电流检测电阻

合集下载

电流采样电阻及电路

电流采样电阻及电路

电流采样电阻及电路电流采样电阻及电路2010-06-29 16:59三相异步电机电流采样电阻采样电阻又称为电流检测电阻,电流感测电阻,取样电阻,电流感应电阻。

英文一般译为Sampling resistor,Current sensing resistor。

用简单的话描述就是一个阻值较小的电阻,串联在电路中用于把电流转换为电压信号进行测量。

此类电阻,是按照产品使用的功能来划分电阻。

取样电阻功能上就是做为参考,常用在反馈电路里,以稳压电源电路为例,为使输出的电压保持恒定状态,要从输出电压取一部分电压做参考(常用取样电阻的形式),如果输出高了,输入端就自动降低电压,使输出减少;若输出低了,则输入端就自动升高电压,试输出升高。

一般使用在电源产品,或者电子,数码,机电产品的电源部分,功能强大。

在众多电子产品上均常看到取样电阻。

采样电阻一般使用的都是精密电阻,阻值低,精密度高,一般在阻值精密度在±1%以内,更高要求的用途时会采用0.01%精度的电阻。

国内工厂生产的大部分都是以锰铜为材质的插件电阻,但是,广大的用户更需要的是贴片的高精密电阻来实现取样功能,这是为了满足产品小型化产品生产的自动化的要求。

能够生产在低温度系数,高精密度,超低阻值上做到满足用户要求电阻的厂商在国内是很少的。

一般采样电阻的阻值会选在1欧姆以下,属于毫欧级电阻,但是部分电阻,有个采样电压等要求,必须选择大阻值电阻,但是这样电阻基数大,产生的误差大。

这种情况下,需要选择高精度的捷比信电阻,深圳市捷比信科技有限公司专业生产销售电源专用高精密贴片电阻(可到0.01%精度,即万分之一精度),这样就可以让采样出来的数据非常可信。

贴片超低阻值电阻(0.0005欧姆,2毫欧,3毫欧,10毫欧等),贴片合金电阻,大功率电阻(20W,30W,35W,50W,100W)等产品,温度系数可达到正负5PPM。

采样电阻和HCPL-7840的连接如图2,采样电阻R1的正端连接到Vin+,采样电阻的负端连接到Vin,把实时的电机电流转化为模拟电压输入芯片;同时Vin和GND1连接,把供电电源的返回路径又作为采样线连接到采样电阻的负端,因为电机在工作时有很大的电流流过采样线路,电路中的寄生电感会产生很大的电流尖峰,而此种连接能把这些暂态噪声视为共模信号,不会对采样电流信号形成干扰;另外,为消除采样电流输入信号中的高频噪声,采样电阻上采集到的电压信号必须经过由R2及C3组成的低通滤波器进入芯片。

采样电阻(电流检测电阻)基本原理、安装技术与选择方法

采样电阻(电流检测电阻)基本原理、安装技术与选择方法

采样电阻(电流检测电阻)基本原理、安装技术与选择方法一、电流检测电阻基本原理根据欧姆定律,当被测电流流过电阻时,电阻两端的电压与电流成正比。

当1W的电阻通过的电流为几百毫安时,这种设计是没有问题的。

然而如果电流达到10-20A,情况就完全不同,因为在电阻上损耗的功率(P=I2xR)就不容忽视了。

我们可以通过降低电阻阻值来降低功率损耗,但电阻两端的电压也会相应降低,所以基于取样分辨率的考虑,电阻的阻值也不允许太低.二、长期稳定性对于任何传感器来说,长期稳定性都非常重要.甚至在使用了一些年后,人们都希望还能维持早期的精度.这就意味着电阻材料在寿命周期内一定要抗腐蚀,并且合金成分不能改变。

