c+b· c
正确
错误 正确
b=b· c(b≠0)⇒a=c 错误 消去律 ab=bc(b≠0) ⇒a=c a·

高中数学人教A版必修4习题:第一章三角函数1.1.1

高中数学人教A版必修4习题:第一章三角函数1.1.1

01第一章三角函数1.1任意角和弧度制1.1.1任意角课时过关·能力提升基础巩固1-215°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.答案:B2下列与150°角终边相同的角是()A.30°B.-150°C.390°D.-210°答案:D3与-457°角终边相同的角的集合是()A.{α|α=k·360°+457°,k∈Z}B.{α|α=k·360°+97°,k∈Z}C.{α|α=k·360°+263°,k∈Z}D.{α|α=k·360°-263°,k∈Z}答案:C4已知α是第二象限角,则2α的终边在()A.第一、二象限B.第二象限C.第三、四象限D.以上都不对解析:∵α是第二象限角,∴k·360°+90°<α<k·360°+180°,k∈Z,∴2k·360°+180°<2α<2k·360°+360°,k∈Z,∴2α角的终边在第三或第四象限或在y轴的非正半轴上.答案:D5若手表的时针走了2 h,则该时针转过的度数为()A.60°B.-60°C.30°D.-30°答案:B6在-360°~720°之间,与-367°角终边相同的角是.解析:与-367°角终边相同的角可表示为α=k·360°-367°,k∈Z.当k=1,2,3时,α=-7°,353°,713°,这三个角都是符合条件的角.答案:-7°,353°,713°7终边落在图中阴影部分(不包括边界)的角的集合为.解析:在0°~360°内,终边在阴影部分的角的范围是120°<α<225°,所以终边落在阴影部分的角的集合为{β|k·360°+120°<β<k·360°+225°,k∈Z}.答案:{β|k·360°+120°<β<k·360°+225°,k∈Z}8在坐标系中画出下列各角:(1)-180°;(2)1 070°.解在坐标系中画出各角如图.9在-720°~720°范围内,用列举法写出与60°角终边相同的角的集合S.解与60°角终边相同的角的集合为{α|α=60°+k·360°,k∈Z},令-720°≤60°+k·360°<720°(k∈Z),得k=-2,-1,0,1,相应的角为-660°,-300°,60°,420°,从而S={-660°,-300°,60°,420°}.10已知α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求角θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)∵-1910°=-6×360°+250°,∴β=250°,即α=250°-6×360°.又250°是第三象限角,∴α是第三象限角.(2)θ=250°+k·360°(k∈Z).∵-720°≤θ<0°,∴-720°≤250°+k·360°<0°,解得−9736≤k<−2536.又k∈Z,∴k=-1或k=-2.∴θ=250°-360°=-110°或θ=250°-2×360°=-470°.能力提升1下列说法中,正确的是()A.钝角必是第二象限角,第二象限角必是钝角B.第三象限的角必大于第二象限的角C.小于90°的角是锐角D.-95°20',984°40',264°40'是终边相同的角答案:D2若A={α|α=k·360°,k∈Z},B={α|α=k·180°,k∈Z},C={α|α=k·90°,k∈Z},则下列关系正确的是()A.A=B=CB.A=B∩CC.A∪B=CD.A⊆B⊆C答案:D3若角θ是第四象限角,则90°+θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:如图,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.答案:A是第象限角.4已知α为第三象限角,则α3<解析:∵α是第三象限角,∴k·360°+180°<α<k·360°+270°,k∈Z,∴k·120°+60°<α3k·120°+90°,k∈Z.∵k·120°+60°角的终边在第一象限、x轴非正半轴、第四象限,k·120°+90°角的终边在y轴是第一、三或四象限角.非负半轴、第三象限、第四象限,∴α3答案:一、三或四5已知角α的终边在图中阴影所表示的范围内(不包括边界),则角α组成的集合为.解析:由图知,将x轴绕原点分别旋转30°与150°得边界,∴终边在阴影内的角的集合为{α|k·180°+30°<α<k·180°+150°,k∈Z}.答案:{α|k·180°+30°<α<k·180°+150°,k∈Z}★6角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,则角α=.解析:∵5α与α的始边和终边分别相同,∴这两角的差应是360°的整数倍,即5α-α=4α=k·360°.∴α=k·90°.又180°<α<360°,令180°<k·90°<360°,则2<k<4,∴k=3,α=270°.答案:270°7已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,指出它们是第几象限角,并指出在0°~360°范围内与其终边相同的角.(1)780°;(2)-435°;(3)1 215°;(4)-870°.解(1)如图①,780°是第一象限角;在0°~360°范围内,60°角与其终边相同.(2)如图②,-435°是第四象限角;在0°~360°范围内,285°角与其终边相同.(3)如图③,1215°是第二象限角;在0°~360°范围内,135°角与其终边相同.(4)如图④,-870°是第三象限角;在0°~360°范围内,210°角与其终边相同.★8已知集合M={α|k·180°+30°<α<k·180°+120°,k∈Z},N={β|k·360°+90°<β<k·360°+270°,k∈Z},求M∩N.解∵M={α|k·180°+30°<α<k·180°+120°,k∈Z},∴当k=2n(n∈Z)时,M={α|n·360°+30°<α<n·360°+120°,n∈Z}.又N={β|k·360°+90°<β<k·360°+270°,k∈Z},∴M∩N={x|k·360°+90°<x<k·360°+120°,k∈Z}.当k=2n+1(n∈Z)时,M={α|n·360°+210°<α<n·360°+300°,n∈Z},又N={β|k·360°+90°<β<k·360°+270°,k∈Z},∴M∩N={x|k·360°+210°<x<k·360°+270°,k∈Z},∴M∩N={x|k·360°+90°<x<k·360°+120°或k·360°+210°<x<k·360°+270°,k∈Z}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课下能力提升(二十)
