河南省南阳市2013-2014学年高二下学期期中质量评估数学理试题 扫描版含答案
河南省郑州一中2013-2014学年高二下学期期中考试物理试卷(带解析)

河南省郑州一中2013-2014学年高二下学期期中考试物理试卷(带解析)1.以下关于波与相对论的说法,正确的是( )A .无论什么波,只要振幅足够大就可以产生明显的衍射现象B .根据麦克斯韦的电磁场理论,变化的电场周围一定可以产生电磁波C .波源与观察者互相靠近或者互相远离时,观察者接收到的频率都会发生变化D .火车以接近光速行驶时,我们在地面上测得车厢前后距离变小了,而车厢的高度没有变化【答案】 CD 【解析】试题分析: 能否产生产生明显的衍射现象看障碍物与波长的尺寸关系,与振幅无关,当障碍物的尺寸小于波长或与波长差不多时能产生明显的衍射现象;故A 错误;根据麦克斯韦的电磁场理论,变化的电场周围一定可以产生磁场,但不一定能产生电磁波,只有周期性变化的电场周围才一定可以产生电磁波.故B 错误;波源与观察者互相靠近或者互相远离时,会产生多普勒效应,观察者接收到的波的频率都会增大或减小.故C 正确;火车以接近光速行驶时,根据相对论,沿着物体的运动方向,我们在地面上测得车厢前后距离变小了,而车厢的高度没有变化.故D 正确。
考点:机械波2.某弹簧振子在水平方向上做简谐运动,其位移x 随时间t 变化的关系为sin x A t ω=,振动图象如图所示,下列说法正确的是( )A .弹簧在第1s 末与第3s 末的长度相同B 第3s 末振子的位移大小为A 22 C 从第3s 末到第5s 末,振子的速度方向发生变化D 从第3s 末到第5s 末,振子的加速度方向发生变化 【答案】 ABD 【解析】试题分析: 在第1s 末与第3s 末的位移相同,故弹簧的长度相同,故A 正确;位移x 随时间t 变化的关系为x=Asin ωt ,第3s 末振子的位移大小为:A A x 2243sin==π,故B 正确;x-t 图象的切线斜率表示速度,从第3s 末到第5s 末,振子的速度方向并没有发生变化,故C 错误;从第3s 末到第5s 末,位移方向改变,故加速度也改变了方向,故D 正确;考点:简谐运动的振动图象3.如图所示,物体 A 置于物体 B 上,一轻质弹簧一端固定,另一端与 B 相连,在弹性限度范围内,A 和 B 一起在光滑水平面上作往复运动(不计空气阻力),均保持相对静止。
河南省南阳市2024-2025学年高二上学期10月月考数学试题(含答案)

高二数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:北师大版选择性必修第一册第一章,第二章.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设直线的倾斜角为,则( )A .B .C .D .2.已知双曲线的虚轴长是实轴长的3倍,则实数的值为( )A .B .C .D .3.已知方程表示一个焦点在轴上的椭圆,则实数的取值范围为( )A .B .C .D .4.直线被圆截得的弦长为( )ABCD .5.已知抛物线的焦点为,点为抛物线上任意一点,则的最小值为( )A .1B .C .D .6.已知椭圆的离心率为,双曲线的离心率为,则( )A .B .C .D .:80l x -+=αα=120︒60︒30︒150︒221(0)1x y a a a -=>+a 1214131822124x y m m+=--y m ()2,3()3,4()()2,33,4⋃()2,426y x =+22(2)4x y ++=23y x =F P PF 43323422122:1(0)x y C a b a b +=>>1e 22222:1x y C a b-=2e 22122e e +=112e e +=22211e e =+212e e =7.在平面直角坐标系中,已知圆,若圆上存在点,使得,则正数的取值范围为( )A .B .C .D .8.已知双曲线的左、右焦点分别为,过点的直线与双曲线的右支相交于两点,,且的周长为10,则双曲线的焦距为( )A .3BCD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知椭圆的对称中心为坐标原点,焦点在坐标轴上,若椭圆的长轴长为6,焦距为4,则椭圆的标准方程可能为( )A .B .C .D .10.如图,抛物线的焦点为,过抛物线上一点(点在第一象限)作准线的垂线,垂足为为边长为8的等边三角形.则( )A .B .C .点的坐标为D .点的坐标为11.已知双曲线的左、右焦点分别为,点为双曲线右支上的动点,过点作两渐近线的垂线,垂足分别为.若圆与双曲线的渐近线相切,则下列说法正确的是( )xOy ()222:()()(0),3,0C x a y a a a A -+-=>-C P 2PA PO =a (]0,1[]1,21,3⎡+⎣⎤⎦2222:1(0,0)x y C a b a b-=>>12,F F 2F ,A B 12224BF BF AF ==1ABF △C C C 22149x y +=22195x y +=22194x y +=22159x y +=2:2(0)C y px p =>F C P P l ,H PHF △2p =4p =P (P (222:1(0)3x y C b b-=>12,F F P C P ,A B 22(2)1x y -+=CA .双曲线的渐近线方程为B .双曲线的离心率C .当点异于双曲线的顶点时,的内切圆的圆心总在直线上D.为定值三、填空题:本题共3小题,每小题5分,共15分.12.过点且在轴、轴上截距相等的直线方程为______.13.已知是圆______.14.如图,已知椭圆的左、右焦点分别为,过椭圆左焦点的直线与椭圆相交于两点,,,则椭圆的离心率为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知的顶点坐标为.(1)若点是边上的中点,求直线的方程;(2)求边上的高所在的直线方程.16.(本小题满分15分)已知动点到点为常数且的距离与到直线的距离相等,且点在动点的轨迹上.(1)求动点的轨迹的方程,并求的值;(2)在(1)的条件下,已知直线与轨迹交于两点,点是线段的中点,求直线的方y x =C e =P C 12PF F △x =PA PB ⋅32()3,1x y (),P m n 22:(4)(4)8C x y -+-=2222:1(0)x y C a b a b+=>>12,F F 1F C,P Q 222QF PF =21cos 4PF Q ∠=C ABC △()()()1,6,3,1,4,2A B C ---D AC BD AB P (),0(F t t 0)t >x t =-()1,1-P P C t l C ,A B ()2,1M AB l程.17.(本小题满分15分)已知点,动点满足.(1)求动点的轨迹的方程;(2)已知圆的圆心为,且圆与轴相切,若圆与曲线有公共点,求实数的取值范围.18.(本小题满分17分)已知双曲线的一条渐近线方程为,点在双曲线上.(1)求双曲线的标准方程;(2)过定点的动直线与双曲线的左、右两支分别交于两点,与其两条渐近线分别交于(点在点的左边)两点,证明:线段与线段的长度始终相等.19.(本小题满分17分)在平面直角坐标系中,已知椭圆,短轴长为2.(1)求椭圆的标准方程;(2)已知点分别为椭圆的左、右顶点,点为椭圆的下顶点,点为椭圆上异于椭圆顶点的动点,直线与直线相交于点,直线与直线相交于点.证明:直线与轴垂直.()()2,0,6,0O A -(),P x y 3PA PO =P C Q (),(0)Q t t t >Q y Q C t 2222:1(0,0)x y C a b a b-=>>20x y +=()1-C C ()0,1P l C ,A B ,M N M N AM BN xOy 2222:1(0)x y C a b a b+=>>C ,A B C D C P C AP BD M BP AD N MN x2024~2025学年度10月质量检测·高二数学参考答案、提示及评分细则1.C 因为直线的斜率为,由斜率和倾斜角的关系可得又,.故选C .2.D,解得.3.A 若方程表示为焦点在轴上的一个椭圆,有解得.4.B 圆心,直线被圆截得的弦长为.故选B .5.D 设点的坐标为,有,故的最小值为.6.A 由,可得.7.C 设点的坐标为,有,整理为,可化为,若圆上存在这样的点,只需要圆与圆有交点,有,解得C .8.B 设,可得,有,解得,在和中,由余弦定理有,解得,可得双曲线的焦距为.9.BD 由题意有,故椭圆的标准方程可能为或.10.BD 设抛物线的准线与轴的交点为,由,有:80l x +=k =tan α=0180α︒≤<︒30α=︒=18a =y 20,40,24,m m m m ->⎧⎪->⎨⎪-<-⎩23m <<()2,0-=P ()00,x y 03344PF x =+≥PF 34222222221222221,1a b b a b b e e a a a a-+==-==+22122e e +=P (),x y =22230x y x +--=22(1)4x y -+=C P C 22(1)4x y -+=22a a -≤≤+13a ≤≤+221,2,4AF m BF m BF m ===13AF m =23410m m m m +++=1m =12AF F △12BF F △224194416048c c c c +-+-+=c =3,2,5a c b ====C 22195x y +=22159x y +=C x Q 60,PHF HFO FQ p ∠=∠=︒=,有,得,点的坐标为.11.ABC 由题意得,对于选项A :双曲线的渐近线方程是,圆的圆心是,半径是1(舍去),又,故A 正确;则,离心率为B 正确;对于选项C :设的内切圆与轴相切于点,由圆的切线性质知,所以,因此内心在直线,即直线上,故C 正确;对于选项D :设,则,渐近线方程是,则为常数,故D 错误.故选ABC .12.或 设在轴、轴上的截距均为,若,即直线过原点,设直线为,代入,可得,所以直线方程为,即;若,则直线方程为,代入,则,解得,所以此时直线方程为;综上所述:所求直线方程为或.13.表示点到原点的距离,由,有的取值范围为.14设椭圆的焦距为,有,在中,由余弦定理有,有,可得,有.在中,由余弦定理有可得2,HF p HQ ==28p =4p =P (0bx ±=22(2)1x y -+=()2,01,1b ==1-1,b b y x a ===2c ==c e a ===12PF F △x M 122F M F M a -=M x a =I x a =x a ==()00,P x y 222200001,333x y x y -=-=0x ±=3440x y +-=30x y -=x y a 0a =y kx =()3,113k =13y x =30x y -=0a ≠1x ya a+=()3,1311a a+=4a =4x y +=40x y +-=30x y -=⎡⎣P O 28OC r ==OC OP OC -≤≤+OP ≤≤⎡⎣C 222,,2c PF t QF t ==112,22,43PF a t QF a t PQ a t =-=-=-2PQF △2222(43)4a t t t t -=+-45t a =21886,,555QF a PQ a PF a ===22PF Q QPF ∠=∠12PF F △2c ==c e a ==15.