要使测量元件满足这些要求,可以使用同质复合晶体组成的合金,通过退火和稳定处理的生产制程,以达到基本热力学状态。

这样的合金的稳定性可以达到ppm/年的数量级,使其能用于标准电阻。

表面贴装电阻在140℃下老化1000小时后阻值只有大约-0.2%的轻微漂移,这是由于生产过程中轻微变形而导致的晶格缺损造成的。

阻值漂移很大程度上由高温决定,因此在较低的温度下比如+100℃,这种漂移实际是检测不出来的。

三、端子连接在低阻值电阻中,端子的阻值和温度系数的影响往往是不能忽略的,实际设计中应充分考虑这些因素,可以使用附加的取样端子直接测量金属材料两端的电压。

由电子束焊接的铜-锰镍铜电阻实际上具有这样低的端子阻值,通过合理的布线可以作为两端子电阻使用而接近四端子连接的性能。

但是在设计时一定要注意取样电压的信号连线不能直接连接取样电阻的电流通道上,如果可能的话,最好能够从取样电阻下面连接到电流端子并设计成微带线。

四、低阻值四引线设计推荐用于大电流和低阻值应用。

通常的做法使用锰镍铜合金带直接冲压成电阻器,但这不是最好的办法。

尽管四引线电阻有利于改进温度特性和热电压,但总阻值有时高出实际阻值2到3倍,这会导致难以接受的功率损耗和温升。

此外,电阻材料很难通过螺丝或焊接与铜连接,也会增加接触电阻以及造成更大的损耗。

电流检测方案

电流检测方案

电流检测方案摘要:电流检测是电气系统中一项重要的任务,它用于监测和测量电路中的电流值。

本文将介绍几种常用的电流检测方案,包括霍尔效应传感器、电阻式电流检测和互感式电流检测。

每种方案都有其优点和限制,根据具体应用需求选择适合的方案将能够提高电流检测的准确性和可靠性。

1. 引言电流检测在各种电气系统中起着重要的作用,例如电力系统、工业自动化系统和电子设备。

准确地监测和测量电流值对于确保系统的正常运行和故障诊断具有关键意义。

本文将介绍几种常用的电流检测方案,以帮助读者了解各种方案的原理和特点,从而选择适合的电流检测方案。

2. 霍尔效应传感器霍尔效应传感器是一种常见的电流检测方案,它利用霍尔效应来测量电流。

霍尔效应是指当导电体中有电流通过时,垂直于电流方向的方向会产生电势差。

通过将霍尔元件与电路连接,可以测量感应到的电势差,并据此推导出电流值。

霍尔效应传感器具有非接触式、高精度和快速响应的优点,常用于电力系统和工业自动化应用中。

3. 电阻式电流检测电阻式电流检测是一种简单而常用的电流检测方案,它利用电阻器来测量电流值。

将一个合适的电阻器串联到电路中,根据欧姆定律将电流转换为电压信号,再通过适当的电路放大和处理电压信号,最终得到准确的电流值。

电阻式电流检测方案成本较低,可靠性较高,适用于一般的电流测量需求。

4. 互感式电流检测互感式电流检测是一种常用于高电流测量的方案,它利用电感和变压器原理来测量电流。

将电流通过一个可调节的电感元件,通过变压器将电流大小转换为方便测量的电压值。

互感式电流检测方案适用于高电流测量,具有较高的精度和稳定性。

5. 选择合适的电流检测方案在选择合适的电流检测方案时,应根据具体应用需求考虑以下因素:- 电流范围:不同的方案适用于不同范围的电流测量。

对于小电流测量,电阻式电流检测方案可能更合适;对于高电流测量,互感式电流检测方案可能更合适。

- 精度要求:不同的方案具有不同的精度。

对于需要高精度测量的应用,霍尔效应传感器通常是较好的选择。

采样电阻的选择

采样电阻的选择