[学业水平达标练]
题组1 平面向量数量积的坐标运算
1.已知向量a =(1,-1),b =(2,x ).若a ·b =1,则x =( )
A .-1
B .-12
C.12
D .1 2.已知向量a =(0,-23),b =(1,3),则向量a 在b 方向上的投影为( ) A.3B .3
C .- 3
D .-3
3.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a ·b =3,则b =( )
A.⎝ ⎛⎭⎪⎫32,12
B.⎝ ⎛⎭
⎪⎫12,32 C.⎝ ⎛⎭
⎪⎫14,334 D .(1,0) 题组2 向量模的问题
4.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( )
A .42
B .25
C .8
D .8 2
5.设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则|3a +b |等于________.
6.已知在直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则||的最小值为________.
题组3 向量的夹角与垂直问题
7.设向量a =(1,0),b =⎝ ⎛⎭
⎪⎫12,12,则下列结论中正确的是( ) A .|a |=|b | B .a ·b =
22
C .a -b 与b 垂直
D .a ∥b
8.已知向量a =(1,2),b =(2,-3),若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )
A.⎝ ⎛⎭⎪⎫79,73
B.⎝ ⎛⎭⎪⎫-73
,-79 C.⎝ ⎛⎭⎪⎫73,79D.⎝ ⎛⎭⎪⎫-79
,-73 9.以原点O 和点A (5,2)为顶点作等腰直角三角形OAB ,使∠B =90°,求点B 和向量
的坐标.
10.已知a,b,c是同一平面内的三个向量,其中a=(1,2).
(1)若|c|=25,且c∥a,求c的坐标;
(2)若|b|=
5
2
,且a+2b与2a-b垂直,求a与b的夹角θ.
[能力提升综合练]
A.3
2
B.-
3
2
C.4 D.-4
2.已知向量=(2,2),=(4,1),在x轴上有一点P,使有最小值,则点P的坐标是( )
A.(-3,0) B.(2,0)
C.(3,0) D.(4,0)
3.a,b为平面向量,已知a=(4,3),2a+b=(3,18),则a,b夹角的余弦值等于( )
A.8
65
B.-
8
65
C.16
65
D.-
16
65
4.已知a=(1,2),b=(x,4),且a·b=10,则|a-b|=________.
5.如图,已知点A(1,1)和单位圆上半部分上的动点B,若⊥,则向量的坐标为________.
6.已知a=(λ,2λ),b=(3λ,2),若a与b的夹角为锐角,则λ的取值范围是________.7.已知O为坐标原点,=(2,5),=(3,1),=(6,3),则在线段OC上是否存在点M,使得?若存在,求出点M的坐标;若不存在,请说明理由.
答案
[学业水平达标练]
1. 解析:选D a·b=(1,-1)·(2,x)=2-x=1⇒x=1.
2. 解析:选D 向量a 在b 方向上的投影为a ·b |b |=-62=-
3.选D. 3. 解析:选B 法一:设b =(x ,y ),其中y ≠0,
则a ·b =3x +y = 3.
由⎩⎨⎧x 2+y 2=1,3x +y =3y ≠0,,
解得⎩⎪⎨⎪⎧x =12,y =32,
即b =⎝ ⎛⎭⎪⎫12,32.故选B. 法二:利用排除法.D 中,y =0,
∴D 不符合题意;C 中,向量⎝ ⎛⎭
⎪⎫14,334不是单位向量, ∴C 不符合题意;A 中,向量⎝
⎛⎭⎪⎫32,12使得a ·b =2, ∴A 不符合题意.故选B.
4. 解析:选D 易得a ·b =2×(-1)+4×2=6,
所以c =(2,4)-6(-1,2)=(8,-8),
所以|c |=82+(-8)2=8 2.
5. 解析:a ∥b ,则2×(-2)-1·y =0,
解得y =-4,从而3a +b =(1,2),|3a +b |= 5.
答案: 5
6. 解析:建立如图所示的平面直角坐标系,设DC =h ,则A (2,0),B (1,h ).设P (0,y )(0≤y ≤h ),则=(2,-y ),=(1,h -y ),
∴|
|=25+(3h -4y )2≥25=5. 故|
|的最小值为5. 答案:5
7. 解析:选C 由题意知|a |=12+02=1,|b |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122
=22,a ·b =1×12+0×12=12,(a -b )·b =a ·b -|b |2=12-12
=0,故a -b 与b 垂直.
8. 解析:选D 设c =(m ,n ),
则a +c =(1+m ,2+n ),a +b =(3,-1),
由(c +a )∥b ,
得-3(1+m )=2(2+n ),
又c ⊥(a +b ),得3m -n =0,
故m =-79,n =-73.
9. 解:设点B 坐标为(x ,y ),
则=(x ,y ),=(x -5,y -2).
∵⊥,
∴x (x -5)+y (y -2)=0,
即x 2+y 2-5x -2y =0.
又∵||=||,
∴x 2+y 2=(x -5)2+(y -2)2,
即10x +4y =29.
由⎩⎪⎨⎪⎧x 2+y 2
-5x -2y =0,10x +4y =
29, 解得⎩⎪⎨⎪⎧x =72,y =-32,或⎩⎪⎨⎪
⎧x =32,
y =72.
∴点B 的坐标为⎝ ⎛⎭⎪⎫72,-32或⎝ ⎛⎭⎪⎫32,72.

