二进制八进制十六进制之间的转换详解

合集下载

二进制与八进制十六进制的相互转化方法

二进制与八进制十六进制的相互转化方法

二进制与八进制十六进制的相互转化方法二进制、八进制和十六进制是计算机领域常用的数字表示方法。

在计算机编程、数据存储和通信等领域,经常需要进行二进制、八进制和十六进制之间的转化。

这篇文章将详细介绍二进制与八进制、十六进制的相互转化方法。

1.二进制转八进制二进制转八进制的方法是将二进制数每三位分成一组,从最低位开始,然后将每组对应的八进制数写下来就可以了。

1-101-011-0将每组对应的八进制数写下来,即转换完成:1522.八进制转二进制八进制转二进制的方法是将每一位的八进制数转换成对应的三位二进制数,从最高位开始逐个转换。

例如,要将八进制数347转换成二进制:3-4-71.二进制转十六进制二进制转十六进制的方法是将二进制数每四位分成一组,从最低位开始,然后将每组对应的十六进制数写下来就可以了。

1-1010-0110将每组对应的十六进制数写下来,即转换完成:1A62.十六进制转二进制十六进制转二进制的方法是将每一位的十六进制数转换成对应的四位二进制数,从最高位开始逐个转换。

例如,要将十六进制数1A6转换成二进制:1-A-61.八进制转十六进制八进制转十六进制的方法是将八进制数先转换成二进制,然后再将二进制数每四位分成一组,从最低位开始,然后将每组对应的十六进制数写下来就可以了。

例如,要将八进制数347转换成十六进制:3-4-7再将二进制数每四位分组:0111-0011-1001最后将每组对应的十六进制数写下来,即转换完成:7392.十六进制转八进制十六进制转八进制的方法是将十六进制数先转换成二进制,然后将二进制数每三位分成一组,从最低位开始,然后将每组对应的八进制数写下来就可以了。