解:(1)因为点是边上的中点,则,所以,所以直线的方程为,即;(2)因为,所以边上的高所在的直线的斜率为,所以边上的高所在的直线方程为,即.16.解:(1)由题意知,动点的轨迹为抛物线,设抛物线的方程为,则,所以,所以抛物线的方程为,故;(2)设点的坐标分别有,可得有,可得,有,可得直线的斜率为,故直线的议程为,整理为.17.解:(1)由得,,整理得,故动点的轨迹的方程为;(2)点的坐标为且圆与轴相切,圆的半径为,圆的方程为,D AC 3,42D ⎛⎫⎪⎝⎭14103932BD k --==--BD 01(3)9y x 1+=+109210x y -+=167312AB k --==-+AB 27-AB ()2247y x -=--27220x y +-=P C 22(0)y px p =>12p =12p =C 2y x =124p t ==,A B ()()1122,,,x y x y 12124,2,x x y y +=⎧⎨+=⎩211222y x y x ⎧=⎨=⎩222121y y x x -=-212121112y y x x y y -==-+l 12l 11(2)2y x -=-12y x =3PA PO =229PA PO =2222(6)9(2)x y x y ⎡⎤++=-+⎣⎦22(3)9x y -+=P C 22(3)9x y -+= Q (),(0)t t t >Q y ∴Q t ∴Q 222()()x t y t t -+-=圆与圆两圆心的距离为,圆与圆有公共点,,即,解得,所以实数的取值范围是.18.(1)解:由渐近线方程的斜率为,有,可得,将点代入双曲线的方程,有,联立方程解得故双曲线的标准议程为;(2)证明:设点的坐标分别为,线段的中点的坐标为,线段的中点的坐标为.设直线的方程为,联立方程解得,联立方程解得,可得,联立方程消去后整理为,∴Q C CQ == Q C 33t CQ t ∴-≤≤+2222|3|(3)(3)t t t t -≤-+≤+012t <≤t (]0,1220x y +=12-12b a -=-2a b =()1-C 22811a b-=222,811,a b a b =⎧⎪⎨-=⎪⎩2,1,a b =⎧⎨=⎩C 2214x y -=,,,A B M N ()()()()11223344,,,,,,,x y x y x y x y AB D ()55,x y MN E ()66,x y l 1y kx =+1,1,2y kx y x =+⎧⎪⎨=-⎪⎩3221x k =-+1,1,2y kx y x =+⎧⎪⎨=⎪⎩4221x k =--5212242212141kx k k k ⎛⎫=--=- ⎪+--⎝⎭221,1,4y kx x y =+⎧⎪⎨-=⎪⎩y ()2241880k x kx -++=有,可得,由,可知线段和共中点,故有.19.(1)解:设椭圆的焦距为,由题意有:,解得故椭圆的标准方程为;(2)证明:由(1)知,点的坐标为,点的坐标为,点的坐标为,设点的坐标为(其中,),有,可得,直线的方程为,整理为,直线的方程为,整理为,直线的方程为,联立方程,解得:,故点的横坐标为,直线的方程为, 联立方程,解得:,故点的横坐标为,122841k x x k +=--62441kx k =--46x x =AB MN AM BN =C 2c 22222a b c b c a⎧⎪=+⎪⎪=⎨⎪⎪=⎪⎩2,1,a b c ===C 2214x y +=A ()2,0-B ()2,0D ()0,1-P (),m n ()()2,00,2m ∈- 2214m n +=2244m n +=BD 121x y +=-112y x =-AD 121x y +=--112y x =--AP ()22ny x m =++()2,2112n y x m y x ⎧=+⎪⎪+⎨⎪=-⎪⎩24422m n x m n ++=-+M ()22222m n m n ++-+BP ()22ny x m =--()2,2112n y x m y x ⎧=-⎪⎪-⎨⎪=--⎪⎩42422n m x m n -+=+-N ()22222n m m n -++-又由,故点和点的横坐标相等,可得直线与轴垂直.()()()()()()22222222222222222222m n m n m n m n m n n m m n m n m n m n +++-+-+--++-+-=-++--++-()()()()()()()222222(2)4(2)42442880222222222222m n m n m n m n m n m n m n m n m n m n ⎡⎤⎡⎤+-+--+-+-⎣⎦⎣⎦====-++--++--++-M N MN x。
2013-2014学年下学期 期末高二化学试卷(含答案)

2013-2014学年下学期期末高二化学试卷(含答案)时量:6 0分钟;总分:100分。
相对原子质量:H—1,C-12,O—16一、选择题(本题有25小题,每小题只有一个正确答案,请将答案序号填入答题栏内。
每小题2分,共50分)151.葡萄糖作为营养剂供给人体能量,在人体内发生主要的反应是A.氧化反应B.取代反应C.加成反应D.聚合反应2.下列物质中的主要成分不属于糖类的是A.棉花B.木材C.豆油D.小麦3.变质的油脂有难闻的哈喇味,这是因为发生了A.氧化反应B.加成反应C.取代反应D.水解反应4.用酒精消毒的原理是A.溶解作用B.变性作用C.盐析作用 D. 还原作用5.蛋白质溶液分别作如下处理后仍不失去生理作用的是A.高温加热B.紫外线照射C.加硫酸钠溶液D.加福尔马林6.缺铁会引起下列哪些症状A.侏儒症B.骨质疏松症C.甲亢D.贫血7.关于维生素C下列说法中,错误的是A.维生素C的分子式是C6H8O6 B.维生素C能增强对传染病的抵抗力C.维生素C分子具有较强的还原性D.人体所需的维生素C主要来自肉类食品8.对食物的酸、碱性判断正确的是A.西瓜是酸性食物B.猪肉是碱性食物C.奶油是酸性食物D.大米碱性食物9.酱油是一种常用的食品添加剂,它属于食品添加剂中的A.着色剂B.防腐剂C.调味剂D.营养强化剂10.阿司匹林又名乙酰水杨酸,推断它不应具有的性质A.与乙酸发生酯化反应B.与金属钠反应C.与NaOH溶液反应D.与乙醇发生酯化反应11.长期吸食或注射毒品会危及人体健康,下列各组中都属于毒品的是A.冰毒、黄连素B.海洛因、黄连素C.大麻、摇头丸D.黄曲霉素、尼古丁12.制造焊锡时,把铅加入锡的主要原因是A.增加抗腐蚀能力B.增加强度C.降低熔点D.增加延展性13.用铜锌合金制成假金元宝欺骗行人事件屡有发生。
下列不易区别其真伪的方法是A.测定密度B.放入硝酸中C.放入盐酸中D.观察外观14.为了防止轮船的船体的腐蚀,应该在船壳下水线位置嵌入一定数量的A.铜片B.锌片C.碳棒D.银片15.钢铁发生吸氧腐蚀的时候,发生还原反应的电极方程式是A.Fe-2e-==Fe2+ B.2H++2e-==H2 ↑C.4OH--4e-==2H2O+O2↑ D.2H2O+O2+4e-==4OH-16.下列各组物质的主要成分都是硅酸盐的是A.石英玻璃B.光学玻璃C.半导体材料D.陶器和瓷器17.下列物质中,属于人造纤维的是A.腈纶毛线B.兔毛毛线C.光导纤维D.粘胶纤维18.下列物质中,不属于当前空气质量报告中所包含的物质的是A.二氧化氮B.二氧化碳C.二氧化硫D.一氧化碳19.为减少大气污染,许多城市推广清洁燃料,目前使用的清洁燃料主要有两类:一类是压缩天然气(CNG),另一类是液化石油气。
河南省南阳市2013-2014学年高二下学期期中质量评估英语试题 扫描版含答案

2014春期期中质量评估高二英语参考答案第一部分听力(共20小题,20分;每小题1分)1-5 CABCB 6-10 ACABA 11-15 CBBCC 16-20ABCBC第二部分阅读理解(共20小题,40分;每小题2分)21-24 BDAB 25-27CDB 28-31DCBA32-35DABC 36-40GFBDA第三部分英语知识应用(共三节,满分55分)第一节完形填空(共20小题,30分;每小题1.5分)41-45 BDACB 46-50 CACDB 51-55 CBDAB 56-60 CBCDA 第二节语法填空(共10小题,15分;每小题1.5分)61. when 62. which 63. of 64. touched 65. belongings66. but(to) 67. if / whether 68. left 69. blew 70. worst第三节完成句子(共10小题,10分;每小题1分)71. permitting. 72. be informed 73. been underlined/stressed/emphasized.74. were absent from 75. equipped with/armed with 76. originally 77.phenomena78. was thankful /grateful to 79. sought 80. fluency第四部分写作(共两节,满分35分)第一节短文改错(共10小题,满分10分;每小题1分)1.was后加an2. aging改为aged3. is改为was4. In 改为On5. which改为where6.in the front去掉the7. better改为well8. So改为But9. voices改为voice 10. forget改为forgotten第二节书面表达(满分25分)Dear Helen,I’m glad that you are interested in the Chinese course of our international class. This course is specially designed for beginners like you exchange students, focusing on listening and speaking practice. There will be only ten students in each class. Besides, we have first-class facilities, accessible to us, offering us places to broaden our views . After class we have varieties of activities which provide us with opportunities to improve ourselves.And the most important is that we have the best teachers as well as schoolmates who are kind and ready to offer help. They often use unique ways of teaching to maketheir classes lively and interesting. We students are encouraged to speak English both in and out of class, thus I do believe that you won’t have any difficulty in communicating with us.I hope it will be helpful. If you need more information, just let me know.