⎝ ⎛⎭⎪⎫-32,-72或⎝ ⎛⎭⎪⎫-72,32.
10. 解:(1)设c =(x ,y ),
∵|c |=25,∴x 2+y 2=25,
∴x 2+y 2=20.
由c ∥a 和|c |=25,
可得⎩⎪⎨⎪⎧1·y -2·x =0,x 2+y 2=20,
解得⎩⎪⎨⎪⎧x =2,y =4,或⎩⎪⎨⎪
⎧x =-2,y =-4.
故c =(2,4)或c =(-2,-4).
(2)∵(a +2b )⊥(2a -b ),
∴(a +2b )·(2a -b )=0,
∴2×5+3a ·b -2×54
=0, 整理得a ·b =-52
, ∴cos θ=a ·b |a ||b |
=-1. 又θ∈[0,π],∴θ=π.
[能力提升综合练] 1.
解得m =4.
2. 解析:选C 设P (x ,0),则
=(x -2,-2),=(x -4,-1),∴=(x -2)(x -4)+2=x 2-6x +10=(x -3)2+1,故当x =3时,AP ―→·BP ―→最小,此时点
P 的坐标为(3,0).
3. 解析:选C 设b =(x ,y ),
则2a +b =(8+x ,6+y )=(3,18),
所以⎩
⎪⎨⎪⎧8+x =3,6+y =18, 解得⎩
⎪⎨⎪⎧x =-5,y =12, 故b =(-5,12),
所以cos 〈a ,b 〉=a ·b |a ||b |=1665
. 4. 解析:由题意,得a ·b =x +8=10,
∴x =2,∴a -b =(-1,-2),
∴|a -b |= 5. 答案: 5
5. 解析:依题意设B (cos θ,sin θ),0≤θ≤π,
解得θ=3π4, 所以=⎝ ⎛⎭⎪⎫
-22,22.
答案:⎝ ⎛⎭⎪⎫
-2
2,22
6. 解析:因为a 与b 的夹角为锐角, 所以0<a ·b
|a ||b |<1,
即0<3λ2+4λ
5λ2×9λ2+4<1,
解得λ<-43或0<λ<13或λ>1
3.
答案:⎝ ⎛⎭⎪⎫-∞,-4
3∪⎝ ⎛⎭⎪⎫0,1
3∪⎝ ⎛⎭⎪⎫1
3,+∞
7. 解:假设存在点M ,
∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0, 即45λ2-48λ+11=0,
解得λ=1
3或λ=1115.
∴存在M (2,1)或M ⎝ ⎛⎭⎪⎫225,11
5满足题意.。

相关文档
最新文档