例如,要将十六进制数1A6转换成八进制:1-A-6将每位转换成对应的四位二进制数:0001-1010-0110。

再将二进制数每三位分组:0-001-101-001-100。

总结:由于二进制与八进制、十六进制的数制规律,相互转换方法相对简单。

二进制八进制十六进制转换方法

二进制八进制十六进制转换方法

二进制八进制十六进制转换方法在计算机科学和数字电路中,二进制、八进制和十六进制是常用的数制系统。

转换这些数制系统之间的方法相对简单,下面将详细介绍如何进行二进制、八进制和十六进制之间的转换。

一、二进制转换方法:二进制是一种由0和1组成的数制系统。

在二进制数中,每一位的权值都是2的幂次方。

例如,二进制数1101可以转换为十进制数131.二进制转换为八进制的方法:(1)将二进制数从右向左进行分组,每三个二进制位一组。

(2)在每个组之前添加一个0,以保持组数的整数倍。

(3)将每组的二进制数转换为十进制数。

(4)将每个十进制数转换为相应的八进制数。

(5)将转换结果合并起来,得到最终的八进制数。

11001010110010103122.二进制转换为十六进制的方法:(1)将二进制数从右向左进行分组,每四个二进制位一组。

(2)在每个组之前添加一个0,以保持组数的整数倍。

(3)将每组的二进制数转换为十进制数。

(4)将每个十进制数转换为相应的十六进制数。

(5)将转换结果合并起来,得到最终的十六进制数。

110110101010001101101011B5二、八进制转换方法:1.八进制转换为二进制的方法:(1)将八进制数的每一位转换为3位的二进制数。

(2)将转换结果合并起来,得到最终的二进制数。

例子:将八进制数63转换为二进制数。

631100112.八进制转换为十六进制的方法:(1)将八进制数的每一位转换为4位的二进制数。

(2)将转换结果合并起来,得到最终的二进制数。

(3)将二进制数转换为十六进制数。

例子:将八进制数736转换为十六进制数。

73611101111073E所以,八进制数736等于十六进制数73E。

三、十六进制转换方法:1.十六进制转换为二进制的方法:(1)将十六进制数的每一位转换为4位的二进制数。

(2)将转换结果合并起来,得到最终的二进制数。

例子:将十六进制数C7转换为二进制数。

C7110001112.十六进制转换为八进制的方法:(1)将十六进制数的每一位转换为四位的二进制数。

二进制八进制十进制十六进制之间的转换算法

二进制八进制十进制十六进制之间的转换算法

二进制,八进制,十进制,十六进制之间的转换算法一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。

第二步,将商84除以2,商42余数为0。

第三步,将商42除以2,商21余数为0。

第四步,将商21除以2,商10余数为1。

第五步,将商10除以2,商5余数为0。

第六步,将商5除以2,商2余数为1。

第七步,将商2除以2,商1余数为0。

第八步,将商1除以2,商0余数为1。

第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。

换句话说就是0舍1入。

读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。

例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。

2进制8进制16进制之间快速转换的技巧

2进制8进制16进制之间快速转换的技巧

2进制8进制16进制之间快速转换的技巧在计算机科学和编程中,经常需要进行二进制、八进制和十六进制数
之间的转换。

这些转换的技巧可以帮助我们在不同进制之间快速转换数值。

下面是一些常用的技巧和方法:
一、二进制与八进制之间的转换:
二、二进制与十六进制之间的转换:
三、八进制与十六进制之间的转换:
1.从八进制到十六进制:先将八进制数转换为二进制数,然后将二进
制数转换为对应的十六进制数。

2.从十六进制到八进制:先将十六进制数转换为二进制数,然后将二
进制数转换为对应的八进制数。

上述方法是最基本也最直接的转换方法。

除了这些方法外,还有一些
进一步简化转换的技巧:
这些简化方法在转换大量数值时可以极大地提高转换速度和准确性。

总结起来,对于二进制、八进制和十六进制之间的转换,我们可以采
用分组的方式,将数值从一个进制转换到另一个进制。

同时,可以应用数
字与对应进制数的直接对应关系,将多位二进制数直接转换为对应的八进
制或十六进制数,以提高转换的速度和效率。

再者,熟悉几个特殊的数值
对应关系,也可以帮助在不同进制之间快速转换。

完整版二进制八进制十进制十六进制之间转换详解

完整版二进制八进制十进制十六进制之间转换详解

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分① 整数部分方法:除2 取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0 为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168 转换为二进制得出结果将十进制的168 转换为二进制,(10101000)2 分析:第一步,将168除以2, 商84,余数为0。

第二步,将商84除以2,商42余数为0。

第三步,将商42除以2,商21余数为0。

第四步,将商21除以2,商10余数为1。

第五步,将商10除以2,商5 余数为0。

第六步,将商5除以2,商2余数为1。

第七步,将商2除以2,商1余数为0。

第八步,将商1除以2,商0余数为1。

第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2 取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。

换句话说就是0舍1入。

读数要从前面的整数读到后面的整数,下面举例:例1:将0.125 换算为二进制得出结果:将0.125 换算为二进制(0.001 )2分析:第一步,将0.125 乘以2,得0.25, 则整数部分为0, 小数部分为0.25;第二步, 将小数部分0.25 乘以2,得0.5, 则整数部分为0, 小数部分为0.5;第三步, 将小数部分0.5 乘以2,得1.0, 则整数部分为1,小数部分为0.0;第四步, 读数, 从第一位读起,读到最后一位, 即为0.001 。