巧置采样电阻一,电流检测电阻的基本原理:根据欧姆定律,当被测电流流过电阻时,电阻两端的电压与电流成正比.当1W的电阻通过的电流为几百毫安时,这种设计是没有问题的.然而如果电流达到10-20A,情况就完全不同,因为在电阻上损耗的功率(P=I2xR)就不容忽视了. 我们可以通过降低电阻阻值来降低功率损耗,但电阻两端的电压也会相应降低,所以基于取样分辨率的考虑,电阻的阻值也不允许太低.二,长期稳定性对于任何传感器来说,长期稳定性都非常重要.甚至在使用了一些年后,人们都希望还能维持早期的精度.这就意味着电阻材料在寿命周期内一定要抗腐蚀,并且合金成分不能改变.要使测量元件满足这些要求,可以使用同质复合晶体组成的合金,通过退火和稳定处理的生产制程,以达到基本热力学状态.这样的合金的稳定性可以达到ppm/年的数量级,使其能用于标准电阻.表面贴装电阻在140℃下老化1000小时后阻值只有大约-0.2%的轻微漂移,这是由于生产过程中轻微变形而导致的晶格缺损造成的.阻值漂移很大程度上由高温决定,因此在较低的温度下比如+100℃,这种漂移实际是检测不出来的.三,端子连接在低阻值电阻中,端子的阻值和温度系数的影响往往是不能忽略的,实际设计中应充分考虑这些因素,可以使用附加的取样端子直接测量金属材料两端的电压.由电子束焊接的铜-锰镍铜电阻实际上具有这样低的端子阻值,通过合理的布线可以作为两端子电阻使用而接近四端子连接的性能.但是在设计时一定要注意取样电压的信号连线不能直接连接取样电阻的电流通道上,如果可能的话,最好能够从取样电阻下面连接到电流端子并设计成微带线.四,低阻值四引线设计推荐用于大电流和低阻值应用.通常的做法使用锰镍铜合金带直接冲压成电阻器,但这不是最好的办法.尽管四引线电阻有利于改进温度特性和热电压,但总阻值有时高出实际阻值2到3倍,这会导致难以接受的功率损耗和温升.此外,电阻材料很难通过螺丝或焊接与铜连接,也会增加接触电阻以及造成更大的损耗.康铜丝电阻说到电流/电压的采样电路,就像上图中万用表中所使用的那样,那么,什么是康铜丝电阻呢?简单地说,康铜丝电阻是选用高精密合金丝并经过特殊工艺处理,其阻值低,精度高,温度系数低,具有无电感,高过载能力。

三相异步电机_电流采样电阻

三相异步电机_电流采样电阻

三相异步电机电流采样电阻采样电阻又称为电流检测电阻,电流感测电阻,取样电阻,电流感应电阻。

英文一般译为Sampling resistor,Current sensing resistor。

用简单的话描述就是一个阻值较小的电阻,串联在电路中用于把电流转换为电压信号进行测量。

此类电阻,是按照产品使用的功能来划分电阻。

取样电阻功能上就是做为参考,常用在反馈电路里,以稳压电源电路为例,为使输出的电压保持恒定状态,要从输出电压取一部分电压做参考(常用取样电阻的形式),如果输出高了,输入端就自动降低电压,使输出减少;若输出低了,则输入端就自动升高电压,试输出升高。

一般使用在电源产品,或者电子,数码,机电产品的电源部分,功能强大。

在众多电子产品上均常看到取样电阻。

采样电阻一般使用的都是精密电阻,阻值低,精密度高,一般在阻值精密度在±1%以内,更高要求的用途时会采用0.01%精度的电阻。

国内工厂生产的大部分都是以锰铜为材质的插件电阻,但是,广大的用户更需要的是贴片的高精密电阻来实现取样功能,这是为了满足产品小型化产品生产的自动化的要求。

能够生产在低温度系数,高精密度,超低阻值上做到满足用户要求电阻的厂商在国内是很少的。

一般采样电阻的阻值会选在1欧姆以下,属于毫欧级电阻,但是部分电阻,有个采样电压等要求,必须选择大阻值电阻,但是这样电阻基数大,产生的误差大。

这种情况下,需要选择高精度的捷比信电阻,深圳市捷比信科技有限公司专业生产销售电源专用高精密贴片电阻(可到0.01%精度,即万分之一精度),这样就可以让采样出来的数据非常可信。

贴片超低阻值电阻(0.0005欧姆,2毫欧,3毫欧,10毫欧等),贴片合金电阻,大功率电阻(20W,30W,35W,50W,100W)等产品,温度系数可达到正负5PPM。

采样电阻和HCPL-7840 的连接如图2,采样电阻R1 的正端连接到Vin+ ,采样电阻的负端连接到Vin?,把实时的电机电流转化为模拟电压输入芯片;同时Vin?和GND1 连接,把供电电源的返回路径又作为采样线连接到采样电阻的负端,因为电机在工作时有很大的电流流过采样线路,电路中的寄生电感会产生很大的电流尖峰,而此种连接能把这些暂态噪声视为共模信号,不会对采样电流信号形成干扰;另外,为消除采样电流输入信号中的高频噪声,采样电阻上采集到的电压信号必须经过由R2 及C3组成的低通滤波器进入芯片。