附听力录音原文:(Text 1)W: May I have your phone number, please?M: My phone number is 377-765-8679. Oh, I’m sorry— I made a mistake. The last four numbers are 8769.(Text2)W: Both of the hats are pretty. I don’t know which one to buy.M: Take the white one. It matches your dress.(Text3)M: Are you ready for the contest?W: Yes, I prepared well, but I am a little nervous.M: You always do great. I’m sure you’ll win again this time.(Text4)W: I’m going hiking this weekend. Do you want to come?M: That sounds good. Rain or shine, count me in.W: If it’s raining, I’m afraid you are going by yourself, because I’ll be going to visit my grandma.M: I’ll join you no matter what you do.(Text5)W: Jack, Mum told me to tell you that you shouldn’t go to the party tomorrow night. M: You have got to be kidding me. I am 32 years old.W: Linda’s coming tomorrow. Don’t you think you should spend some time with her instead?M: Really? That’s great. I miss her.(Text6)W: What classes are you going to take this term?M: Well, I’m considering taking some art classes.W: Why not take English literature and Roman history? I took those two courses last term. They were really interesting.M: Hmm, those sound like good possibilities. I will think about it. So what are you going to take this term?W: Chemistry.M: Are you kidding? Chemistry is so difficult.(Text7)W: Tom, you seemed bored. Why not join your dad in the sitting room and watch TV? M: He is watching the international news on Channel 11. I don’t like watching news. W: Why? News reports help you know what’s happening around the world.M: But I’m not interested in knowing what’s happening around the world. I’m only ten years old after all. I’d rather watch movies. They are more entertaining.W: Then why not go to Ann’s room? You can watch a movie on her computer.M: Well, she always complains whenever I use her computer. Mum , can you buy me a laptop?W: I’ll buy you one when you are two years older. You are still too young to have a laptop.(Text8)W: Mark, do you ever surf the Internet at work?M: Sure. It helps me relax. I spend some time on Facebook each day at work.W: I read a recent study that said that as much as 80 percent of the time people spend online at work is wasted.M: Really? Well, I read a study the other day that said when people spend time casually browsing the Web at work, they actually end up being more productive and creative.W: Ha…That’s funny. Do you really think that’s true?M: Yes. I can control myself. I don’t spend too much time browsing the Web at work, I surf the Internet just to help me relax. So what about you?W: Well, I’m not good at managing my time. I spend too much time talking with my friends online at work.M: You’d better be careful. That can get you fired.W: Yeah, I do need to stop. I do n’t want to get fired.(Text9)W: Henry, have you heard about the course “Teaching Poetry to Children”?M: Yes, I have. Actually I’m taking that course this term at Texas State Univerity. W: Really, That’s amazing. So how many students are there in the course this term? M: There are fourteen other students and me.W: What do you do?M: We spend Tuesday mornings teaching poetry to students at Crockett Elementary School.W: Why did you want to take the course?M: I love poetry and I love interacting with kids. I want them to appreciate the beauty of poems.W: So what kind of poetry do you think is good?M: I think if a poem shows you the world through the poet’s eyes, then that is a good poem.W: I agree. So who is your favorite poet?M: William Carlos Williams. I taught the kids his Between Walls in class. You know what, they had the most interesting responses to that poem.W: It sounds as if they liked it.(Text10)Benet was one of the most popular writers in the United States during the first half of the 1900s. By the middle of 1920s, Benet had published 5 books of his own. Although Benet was famous, most of the money he earned came from the storiesthat he wrote for popular magazines. The stories were meant to be read quickly and forgotten. He started to think about a greater purpose for his writing. He wanted people to remember the beauty and goodness of America he had seen as a boy. He began to try new things.In 1926, Benet won an award of 2,500 dollars. He used the money to continue his writing. He began to write a poem about America’s Civil War. The poem was published in 1928. it was as thick as a book. It was called John Brown’s Body. The poem was famous for its power and truth. It was so filled with details that professors of history used it to teach their students about the Civil War. It was read on American and British radio. The year after it was published, Stephen Vincent Benet received America’s Pulitzer Prize for Poetry.。