二进制八进制十六进制转换方法

二进制八进制十六进制转换方法

二进制八进制十六进制转换方法二进制、八进制和十六进制是计算机领域中常用的进制表示方式,它们在计算机内部的数据储存和处理中起着重要的作用。

本文将介绍二进制、八进制和十六进制之间的相互转换方法。

一、二进制转八进制二进制是以2为基数的数字系统,只包含0和1两个数字。

而八进制是以8为基数的数字系统,包含0至7共8个数字。

将二进制数转换为八进制数的方法如下:1. 将二进制数从右往左每三位一组进行分组,如果最左边的组不足三位,则在左边补0,直到凑齐三位。

例如,11101分组后为011 101。

2. 将每个分组转换为对应的八进制数。

对照八进制数的权值表,将每个分组转换为对应的八进制数。

例如,011转换为3,101转换为5。

3. 将得到的八进制数按照从左到右的顺序排列,即为最终的八进制数。

例如,011 101转换为35。

二、八进制转二进制将八进制数转换为二进制数的方法与二进制转八进制相反,具体步骤如下:1. 将八进制数的每一位转换为对应的三位二进制数。

对照八进制数的权值表,将每一位转换为对应的三位二进制数。

例如,八进制数35转换为011 101。

2. 去掉左边多余的0,即为最终的二进制数。

例如,011 101去掉左边的0后为11101。

三、二进制转十六进制十六进制是以16为基数的数字系统,包含0至9的十个数字和A 至F的六个字母。

将二进制数转换为十六进制数的方法如下:1. 将二进制数从右往左每四位一组进行分组,如果最左边的组不足四位,则在左边补0,直到凑齐四位。

例如,1101101分组后为0011 01101。

2. 将每个分组转换为对应的十六进制数。

对照十六进制数的权值表,将每个分组转换为对应的十六进制数。

例如,0011转换为3,01101转换为D。

3. 将得到的十六进制数按照从左到右的顺序排列,即为最终的十六进制数。

例如,0011 01101转换为3D。

四、十六进制转二进制将十六进制数转换为二进制数的方法与二进制转十六进制相反,具体步骤如下:1. 将十六进制数的每一位转换为对应的四位二进制数。

二进制,八进制,十进制,十六进制之间的转换

二进制,八进制,十进制,十六进制之间的转换

二进制,八进制,十进制,十六进
制之间的转换
方法是:小数除以2得到余数,即小数除以2,余数就是砝码上的数,得到的商值继续除以2。

根据这个步骤,它将继续向下操作,直到商360被重新知道为0。

例如:把十进制数 150 转换为二进制数:如下:
•2
二进制转换为十进制的方法是:将二进制数按重量展开,相加得到十进制数。

•3
二进制转换为八进制的方法是:三个二进制数通过重量展开相加得到一个八进制数。

(请注意,3位二进制到八进制的转换是从右向左开始的,不足时加0)。

•4
八进制数转换成二进制数的方法如下:八进制数除以2得到二进制数,每个八进制数由三个二进制数组成。

不足时,在最左边补零。

•5
二进制到十六进制的方法类似于二进制到八进制的方法,八进制是三合一,十六进制是四合一。

(注意,4位二进制到十六进制的转换是从右到左,不足时加0)。

•6
十六进制转换成二进制的方法是:将十六进制数除以2得到二进制数,每个十六进制数为4个二进制数。

油量不足时,在最左边加零。

•7
十进制转八进制或者十六进制
将十进制转换为八进制或十六进制,然后除以8或16,直到商为0。

•8
将八进制或十六进制转换成十进制的方法是:将八进制和十六进制香烟组的二进制数按重量展开相加得到十进制数。

•9
八进制 >十六进制方法:将八进制转换为二进制,然后再将二进制转换为十六进制,小数点位置不变。

•10
十六进制 >八进制
方法:将十六进制转换成二进制,再将二进制转换成八进制,小数点位置不变。

二进制、八进制、十六进制转换(整理版)

二进制、八进制、十六进制转换(整理版)

二进制、八进制、十六进制相互转换
B→H 16进制就有16个数,0~15,用二进制表示15的方法就是1111,故16进制用2进制可以表现成0000~1111,也就是每四个为一位。

例:1、( 1 1 1 1 0 1)B=(3D)H 0 0 1 1| 1 1 0 1
2+1=3 8+4+1=13=D
2、(0001 0110.0101 1011)B=(16.5B)H
H→B 二进制每四位所表示的数的最大值对应16进制的15,即16进制每一位上最大值,故将16进制上每一位分别对应二进制上四位进行转换,即得所求:例:(2AF5)H=(0010101011110101)B 5 F A 2
0101 1111 1010 0010
B→O 以小数点为界分别向左右3数字为一组进行分组,每组分别转化成二进制数,最后合并在一起,并把首0去掉(尾0不可以去)。

例:(1101001)B=(151)O 001 101 001
1 5 1
O→B 八进制数一位一位地取出,然后把一位换算成 3位(0-000 1-001 2-010 3-011 4-100 5-101 6-110 7-111)依次排列就可以了。

例:(0371)O =(011 111 001)B 3 7 1
011 111 001
总结:B→H(O),把一个二制数以小数点为界分别向左右每4(或3)个数字为一组进行分组,每组分别转化成16或8进制数,最后合并在一起;H(O)→B,把一个16或8进制数以小数点为界分别向左右,每个数字分别转化成二进制数,最后合并在一起。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二进制转十进制,十进制转二进制的算法