电流检测电阻工作原理

电流检测电阻工作原理

电流检测电阻工作原理
电流检测电阻是一种用于检测电路中电流的电阻器件。

它的工作原理基于欧姆定律,即电流与电压成正比,与电阻成反比。

电流检测电阻通常由两个电阻分支组成,一个用于测量电路中的电流,另一个用于测量电阻本身。

电流检测电阻的工作原理如下:
1. 当电路中有电流通过时,电流检测电阻中的一个分支(通常是较小电阻)会受到电流的影响,产生一个电压降。

2. 这个电压降会通过另一个分支(通常是较大电阻)进行测量,从而计算出电路中的电流值。

3. 通过读取电流检测电阻上的电压降,可以确定电路中的电流大小。

4. 电流检测电阻还可以与电压源配合使用,测量电路中的电压分布。

总结起来,电流检测电阻的工作原理基于欧姆定律,通过测量电阻上的电压降来确定电路中的电流大小。

这种技术在电路设计、电子测量
和故障诊断等领域得到了广泛应用。

高精度电流检测电阻

高精度电流检测电阻

般为- 5 - ~+15 有一些可达 10 5 2 ℃。 5 ℃。
但大部分 R 在 2 ℃后要降功耗使用 , 5 个 典型的 电流检测 电阻 别的R 可在 7 " 0C后才降功耗使用。 例如 ,
I 1
电流检测 电阻的生产厂 家很 多,同

某 电流检测 电阻在 2 ℃时的额定功耗为 5
凯 尔 文 ( li ) 测 量 法 。 Kevn
— — — — — — — — — — — — — — — — —
即 0 2 。这一 点在 实际使 用时十 分重 .W
要。
6 允许环境温 度 ( A . T )宽 电流检 测 电阻的工 作温 度范 围宽 ,

7 热电动势 要小 . 典 型值为 0 0 V/℃。 .5
些 电子 产品中要限制输 出电流 ,以防止 断开 , 电压 V R上 :0 开关又接通 , , 产 控 制 的要求 开发 出来 的一种特 殊 电阻 。 有故障 时 ( 负载发生 局部 短路或输 出端 生振荡 , 如图3 N示。 出电流将 小于限 电流 的测 量范 围很 广 ,从几毫安 到几十 输 短路 ,电源输 出 电压升高 等)产生过流 制 电流 。更好的办法是通过 F AG端 输 安 ;测量的精 度要 求不 同,电流 检测 电 L 而 造 成更 大 损 失 。检 测到 有 过流 发 生 出过流信号给 C, 使 C 出低 电平给 阻也 有不 同的规 格以满 足 不同 的需 要 。 输 时 ,可 以控 制关断 电源或 负载开关 ,或 负载开关 ON端 ,关断负载开关 。图2中 本文主要 介绍高精 度电流检 测电阻 ,其 以限制 的电流输 出 。 未 画出 C及 C与负载开关的连线 。
1 Q的 。目前 已开发出超小阻值 的系列, 0 有 l Q、0 5 Q、及 0 3 Q系列的电 m .m .m

浅谈电流检测方式(Allegro电流传感器简介)

浅谈电流检测方式(Allegro电流传感器简介)

一、检测电阻+运放优势:成本低、精度较高、体积小劣势:温漂较大,精密电阻的选择较难,无隔离效果。

分析:这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。

检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。

运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。

二、电流互感器CT/电压互感器 PT在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。

而CT 和PT就是特殊的变压器。

基本构造上,CT的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。

PT相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。

CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A或1A的变换设备。

它的工作原理和变压器相似。

也称作TA或LH(旧符号)工作特点和要求:1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。

2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。

3、CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。

4、变换的准确性。

PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V的变换设备。

电磁式电压互感器的工作原理和变压器相同。

也称作TV或YH(旧符号)。

工作特点和要求:1、一次绕组与高压电路并联。

2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。

3、二次绕组有一点直接接地。

4、变换的准确性三、模块型霍尔电流传感器模块型霍尔电流传感器分开环模式与闭环模式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高精度电流检测电阻
作者:北京航空航天大学方佩敏
关键词:电流,精密电流检测电阻,集成电路
摘要:本文介绍了VISHAY公司的一些产品,它们都是精密电流检测电阻。