2013-2014学年高二下学期期中考试数学理试题(含答案)

2013-2014学年高二下学期期中考试数学理试题说明: 1.本试卷分第I 卷和第II 卷两部分,共150分。
2.将第I 卷选择题答案代号用2B 铅笔填在答题卡上,第II 卷的答案或解答过程写在答题卷指定位置3.考试结束,只交答题卷。
第I 卷(选择题 共60分)一、选择题(5分×12=60分)在每小题给出的四个选项只有一项正确.1.复数 231iz i-=+ 对应的点位于 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 曲线2212-=x y 在点)23,1(-处的切线的倾斜角为( ) A.2πB.4πC.54π D. 4π- 3. 函数 31()13f x x ax =++ 在 (,1)-∞- 上为增函数,在 (1,1)- 为减函数,则 (1)f 的值为( ) A. 13 B. C. 73D. 1-4. 函数xxy ln = 的最大值为 ( )A. 1e -B. eC. 2eD. 1035. 计算11(2)x x e dx -+⎰等于 ( )A. 1e e -B. 1e e + C. 0 D. 2e 6.曲线2y x =与3y x =围成的图形的面积为 ( )A .16 B. 13 C. 112 D. 7127.观察下列各式:567853125,515625,578125,5390625==== 得到20115的末位四位数字为 ( )A. 3125B. 5625C. 0625D. 8125 8. 若三角形的一边长为 a ,这条边上的高为 h ,则12S ah ∆= 类比三角形有扇形弧长为,半径为 r ,则面积=S 扇 ( ) A.221r B. 221l C. lr 21D. 以上都不对9.已知a , b 是不相等的正数,设x =,y = ( ) A. y x > B. x y > C. y x 2> D. 不确定10. 5 位志愿者和他们帮助2位老人排成一排照相,要求这2位老人相邻,但不排在两端,则不同排法有( )种A. 1440B. 960C. 720D. 480 11.甲乙两人从 4 门课程中选修 2 门,则甲乙所选的课程中至少有 1 门不相同的选法共有 ( )种A. 6B. 12C. 30D. 3612. 用数学归纳法证明公式*()(1)(2)()()f n n n n n n N =+++∈ 时,从 ""n k = 到"1"n k =+ 时,等式左边(1)f k +可写成()f k 再乘以式子 ( ) A. 21k + B. 22k +C. (21)(22)k k ++D. (21)(22)1k k k +++第II 卷(非选择题 共90分)二、填空题(5分×4=20分)13. 若二项式 9()ax x- 展开式中 3x 系数为84-, 则 a = .14. 5 名同学去听 3 个课外讲座,且每个学生只能选一个讲座,不同的选法有 种. 15. 若124adx x=⎰,则 a =_____16. 若函数()3axf x e x =+有大于零的极值点,则 a 的取值范围是_____三、解答题17.(本小题满分10分)已知 c bx ax x f ++=2)( 且(1)2,f -=(0)f '=0,1()2f x dx =-⎰, 求,,a b c 的值.18.(本小题满分12分)现有 7 名男生,5 名女生中(1)选出5人,其中A, B 两名学生必须当选,有多少种不同的选法? (2)选出5人,其中A, B 两名学生都不当选,有多少种不同的选法? (3)选出5人,其中至少有两名女生当选,有多少种不同的选法?(4)选出5人,分别去担任语、数、外、理、化五科科代表,但语文科代表由男生担任,外语科代表由女生担任,有多少种不同的选派方法?19.(本小题满分12分)已知函数 32()33f x x ax bx =-+ 与直线0112=-+y x 相切于点(1, -11)(Ⅰ)求 b a , 的值;(Ⅱ)讨论函数 ()f x 的单调性.20.(本小题满分12分)已知函数 21()ln 2f x x x =+ (Ⅰ)求函数 ()f x 在区间[1,]e 上的最大值及最小值;(Ⅱ)求证:在区间 (1,)+∞ 上()f x 的图像在函数32()3g x x =的图像的下方.21(本小题满分12分) 已知函数)10(ln 1)(≠>=x x xx x f 且 (Ⅰ)求函数 ()f x 的单调区间;(Ⅱ)对于(0,1)x ∀∈ 都有12axx >,求a 的取值范围.22(本小题满分12分)已知函数1ln )1()(+-+=x x x x f(Ⅰ)若()xf x '21x ax ≤++, 求 a 的取值范围. (Ⅱ)证明:(1)()0x f x -≥.高二理数参考答案一、选择题二、填空题三、解答题18.(1)310120C=…………………………………………………………………..3分(2)510252C=……………………………………………………………………6分(3)551412757596C C C C--=或23324155757575596C C C C C C C+++=…………9分(4)113751025200C C A=…………………………………………………………..12分20. 1)由已知1()[1,]()0f x x x e f x x'=+∈>()f x 在[1,]e 上递增…………………………………………………………….3分21=()1(1)22e yf e y f ∴=+==最大最小…………………………………………5分 2)构造函数2312()()()ln 23F x f x g x x x =-=+- 221(1)(21)()2x x x F x x x x x -++'=+-=…………………………………………..8分 (1,)()0x F x '∈+∞∴<()F x 在(1,)+∞递减,且1(1)06F =-<所以在(1,)+∞上,()(1)0F x F <<………………………………………………..10分 所以()()f x g x <,即()f x 图像在()g x 图像下方…………………………………12分22. 1)解:11()ln 1ln x f x x x x x+'=+-=+ 由()ln 1xf x x x '=+又由2()1xf x x ax '≤++ 得ln a x x ≥-………………………………….2分 令()ln g x x x =- 则 1(1)(1)()x x g x x x x-+-'=-=……………………………………………..3分 当(0,1)x ∈时,()0g x '>,当(1,)x ∈+∞时,()0g x '<1x ∴= 是最大值点………………………………………………………….4分 a 的范围是[1,)-+∞…………………………………………………………6分。
河南省南阳市2013-2014学年高二下学期期末质量评估数学理试题 扫描版含答案

2014年春期南阳市期末质量检测高二数学(理科)答案一、选择题(共12个小题,每小题5分)1—5 BADCA 6—10 BBDDC 11—12 DA二、填空题(共4小题,每题5分) 13.2π 14. q 15. (][),16 2.-∞-+∞ 16. ①③三、解答题17. 解:(1)2532150330m m m m m m ⎧==-⎧--=⇒⎨⎨≠-+≠⎩⎩或 ∴Z 是实数时,m=5.……………………………………(5分)(2)222150303260m m m m m m m ⎧--≠⎪+≠⇒==-⎨⎪--=⎩或 3m ∴=当,=12Z i -;当2m =-时,=7Z i - ……………………………………(10分)18. 解:(1)由抽样调查阅读莫言作品在50篇以上的概率为111812131510795050100+++++=+ ,据此估计该校学生阅读莫言作品超过50篇的概率为79100P = ………………(6分) (2)非常了解 一般了解 合计 男生30 20 50 女生25 25 50 合计55 45 100根据列表数据得 ()2210030252025 1.010 1.32350505545K ⨯⨯-⨯=≈<⨯⨯⨯, 所以,没有75%的把握人物对莫言作品的了解程度与性别有关.…………(12分)19. 解:假设存在一次函数()()0g x kx b k =+≠,使得 ()()12311n n a a a a g n a -++++=-对2n ≥的一切自然数都成立,则当n=2时有,()()1221a g a =-,又()1211,1,222a a g ==+∴=即22kb +=……①. 当n=3时有,()()12331a a g a +=-,又1221111,1,1,223a a a ==+=++()33g ∴=,即33k b +=……②,由①②可得1,0k b ==,所以猜想:()g x x =,…………………………(5分) 下面用数学归纳法加以证明:(1)当n=2时,已经得到证明;……………………………………(6分)(2)假设当n=k (2,k k N ≥∈)时,结论成立,即存在()g k k =,使得()()12311k k a a a a g k a -++++=-对2k ≥的一切自然数都成立,则当1n k =+时,()1231231+k k k a a a a a a a a a -++++=++++ ()()=11k k k k a a k a k -+=+-,……………………(8分) 又11111112311k k a a k k k +=+++++=+++,111k k a a k -∴=-+, ()()()1231111111k k k a a a a k a k k a k ++⎛⎫∴++++=+--=+- ⎪+⎝⎭, ∴当1n k =+时,命题成立.