表1二进制数和十进制数换算对照表
二进制十进制二进制十进制二进制十进制二进制十进制
00000001130110610019
000110100401117101010
001020101510008101111
采用“二进制数”的算术运算也比较简单,制造成本更经济。

二进制的加法运算和乘法运算公式都各有四条规则:加法有0+0=0,
0+1=1,1+0=1,1+1=10;乘法有0*0=0,0*1=0, 1*0=0, 1*1=1,而十进制的加法和乘法运算公式从0+0开始到9+9,从0*0开始到9*9各需规则100条。

2.二进制代码
电子计算机中的数是用二进制表示的,在计算机中也采用二进制代码表示字母、数字字符、各种各样的符号、汉字等。

在处理信息的过程中,可将若干位的二进制代码组合起来表示各种各样的信息。

但由于二进制数不直观,人们在计算机上实际操作时,输入、输出的数使用十进制,而具体转换成二进制编码的工作则由计算机软件系统自动完成。

字母和各种字符在计算机中的传输普遍采用Ascll码
(American Standard Code For lnformation lnterchange),即美国标准信息交换码,它用了7位二进制数来表达字母和各种常用字符(见附录)。

对于汉字信息的表示比较复杂,我国有汉字几万个,常用的汉字也有7000多个,为了统一,我国制定了汉字编码标准,规定了一、二级汉字共6763个,用两个字节(16位二进制代码)来表示一个汉字进制转二进制:
用2辗转相除至结果为1
将余数和最后的1从下向上倒序写就是结果
例如302
302/2 = 151 余0
151/2 = 75 余1
75/2 = 37 余1
37/2 = 18 余1
18/2 = 9 余0
9/2 = 4 余1
4/2 = 2 余0
2/2 = 1 余0
故二进制为100101110
二进制转十进制
从最后一位开始算,依次列为第0、1、2...位
第n位的数(0或1)乘以2的n次方
得到的结果相加就是答案
例如:01101011.转十进制:
第0位:1乘2的0次方=1
1乘2的1次方=2
0乘2的2次方=0
1乘2的3次方=8
0乘2的4次方=0
1乘2的5次方=32
1乘2的6次方=64
0乘2的7次方=0
然后:1+2+0
+8+0+32+64+0=107.
二进制01101011=十进制107.
一、二进制数转换成十进制数
由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。

这种做法称为"按权相加"法。

二、十进制数转换为二进制数
十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。

1. 十进制整数转换为二进制整数
十进制整数转换为二进制整数采用"除2取余,逆序排列"法。

具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。

2.十进制小数转换为二进制小数
十进制小数转换成二进制小数采用"乘2取整,顺序排列"法。

具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。

然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。

1.二进制与十进制的转换
(1)二进制转十进制<BR>方法:"按权展开求和"
例:
(1011.01)2 =(1×2∧3+0×2∧2+1×2∧1+1×2∧0+0×2∧-1+1×2∧-2)10
=(8+0+2+1+0+0.25)10
=(11.25)10
(2)十进制转二进制
·十进制整数转二进制数:"除以2取余,逆序输出"
例:(89)10=(1011001)2
2 89
2 44 (1)
2 22 0
2 11 0
2 5 (1)
2 2 (1)
2 1 0
0 (1)
·十进制小数转二进制数:"乘以2取整,顺序输出"
例:
(0.625)10= (0.101)2
0.625
X 2
1.25
X 2
0.5
X 2
1.0
2.八进制与二进制的转换
例:将八进制的37.416转换成二进制数:
37 . 4 1 6
011 111 .100 001 110
即:(37.416)8 =(11111.10000111)2
例:将二进制的10110.0011 转换成八进制:
0 1 0 1 1 0 . 0 0 1 1 0 0
2 6 . 1 4
即:(10110.011)2 =(26.14)8
3.十六进制与二进制的转换<BR>例:将十六进制数5DF.9 转换成二进制:5 D F . 9
0101 1101 1111.1001
即:(5DF.9)16 =(10111011111.1001)2
例:将二进制数1100001.111 转换成十六进制:
0110 0001 . 1110
6 1 . E
即:(1100001.111)2 =(61.E)16。

相关文档
最新文档