………………………………………………(11分) 由(1)(2)知,对一切n ,(2,n n N *≥∈)有()g n n =,使得()()12311n n a a a a g n a -++++=-都成立.…………………………(12分) 20. 解:(1)()2212'1a a f x x x -=+-,依题意有:()'20f =,即21104a a -+-= 解得:32a = 检验:当32a =时,()()()2222122332'1=x x x x f x x x x x ---+=+-= 此时:函数()f x 在()1,2上单调递减,在()2,+∞上单调递增,满足在2x =时取得极值 综上:32a = ……………………………………(6分) (2)依题意:()0f x ≥对任意[)1,+x ∈∞恒成立等价转化为()min 0f x ≥在[)1,+x ∈∞恒成立的必要条件是(1)0f ≥ ,即220a -≥,所以1a ≤………………(8分)因为()()()()()2222211221212'1x a x x ax a a a f x x x x x ----+--=+-== 令()'0f x =得:121x a =-,21x = …………………………………………(10分)1a ≤∴211a -≤,此时,函数()'0f x ≥在[)1,+∞恒成立,则()f x 在[)1,+∞单调递增,于是()()min =1220f x f a =-≥,解得:1a ≤,此时:1a ≤综上所述:实数a 的取值范围是1a ≤ …………………………………………………(12分).21. 解:(1)设“选出的3种商品中至少有一种是日用类商品”为事件A ,则方法一:()1221345454393742C C C C C P A C ++==; 方法二:()353937142C P A C =-=. 即选出的3种商品中至少有一种是日用类商品的概率为3742.……………………(6分) (2)ξ的可能取值为0,,2,3x x x ,则()111101112228P ξ⎛⎫⎛⎫⎛⎫==-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2131131228P x C ξ⎛⎫==⨯⨯-= ⎪⎝⎭, ()22311321228P x C ξ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭, ()111132228P x ξ==⨯⨯=, ∴ ξ的分布列为 ξ 0 x 2x 3x P 18 3838 18故13313=02388882E x x x x ξ⨯+⨯+⨯+⨯=(元) 根据题意,得31802x ≤,解得120x ≤, 即x 至多为120元时,此促销方案使商场不会亏本。
河南省南阳市2013-2014学年高二下学期期中质量评估语文试题 扫描版含答案

2014年春期高中二年级期中质量评估语文参考答案与评分标准1.A(原文中没有“畏”的意思。
)2.B(“不要不懂装懂”属于偷换概念,原文是“不懂的不要故作矜持”。
)3.D(“这是选择书的标准”说法错误。
)4.C(可:同意)5.B6.D(“年富身边的人委婉地劝阻他不要任职”理解错)7.(1)边疆的士兵和马匹,需要供应的(粮草)数量巨大,军民因远途运输而疲乏,强横狡诈之徒趁机做违法之事来牟取利益。
(关键词“三边”“因缘”“奸利”各1分,句意2分。
)(2)年富斟酌赢利和亏欠,严格支出和收入,亲自计算,官吏们不能欺瞒他。
(关键词“赢缩”“出纳”“会计”各1分,句意2分)8.(5分)这首诗描写出了小村遭水灾之后萧条破败、百姓生活困顿的凄苦景象。
(2分)大水过后,农家的篱笆门破烂不堪,鸡在寒风中觅食,无衣可穿的老人抱着孙子,用自身体温为孙子取暖;被人弃置的船只破破烂烂,只剩下断了的缆绳,干枯的桑树被洪水冲得只剩下高高的树根。
小村到处呈现出萧条冷落、荒败不堪的景象。
(3分)9.(6分)尾联的意思是:唉!百姓生活状况已经如此凄苦,但还是被错误地编入缴纳租税的户籍。
(3分)这两句表达了诗人对百姓苦难处境、悲惨遭遇的深切同情,委婉地嘲讽了官府不顾百姓死活、横征暴敛的罪恶行径。
(3分)10.(1)士不可以不弘毅仁以为己任(2)廊腰缦回檐牙高啄(3)人道寄奴曾住气吞万里如虎(每句1分,句中有误不得分)11.(1)选D给3分,选B给2分,选C给1分,选A、E不得分。
(A项“变卖……兑换成碎金”说法错;E项“小说讴歌了这种伟大的母爱”说法不当,小说主旨不在于此;C项“希望大旦今后不要忘本”说法不妥。
)(2)①金丝鞋垫寄寓着两旦娘对两个儿子的牵挂、关爱和希望儿子们走好今后人生之路的愿望;(或:象征着母爱和母亲的希望。
)②金丝鞋垫是大旦外出谋生的依靠,是激励小旦克服困难、顽强奋斗、走向成功的精神动力;③金丝鞋垫是作者塑造人物形象、表达小说主旨的重要凭借;④金丝鞋垫是小说故事情节发展的线索,小说主要情节围绕金丝鞋垫展开。
2023-2024学年河南省南阳市高二(上)期中数学试卷【答案版】

2023-2024学年河南省南阳市高二(上)期中数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 过点(2,3),且倾斜角为90°,则直线l 的方程为( ) A .﹣x +y =1B .x +y ﹣5=0C .y =3D .x =22.二次函数y =ax 2(a ≠0)的图像为抛物线,其准线方程为( ) A .x =−14aB .x =−a 4C .y =−14aD .y =−a 43.已知三条直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,倾斜角分别为α,β,γ.若α<β<γ,则下列关系不可能成立的是( ) A .k 3<k 1<k 2B .k 1<k 2<k 3C .k 2<k 3<k 1D .k 3<k 2<k 14.国家体育场(鸟巢),是2008年北京奥运会的主体育场.在《通用技术》课上,王老师带领同学们一起制作了一个近似鸟巢的金属模型,其俯视图可近似看成是两个大小不同,扁平程度相同的椭圆,已知大椭圆的长轴长为40cm ,短轴长为20cm ,小椭圆的短轴长为10cm ,则小椭圆的长轴长为( )cm .A .30B .20C .10√3D .105.直线y =kx +1与椭圆x 24+y 2m=1总有公共点,则m 的取值范围是( )A .(0,1)∪(1,+∞)B .[1,4)∪(4,+∞)C .(0,1)∪(1,4)D .(1,+∞)6.已知△ABC 的顶点在抛物线y 2=4x 上,若抛物线的焦点F 恰好是△ABC 的重心,则|F A |+|FB |+|FC |的值为( ) A .3B .4C .5D .67.已知实数x 、y 满足x 2+y 2=1,则|2x +y ﹣5|的最小值是( ) A .√5−1B .√5+1C .5−√5D .5+√58.如图,加斯帕尔•蒙日是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆(或双曲线)上两条相互垂直的切线的交点P 的轨迹方程为圆,该圆称为外准圆,也叫蒙日圆.双曲线C :x 24−y 2=1的蒙日圆的面积为( )A .3πB .4πC .5πD .6π二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知直线l 1:ax +2y ﹣1=0和直线l 2:x +(a +1)y ﹣1=0,下列说法不正确的是( ) A .当a =﹣2或1时,l 1∥l 2 B .当a =−23时,l 1⊥l 2C .直线l 1过定点(0,1),直线l 2过定点(1,0)D .当l 1,l 2平行时,两直线的距离为√2 10.已知方程x 27−t +y 23+t=1表示的曲线为C ,则下列四个结论中正确的是( )A .当﹣3<t <7时,曲线C 是椭圆B .当t >7或t <﹣3时,曲线C 是双曲线 C .若曲线C 是焦点在x 轴上的椭圆,则﹣3<t <2D .若曲线C 是焦点在y 轴上的双曲线,则t >7 11.P 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上的一点,O 为坐标原点,则下列说法正确的是( )A .c ≤|OP |≤aB .若∠F 1PF 2=60°,则S △F 1PF 2=√3b 2C .若存在点P ,使∠F 1PF 2=90°,则椭圆C 的离心率e ∈[√22,1)D .若PF 1的中点在y 轴上,则|PF 2|=b2a12.已知F 是抛物线C :y 2=2px 的焦点,直线AB 经过点F 交抛物线于A 、B 两点,则下列说法正确的是( )A .以AB 为直径的圆与抛物线的准线相切 B .若AF →=2FB →,则直线AB 的斜率k =3C .弦AB 的中点M 的轨迹为一条抛物线,其方程为y 2=2px ﹣p 2D .若p =4,则|AF |+4|BF |的最小值为18三、填空题(本大题共4小题,每小题5分,共20分.)13.请写出一个焦点在y 轴上,焦距为2的椭圆的标准方程 .14.P 、Q 分别是圆E :(x +9)2+(y +4)2=1与圆F :(x ﹣1)2+(y ﹣3)2=1上的动点,A 为直线y =x 上的动点,则|AP |+|AQ |的最小值为 . 15.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的焦点与椭圆x 281+y 272=1的焦点重合,离心率互为倒数,设F 1、F 2分别为双曲线C 的左、右焦点,P 为右支上任意一点,则双曲线C 的离心率为 ;|PF 1|2|PF 2|的最小值为 .16.参加数学兴趣小组的小何同学在打篮球时,发现当篮球放在地面上时,篮球的斜上方灯泡照过来的光线使得篮球在地面上留下的影子有点像数学课堂上学过的椭圆,但他自己还是不太确定这个想法,于是回到家里翻阅了很多参考资料,终于明白自己的猜想是没有问题的,而且通过学习,他还确定地面和篮球的接触点(切点)就是影子椭圆的焦点.他在家里做了个探究实验:如图所示,桌面上有一个篮球,若篮球的半径为1个单位长度,在球的右上方有一个灯泡P (当成质点),灯泡与桌面的距离为4个单位长度,灯泡垂直照射在平面的点为A ,影子椭圆的右顶点到A 点的距离为3个单位长度,则这个影子椭圆的离心率e = .四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)在平行四边形ABCD 中,A (﹣2,1),B (1,7),D (1,﹣2),点E 是线段CD 的中点. (1)求直线CD 的方程;(2)求过点E 且与直线BC 垂直的直线方程.18.(12分)已知焦点在y 轴上的双曲线的离心率为32,焦点到其中一条渐近线的距离为√5.(1)求双曲线的标准方程;(2)过双曲线的上焦点F 1的直线l 交双曲线的上支于M 、N 两点.在y 轴上是否存在定点T ,使得∠F 1TM =∠F 1TN 恒成立?若存在,求出点T 的坐标;若不存在,请说明理由. 19.(12分)已知圆C :x 2+3λx +y 2﹣λy ﹣10﹣10λ=0. (1)证明:圆C 过定点.(2)当λ=1时,是否存在斜率为1的直线l 交圆C 于A 、B 两点,使得以AB 为直径的圆恰好经过原点?若存在,求出l 的方程;若不存在,说明理由.20.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,过点F 2且垂直于x 轴的弦长为3,且_____.(从以下三个条件中任选一个,将其序号写在答题卡的横线上并作答.) ①椭圆C 的长轴长为4;②椭圆C 与椭圆x 213+y 212=1有相同的焦点;③F 1,F 2与椭圆C 短轴的一个端点组成的三角形为等边三角形. (1)求椭圆C 的标准方程;(2)若直线l 经过F 2,且与椭圆交于M ,N 两点,求△F 1MN 面积的最大值.21.(12分)已知动圆M 经过点A (2,0),且与直线x =﹣2相切.设圆心M 的轨迹为C . (1)求曲线C 的方程;(2)设P 为直线x =﹣2上任意一点,过P 作曲线C 的两条切线,切点分别为E 、F ,求证:PE ⊥PF . 22.(12分)已知两定点A (﹣3,0),B (3,0),过动点P 的两直线P A 和PB 的斜率之积为−89.设动点P 的轨迹为C . (1)求曲线C 的方程;(2)设F 1(﹣1,0),过F 1的直线l 交曲线C 于M 、N 两点(不与A 、B 重合).设直线AM 与BN 的斜率分别为k 1,k 2,证明k 1k 2为定值.2023-2024学年河南省南阳市高二(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l过点(2,3),且倾斜角为90°,则直线l的方程为()A.﹣x+y=1B.x+y﹣5=0C.y=3D.x=2解:∵直线l过点(2,3),且倾斜角为90°,∴直线l的方程为x=2.故选:D.2.二次函数y=ax2(a≠0)的图像为抛物线,其准线方程为()A.x=−14aB.x=−a4C.y=−14a D.y=−a4解:将二次函数y=ax2(a≠0)化为抛物线标准式得x2=1ay,所以准线方程为y=−14a.故选:C.3.已知三条直线l1,l2,l3的斜率分别为k1,k2,k3,倾斜角分别为α,β,γ.若α<β<γ,则下列关系不可能成立的是()A.k3<k1<k2B.k1<k2<k3C.k2<k3<k1D.k3<k2<k1解:若γ>90°>β>α,则tanβ>tanα>0>tanγ,A成立,若α<β<γ<90°,则tanα<tanβ<tanγ,B成立,若α<90°<β<γ,则tanα>0>tanγ>tanβ,C成立,故选:D.4.国家体育场(鸟巢),是2008年北京奥运会的主体育场.在《通用技术》课上,王老师带领同学们一起制作了一个近似鸟巢的金属模型,其俯视图可近似看成是两个大小不同,扁平程度相同的椭圆,已知大椭圆的长轴长为40cm,短轴长为20cm,小椭圆的短轴长为10cm,则小椭圆的长轴长为()cm.A.30B.20C.10√3D.10解:扁平程度相同的椭圆,即离心率相等,大椭圆a1=20,b1=10,c1=√202−102=10√3,离心率为e1=√32,小椭圆b 2=5,离心率e 2=e 1=√32=√a 22−25a 2,解得a 2=10,故长轴长为20.故选:B .5.直线y =kx +1与椭圆x 24+y 2m=1总有公共点,则m 的取值范围是( )A .(0,1)∪(1,+∞)B .[1,4)∪(4,+∞)C .(0,1)∪(1,4)D .(1,+∞)解:直线y =kx +1恒过点(0,1),只需该点落在椭圆内或椭圆上, 即024+12m≤1,解得m ≥1,又m ≠4,则m 的取值范围是[1,4)∪(4,+∞).故选:B .6.已知△ABC 的顶点在抛物线y 2=4x 上,若抛物线的焦点F 恰好是△ABC 的重心,则|F A |+|FB |+|FC |的值为( ) A .3B .4C .5D .6解:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),抛物线y 2=4x ,则F (1,0), 因为焦点F 恰好是△ABC 的重心,所以x 1+x 2+x 3=3×1=3, 故|F A |+|FB |+|FC |=x 1+1+x 2+1+x 3+1=6. 故选:D .7.已知实数x 、y 满足x 2+y 2=1,则|2x +y ﹣5|的最小值是( ) A .√5−1B .√5+1C .5−√5D .5+√5解:x 2+y 2=1,则圆心C (0,0),半径r =1, |2x +y ﹣5|=√5|2x+y−5|√2+1,√22+12表示圆上的点到直线2x +y ﹣5=0的距离,该距离的最小值为√22+12−r =√5−1,故|2x +y ﹣5|的最小值是:√5×(√5−1)=5−√5. 故选:C .8.如图,加斯帕尔•蒙日是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆(或双曲线)上两条相互垂直的切线的交点P 的轨迹方程为圆,该圆称为外准圆,也叫蒙日圆.双曲线C :x 24−y 2=1的蒙日圆的面积为( )A .3πB .4πC .5πD .6π解:不妨设P (x 0,y 0),则过点P 的切线方程为y ﹣y 0=k (x ﹣x 0),联立{x 2a 2−y 2b 2=1y −y 0=k(x −x 0),消去y 并整理得(b 2﹣a 2k 2)x 2﹣2a 2k (y 0﹣kx 0)x −a 2[(y 0−kx 0)2+b 2],因为过点P 的切线方程与双曲线只有一个交点,所以Δ=0,解得(x 02−a 2)k 2−2x 0y 0k +y 02+b 2=0,易知k AP ,k BP 为关于k 的方程(x 02−a 2)k 2−2x 0y 0k +y 02+b 2=0的两个根,且k AP •k BP =﹣1,所以y 02+b 2x 02−a 2=−1,整理得x 02+y 02=a 2−b 2,所以点P 的轨迹方程为x 02+y 02=a 2−b 2(a >b ),可得双曲线C :x 24−y 2=1的蒙日圆的轨迹方程为x 2+y 2=3, 所以r =√3,则该蒙日圆的面积S =πr 2=3π. 故选:A .二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知直线l 1:ax +2y ﹣1=0和直线l 2:x +(a +1)y ﹣1=0,下列说法不正确的是( ) A .当a =﹣2或1时,l 1∥l 2 B .当a =−23时,l 1⊥l 2C .直线l 1过定点(0,1),直线l 2过定点(1,0)D .当l 1,l 2平行时,两直线的距离为√2解:A 中,两条直线平行时,则a (a +1)=2×1,且a ×(﹣1)≠﹣1×1,解得a =﹣2,所以A 不正确;B 中,a =−23时,a •1+2•(a +1)=−23+23=0,即两条直线垂直,所以B 正确; C 中,直线l 1:ax +2y ﹣1=0可得恒过定点(0,12),直线l 2:x +(a +1)y ﹣1=0整理可得ay +x +y ﹣1=0,恒过定点(1,0),所以C 不正确;D 中,由A 可知,两条直线平行时a =﹣2,此时直线l 1:﹣2x +2y ﹣1=0,即x ﹣y +12=0, 直线l 2:x ﹣y ﹣1=0,所以两条直线的距离d =|12−1|√1+(−1)=√24,所以D 不正确.故选:ACD . 10.已知方程x 27−t+y 23+t=1表示的曲线为C ,则下列四个结论中正确的是( )A .当﹣3<t <7时,曲线C 是椭圆B .当t >7或t <﹣3时,曲线C 是双曲线 C .若曲线C 是焦点在x 轴上的椭圆,则﹣3<t <2D .若曲线C 是焦点在y 轴上的双曲线,则t >7 解:当方程x 27−t+y 23+t=1是椭圆时,则{7−t >03+t >07−t ≠3+t,解得﹣3<t <2或2<t <7,∴A 错误,当方程x 27−t+y 23+t =1是双曲线时,则(7﹣t )(t +3)<0,解得t <﹣3或t >7,∴B 正确;若方程x 27−t +y 23+t =1是焦点在x 轴上的椭圆,则{7−t >3+t 3+t >0,解得﹣3<t <2,∴C 正确; 若方程x 27−t+y 23+t=1是焦点在y 轴上的双曲线,则 {3+t >07−t <0,解得t >7,∴D 正确.故选:BCD . 11.P 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上的一点,O 为坐标原点,则下列说法正确的是( )A .c ≤|OP |≤aB .若∠F 1PF 2=60°,则S △F 1PF 2=√3b 2C .若存在点P ,使∠F 1PF 2=90°,则椭圆C 的离心率e ∈[√22,1)D .若PF 1的中点在y 轴上,则|PF 2|=b2a解:对于A ,易知|OP |∈[b ,a ],故A 错误; 对于B ,设|PF 1|=m ,|PF 2|=n ,则m +n =2a ,根据余弦定理,(2c )2=m 2+n 2﹣2mn cos60°,解得mn =4a 2−4c 23=4b23,所以S △F 1PF 2=12mnsin60°=√3b 23,故B 错误;对于C ,若存在点P ,使∠F 1PF 2=90°, 则c ⩾b ,所以c 2⩾a 2﹣c 2,即c 2a 2⩾12,所以e ∈[√22,1),故C 正确;对于D ,若PF 1的中点在y 轴上,则PF 2⊥x 轴,所以|PF 2|=b2a,故D 正确.故选:CD .12.已知F 是抛物线C :y 2=2px 的焦点,直线AB 经过点F 交抛物线于A 、B 两点,则下列说法正确的是( )A .以AB 为直径的圆与抛物线的准线相切 B .若AF →=2FB →,则直线AB 的斜率k =3C .弦AB 的中点M 的轨迹为一条抛物线,其方程为y 2=2px ﹣p 2D .若p =4,则|AF |+4|BF |的最小值为18解:A .由抛物线的方程可得焦点F (p2,0),准线方程为:x =−p2,设A (x 1,y 1),B (x 2,y 2),则AB 的中点M (x 1+x 22,y 1+y 22),利用焦点弦的性质可得|AB |=x 1+x 2+p ,而AB 的中点M 到准线的距离d =x 1+x 22−(−p 2)=12(1+x 2+p )=12|AB |,∴以AB 为直径的圆与该抛物线的准线相切,因此A 正确;B .设直线AB 的方程为x =my +p 2,k =1m >0,联立{x =my +p2y 2=2px , 整理可得:y 2﹣2mpy ﹣p 2=0, 可得y 1+y 2=2mp ,y 1y 2=﹣p 2, ∵AF →=2FB →,∴y 1=﹣2y 2, 解得y 2=﹣2mp ,y 1=4mp , ∴﹣8m 2p 2=﹣p 2,解得m 2=18, ∴k =√1m 2=2√2,因此B 不正确; C .设M (x ,y ),结合A ,B 可得:y =y 1+y 22=mp ,x =x 1+x 22=m(y 1+y 2)2+p 2=m 2p +p 2,消去m 可得:2y 2=2px ﹣p 2,因此C 不正确; D .若p =4,则抛物线C :y 2=8x ,不妨设x 1>x 2>0,x 1x 2=(y 1y 2)264=4,∴|AF |+4|BF |=x 1+4x 2+10=4x 2+4x 2+10≥4×2√1x 2⋅x 2+10=18,当且仅当x 2=1,x 1=4时取等号,因此D 正确. 故选:AD .三、填空题(本大题共4小题,每小题5分,共20分.) 13.请写出一个焦点在y 轴上,焦距为2的椭圆的标准方程 y 22+x 21=1(答案不唯一,只要焦点在y轴上且a 2﹣b 2=1) . 解:y 22+x 21=1(答案不唯一,只要焦点在y 轴上且a 2﹣b 2=1). 故答案为:y 22+x 21=1(答案不唯一,只要焦点在y 轴上且a 2﹣b 2=1).14.P 、Q 分别是圆E :(x +9)2+(y +4)2=1与圆F :(x ﹣1)2+(y ﹣3)2=1上的动点,A 为直线y =x 上的动点,则|AP |+|AQ |的最小值为 11 . 解:由题意知E (﹣9,﹣4),F (1,3),如图,设圆E 关于y =x 的对称圆为圆G ,点Q 与点Q '关于y =x 轴对称,则圆G 的方程为(x +4)2+(y +9)2=1,G (﹣4,﹣9),所以(|AP |+|AQ |)min =(|AP |+|AQ ′|)min ≥|PQ ′|,当且仅当P ,A ,Q ′三点共线时取得最小值, 此时|PQ ′|=|FG |﹣1﹣1=√(−4−1)2+(−9−3)2−1﹣1=11,所以AP |+|AQ |的最小值为11. 故答案为:11. 15.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的焦点与椭圆x 281+y 272=1的焦点重合,离心率互为倒数,设F 1、F 2分别为双曲线C 的左、右焦点,P 为右支上任意一点,则双曲线C 的离心率为 3 ; |PF 1|2|PF 2|的最小值为 8 . 解:已知椭圆x 281+y 272=1的离心率e 1=√1−7281=13,而c =√81−72=3, 因为双曲线C 与椭圆x 281+y 272=1的离心率互为倒数,所以双曲线C 的离心率e 2=3,① 因为双曲线C 的焦点与椭圆x 281+y 272=1的焦点重合,所以双曲线C 的半焦距c =3,② 又a 2+b 2=c 2,③联立①②③,解得a =1,b =2√2,则双曲线C 的方程为x 2−y 28=1,若F 1、F 2分别为双曲线C 的左、右焦点,P 为右支上任意一点, 可得|PF 1|﹣|PF 2|=2a =2, 即|PF 1|=2+|PF 2|, 所以|PF 1|2|PF 2|=(2+|PF 2|)2|PF 2|=4+4|PF 2|+|PF 2|2|PF 2|=4|PF 2|+|PF 2|+4,因为|PF 2|≥c ﹣a =1, 所以4|PF 2|+|PF 2|+4≥2√4|PF 2|⋅|PF 2|+4=8, 当且仅当4|PF 2|=|PF 2|,即|PF 2|=2时,等号成立,则|PF 1|2|PF 2|的最小值为8.故答案为:3;8.16.参加数学兴趣小组的小何同学在打篮球时,发现当篮球放在地面上时,篮球的斜上方灯泡照过来的光线使得篮球在地面上留下的影子有点像数学课堂上学过的椭圆,但他自己还是不太确定这个想法,于是回到家里翻阅了很多参考资料,终于明白自己的猜想是没有问题的,而且通过学习,他还确定地面和篮球的接触点(切点)就是影子椭圆的焦点.他在家里做了个探究实验:如图所示,桌面上有一个篮球,若篮球的半径为1个单位长度,在球的右上方有一个灯泡P (当成质点),灯泡与桌面的距离为4个单位长度,灯泡垂直照射在平面的点为A ,影子椭圆的右顶点到A 点的距离为3个单位长度,则这个影子椭圆的离心率e =79.解:以A 为坐标原点建立平面直角坐标系,由题意可知,|NQ |=a +c ,|QR |=a ﹣c 由题意可得P (0,4),R (﹣3,0),则PR :4x ﹣3y +12=0,k PR =43, 设M (n ,1),Q (n ,0), 则M 到PR 的距离d =|4n−3+12|√4+3=1,解得n =﹣1(舍去).n =−72,则|QR |=72−3=12=a ﹣c , 又设PN :kx ﹣y +4=0,由d =|−72k−1+4|√1+k =1,得45k 2﹣84k +32=0.∴k PR •k PN =3245,则k PN =815,得x N =−152, ∴2a =152−3=92,a =94,解得c =74. ∴椭圆的离心率e =ca =79. 故答案为:79.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)在平行四边形ABCD 中,A (﹣2,1),B (1,7),D (1,﹣2),点E 是线段CD 的中点.(1)求直线CD 的方程;(2)求过点E 且与直线BC 垂直的直线方程. 解:(1)由题意可得k AB =7−11−(−2)=2,由平行四边形可得CD ∥AB ,所以直线CD 的斜率为2,所以直线CD 的方程为y ﹣(﹣2)=2(x ﹣1),即2x ﹣y ﹣4=0; (2)设所求直线为l .设点C 的坐标为(m ,n ),则DC →=(m −1,n +2), 由题意AB →=DC →,又AB →=(3,6),故{m −1=3n +2=6,解得m =4,n =4,即C (4,4), 点E 是线段CD 的中点,则E(52,1), 直线BC 的斜率为k BC =7−41−4=−1,由于直线BC 与l 垂直,故直线l 的斜率为1, 所以直线l 的方程为y −1=x −52, 即2x ﹣2y ﹣3=0.18.(12分)已知焦点在y 轴上的双曲线的离心率为32,焦点到其中一条渐近线的距离为√5.(1)求双曲线的标准方程;(2)过双曲线的上焦点F 1的直线l 交双曲线的上支于M 、N 两点.在y 轴上是否存在定点T ,使得∠F 1TM =∠F 1TN 恒成立?若存在,求出点T 的坐标;若不存在,请说明理由. 解:(1)因为焦点在y 轴上的双曲线的离心率为32,所以e =√1+b 2a2=32,①因为焦点到其中一条渐近线的距离为√5, 所以d =√a 2+b=b =√5,②联立①②,解得a =2, 则双曲线的标准方程为y 24−x 25=1;(2)易知直线l 的斜率存在,不妨设直线l 的方程为y =kx +3,M (x 1,y 1),N (x 2,y 2), 联立{y =kx +3y 24−x 25=1,消去y 并整理得(5k 2﹣4)x 2+30kx +25=0,由韦达定理得x 1+x 2=−30k 5k 2−4,x 1x 2=255k 2−4,假设在y 轴上存在定点T ,使得∠F 1TM =∠F 1TN 恒成立, 不妨设点T (0,t ),此时k TM +k TN =0, 即y 1−t x 1+y 2−t x 2=x 2(y 1−t)+x 1(y 2−t)x 1x 2=x 2(kx 1+3−t)+x 1(kx 2+3−t)x 1x 2=2k +(3−t)(x 1+x 2)x 1x 2=2k +(3−t)−30k 5k 2−4255k 2−4=0,解得t =43,则点T 的坐标为(0,43).综上,y 轴上存在点T(0,43),使∠F 1TM =∠F 1TN 恒成立. 19.(12分)已知圆C :x 2+3λx +y 2﹣λy ﹣10﹣10λ=0. (1)证明:圆C 过定点.(2)当λ=1时,是否存在斜率为1的直线l 交圆C 于A 、B 两点,使得以AB 为直径的圆恰好经过原点?若存在,求出l 的方程;若不存在,说明理由.解:(1)证明:圆C :x 2+3λx +y 2﹣λy ﹣10﹣10λ=0,即x 2+y 2﹣10+λ(3x ﹣y ﹣10)=0, 令{3x −y −10=0x 2+y 2−10=0,解得{x =3y =−1, 把(3,﹣1)代入圆C :x 2+3λx +y 2﹣λy ﹣10﹣10λ=0成立, 所以圆过定点(3,﹣1).(2)当λ=1时,圆C 的方程为:x 2+y 2+3x ﹣y ﹣20=0. 假设存在直线l 符合题意,直线l 的斜率为1,设直线l 的方程为y =x +m ,与圆C 联立{y =x +mx 2+y 2+3x −y −20=0,化简整理可得,2x 2+2(m +1)x +m 2﹣m ﹣20=0,Δ=4(m +1)2﹣4×2×(m 2﹣m ﹣20)>0①, 设A (x 1,y 1),B (x 2,y 2) x 1+x 2=﹣(m +1),x 1x 2=m 2−m−202, 若以AB 为直径的圆经过原点,则OA ⊥OB ,OA →⋅OB →=0,即x 1x 2+y 1y 2=x 1x 2+(x 1+m)(x 2+m)=2x 1x 2+m(x 1+x 2)+m 2=m m 2﹣m ﹣20﹣m (m +1)+m 2=m 2﹣2m ﹣20=0,解得m =1±√21,均满足①,故直线l 的方程为y =x +1−√21或y =x +1+√21. 20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,过点F 2且垂直于x 轴的弦长为3,且_____.(从以下三个条件中任选一个,将其序号写在答题卡的横线上并作答.) ①椭圆C 的长轴长为4;②椭圆C 与椭圆x 213+y 212=1有相同的焦点;③F 1,F 2与椭圆C 短轴的一个端点组成的三角形为等边三角形. (1)求椭圆C 的标准方程;(2)若直线l 经过F 2,且与椭圆交于M ,N 两点,求△F 1MN 面积的最大值. 解:(1)选①:由题意得{2a =42b 2a =3,解得{a =2b =√3.所以椭圆C 的方程为x 24+y 23=1.选②:椭圆x 213+y 212=1的焦点坐标为(±1,0),则c =1,又2a =4,得a =2,由a 2=b 2+c 2得,b 2=4﹣1=3, 所以椭圆C 的方程为x 24+y 23=1.选③:由题意得2b 2a=3,因为F 1,F 2与椭圆C 短轴的一个端点组成等边三角形, 所以b =√3c ,又a 2=b 2+c 2,得a =2,b =√3, 所以椭圆C 的方程为x 24+y 23=1.(2)【解法一】:由题知F 2(1,0), 设直线l 的方程为x =my +1,联立{x =my +1x 24+y 23=1,得(3m 2+4)y 2+6my ﹣9=0,设点M (x 1,y 1),N (x 2,y 2), 所以y 1+y 2=−6m 3m 2+4,y 1y 2=−93m 2+4. 所以S △F 1MN =S △MF 1F 2+S △NF 1F 2=12⋅2c|y 1−y 2|=|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=√(−6m 3m 2+4)2−−363m 2+4=12√m 2+13m 2+4, 设t =√m 2+1≥1,则S △F 1MN =12t 3t 2+1=123t+1t,因为函数y =3t +1t在t ∈[1,+∞)上单调递增, 所以函数y =123t+1t在t ∈[1,+∞)上单调递减, 所以当t =1时,y max =123×1+1=3(此时m =0,直线为x =1), 所以△F 1MN 面积的最大值为3. 【解法二】:由题知F 2(1,0),当直线l 的斜率不存在时,直线l 的方程为x =1,此时M (1,32),N (1,−32)或M (1,−32),N (1,32),所以|MN |=3,所以△F 1MN 的面积为12|F 1F 2|⋅|MN|=3,当直线l 的斜率存在时,设直线l 的方程为y =k (x ﹣1), 联立{y =k(x −1)x 24+y 23=1,得(3+4k 2)x 2﹣8k 2x +4k 2﹣12=0,设点M (x 1,y 1),N (x 2,y 2), 所以x 1+x 2=8k23+4k 2,x 1x 2=4k 2−123+4k 2,所以y 1+y 2=−6k3+4k 2,y 1y 2=−9k23+4k2,所以S △F 1MN =S △MF 1F 2+S △NF 1F 2=12⋅2c|y 1−y 2|=|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=√(−6k 3+4k2−4⋅−9k23+4k2)=12√k 2(k 2+1)3+4k 2,设t =3+4k 2>3,则k 2=t−34,所以S =12√(t−34)2−t−34t 2=3√1−2t −3t2(其中0<1t <13),所以当1t→0时,S →3,综上所述:△F 1MN 面积的最大值为3.21.(12分)已知动圆M 经过点A (2,0),且与直线x =﹣2相切.设圆心M 的轨迹为C . (1)求曲线C 的方程;(2)设P 为直线x =﹣2上任意一点,过P 作曲线C 的两条切线,切点分别为E 、F ,求证:PE ⊥PF . 解:(1)因为动圆M 经过点A (2,0),且与直线x =﹣2相切, 所以|MA |=|x +2|,即点M 到点A (2,0)的距离与到直线x =﹣2的距离相等,由抛物线定义知圆心M 的轨迹C 为抛物线,且焦点为(2,0),准线方程为x =﹣2, 所以曲线C 的方程为y 2=8x ;(2)证明:易知过点P 的切线斜率存在,且不为0; 因为P 为直线x =﹣2上任意一点,不妨设P (﹣2,t ),切线方程为x +2=m (y ﹣t ),联立{x +2=m(y −1)y 2=8x ,消去x 并整理得y 2﹣8my +8mt +16=0,此时Δ=64m 2﹣4(8tm +16)=64m 2﹣32tm ﹣64=0, 因为过点P 存在两条切线,所以关于m 的方程有两个不相等的实数根m 1,m 2, 由韦达定理得m 1m 2=﹣1,不妨设切线PE 、PF 的斜率分别为k 1,k 2, 此时k 1k 2=1m 1⋅1m 2=−1,故PE ⊥PF .22.(12分)已知两定点A (﹣3,0),B (3,0),过动点P 的两直线P A 和PB 的斜率之积为−89.设动点P 的轨迹为C . (1)求曲线C 的方程;(2)设F 1(﹣1,0),过F 1的直线l 交曲线C 于M 、N 两点(不与A 、B 重合).设直线AM 与BN 的斜率分别为k 1,k 2,证明k 1k 2为定值.解:(1)不妨设点P (x ,y ),因为过动点P 的两直线P A 和PB 的斜率之积为−89, 所以k PA ⋅k PB =yx+3⋅yx−3=−89, 整理得x 29+y 28=1(x ≠±3);(2)证明:不妨设直线l 的方程为x =my ﹣1,M (x 1,y 1),N (x 2,y 2), 联立{x =my −1x 29+y 28=1,消去x 并整理得(8m 2+9)y 2﹣16my ﹣64=0,由韦达定理得y 1+y 2=16m 8m 2+9,y 1y 2=−648m 2+9, 则k 1k 2=y 1x 1+3⋅x 2−3y 2=x 2y 1−3y 1x 1y 2+3y 2=(my 2−1)y 1−3y 1(my 1−1)y 2+3y 2=my 1y 2−4y 1my 1y 2+2y 2=−64m8m 2+9−4y 1−64m 8m 2+9+2(16m8m 2+9−y 1)=−64m8m 2+9−4y 1−32m8m 2+9+2y 1=2.综上,k 1k 2为定值2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014高二春期期中理科试题答案
一:选择题 AAACD DCDAD CB 二:13. 2 14.
2
π
15. []2,1- 16. 41
三:17.解:(1),x
x x x x f 2
11)(-=-='
所以)(x f 在)1,0(上单调递增,在∞+.1()上单调递减 。
(5分) (2),由(1))(x f 在)1,1(e 上单调递增,在e .1(上单调递减
)(x f 最大值为2
1
)1(-=f 。
(7分) 021
4)()1(2
24>--=-e e e e f e f 。
(8分) )(x f 最小值为22
1
1)(e e f -= 。
(10分) 18.解:)234(234)(2
2
3
++=++='ax x x x ax x x f 因)(x f 仅在0=x 处有极值,等价于02342≥++ax x
对R x ∈恒成立, 。
(6分) 即0329244)3(22
≤-=⋅⋅-a a
得3
2
4324≤
≤-
a 此时,0)(),,0(;0)(),0.(>'+∞∈<'-∞∈x f x x f x )(x f 仅在0=x 处有极小值,所求a 的范围是⎥⎦
⎤
⎢⎣⎡-324,324。
(12分) 19.解:分别将2,1=n 代人,得
1,61
)
2(105)1(31==∴⎩⎨
⎧+=+=b a b a b a 。
(2分) 下面用数学归纳法证明
(1) 当1=n 时,由上可知等式成立 。
(3分) (2)假设k n =时结论成立,即6
)
12)(1(3212222++=++++k k k k ,
那么1+=k n 时=++++++2
2
2
2
2
)1(321k k
)16
2)(1()1(6)12)(1(22++++=++++=k k k k k k k k
6
)
1)1(2)(1)1)((1(6)32)(2)(1(+++++=
+++=
k k k k k k , 这就是说,1+=k n 时,结论也成立 。
(11分)
由(1)(2)可知,存在常数1,6
1
==b a 对任意的*∈N n ,都有
6)
12)(1(3212222++=
++++n n n n 。
(12分) 20.解:(1)x x f 2)('
=
1l ∴为)(22t x t t y -=- 。
(1分)
即2
2t tx y -=,它与x 轴交于)0,2
(t
,与2l 交于(2,)42
t t -, 则)(t g =
)4)(2
2(212
2
2
t t t x ---⎰
t t t x 424|3123203-+-=
38
42423+-+-=t t t ,))2,0((∈t 。
(6分) (2))3
4)(4(434443)(2'
---=-+-=t t t t t g ,
由)20(0)('
<<>t t g 得)2,34
(∈t ,)(x g ∴在)2,3
4(上增, 由)20(0)('
<<<t t g 得)34,0(∈t ,)(x g ∴在)3
4,0(上减,
.27
8
)34()(min ==∴g x g 。
(12分) 21. 解:(1) b ax x x f ++='23)(2
,依题意023)1(=++='b a f
101)1(2
=+++=a b a f 解得⎩⎨
⎧-==114b a 或⎩
⎨⎧=-=33
b a 经检验当⎩⎨
⎧=-=33
b a 时无极值点,当
⎩⎨
⎧-==11
4
b a 时函数)(x f 在1=x 处有极小值,故
11-=b , 。
(4分) 2)023)(2
≥++='b ax x x f 对),1[+∞-∈∀a ,当)2,0(∈x 恒成立
记b x a x b ax x a h ++=++=2
2
3)2(23)(, 所以023)1()(2
min ≥+-=-=b x x h a h 又设b x x x H +-=23)(2
, 当)2,0(∈x 时03
1
)31()(min ≥+-
==b H x H 31≥
b ,所以b 的最小值为3
1
. 。
(8分) (3):当1=a 时,1)(2
3
+++=bx x x x f ,设切点为),(00y x P ,则切线斜率为
2
)(23)(0002
00+=
++='x x f b x x x f 得01247202
030=-+++b x x x 记=)(0x F 1247202
03
0-+++b x x x ,过点)0,2(-能作)(x f 三条切线等价于)(0x F 有三个零点
)2)(13(24146)(0002
00++=++='x x x x x F
令⎪⎩⎪⎨⎧<->-0)31(0)2(F F 即⎪⎩
⎪
⎨⎧<->+02744
20
32b b 得)2722,23(-∈b 。
(12分) 22. 解:(1)2
2'
)
1(1
)22()(++-+=x x x a x x f ,因为)(x f 在),0(+∞上为单调增函数,所以0)('≥x f 在),0(+∞上恒成立,即01)22(2≥+-+x a x 在),0(+∞上恒成立,它等价于
x
x a 1
22+
≤-在),0(+∞上恒成立,因为 ),0(+∞∈x 时,2)1
(min =+x
x ,,222≤-∴a 即,2≤a ∴a 的取值范围为
(]2,∞-. 。
(6分)
(2)不妨设n m >,原不等式等价于,21ln 1+<-n m n m n m 即1)
1(2ln +->n
m n m n m
, 即01)1(2ln >+--
n
m n m n
m , 令,1)
1(2ln )(+--=x x x x h 这个函数即为2=a 时的函数)(x f ,由(1)知它在),1(+∞上是
单调增函数,又1>n m ,0)1()(=>∴h n m
h ,
01)1(2ln >+--∴n
m n m n m ,∴.2ln ln n m n m n m +<-- 。
(12分)。