在一些电子测量仪器、装置或产品中,经常有测量电路中直流电流的需要,因此研发人员开发出各种各样的电流检测集成电路。

它是一种I/V转换器,将测量的电流转换成相应的电压,即V=kI,其中k为比例常数。

另外,在一些电子产品中要限制输出电流,以防止有故障时(负载发生局部短路或输出端短路、电源输出电压升高等)产生过流而造成更大损失。

检测到有过流发生时,可以控制关断电源或负载开关,或以限制的电流输出。

图1 电流检测电路
图1是一种电流检测电路。

RS是电流检测电阻,RL是负载(通常为直流电机、电磁阀或加热器等)。

当电流流过电流检测电阻时产生一个电压降VRS,此电压输入电流检测IC,经放大器放大后输出与电流I成比例的电压V。

为减小在RS上的电压降VR,检测电阻一般取很小阻值(几毫欧到几百毫欧)。

图2 过流保护的负载开关结构框图
图2是一种带过流保护的负载开关结构框图,图2中,RL是负载,RS是电流检测电阻。

流过RS的电压降VRS与电流I成比例,此电压VRS输入负载开关VI端。

若内部电流检测电路检测出有过流状态,输出过流信号(电平信号)给通、断控制电路,关断负载开关。

一旦
开关断开,RS上电压VRS=0,开关又接通,产生振荡,如图3所示。

输出电流将小于限制电流。

更好的办法是通过FLAG端输出过流信号给μC,使μC输出低电平给负载开关ON端,关断负载开关。

图2中未画出μC及μC与负载开关的连线。

从图1及图2可看出:无论电流测量或电流限制控制电路都需要外接电流检测电阻RS。

RS 的选择是否正确及RS的质量好坏,对电流测量精度有很大的影响。

电流检测电阻的要求及特点
电流检测电阻是随电流测量、电流控制的要求开发出来的一种特殊电阻。

电流的测量范围很广,从几毫安到几十安;测量的精度要求不同,电流检测电阻也有不同的规格以满足不同的需要。

本文主要介绍高精度电流检测电阻,其主要要求及特点如下。

表1 CSM2512与CSM3637的主要性能参数
1.RS的阻值小于10Ω
为减少在RS上的电压降及减小在RS上的功率损耗,RS的阻值要求小。

一般在大电流测量时(几安到几十安)要采用毫欧级的RS。

例如,检测电流为12A,若RS=0.1Ω(100mΩ),则在RS上的压降VRS=1.2V,其功耗为14.4W。

如果电源电压为12V,则在负载上的工作电压已降到10.8V;并且在检测电阻RS上的损耗也太大。

若采用5mΩ的RS,则RS上的压降减小到0.075V,其功耗减少为0.72W。

测量电流小时(如几十毫安到几百毫安),RS 值可取零点几欧姆到几欧姆。

所以电流检测电阻RS的阻值是小于10Ω的。

目前已开发出超小阻值的系列,有1mΩ、0.5mΩ、及0.3mΩ系列的电流检测电阻。

图3 内部电流检测电路产生振荡
2.四引线结构
当电流检测电阻值已小到几毫欧时,其引线的电阻造成的误差则不能忽略,为此开发出四引线结构,如图4所示。

接近电阻根部的两引线为测量VRS端,另两根引线为电流的通路。

在电阻根部测量RS上的电压(消除了引线电阻的测量误差)是精密测量方法,也称为凯尔文(Kelvin)测量法。

图4 四引线结构
3.RS的允差要求小
为保证电流测量的精度,RS的允差要求小。

一般精密电阻的允差可达±0.01%,但电流检测电阻值很小时(如RS=2mΩ),其允差达不到±0.01%,目前其允差可做到±0.1%。

一般允差为±0.1%~±1%,RS的阻值≥5mΩ时,可达到±0.05%。

图5 70℃时降功耗使用
4.温度系数(TCR)要求小
在测量大电流时,RS的功耗可达1W以上,自身会发热,若Rs自身温度系数大,则电阻值发生变化而引起测量误差。

另外,环境温度TA也会影响Rs的阻值变化,所以要求RS的温度系数小。

目前典型的电流检测电阻的TCR为±1~±15×10-6/℃(在TA=0~60℃时,RS <1Ω)。

除要求其TCR小外,还要求有长期稳定性。

图6 CSM系列外形图
5.额定功率大
为满足大电流的测量,其额定功率一般为1~3W,某些功率电流检测电阻在加散热片的条件下可达10W(允许测更大的电流)。

表2 RS的外廓尺寸及焊盘尺寸-允差
6.允许环境温度(TA)宽
电流检测电阻的工作温度范围宽,一般为-55~+125℃。

有一些可达150℃。

但大部分RS在25℃后要降功耗使用,个别的RS可在70℃后才降功耗使用。

例如,某电流检测电阻在25℃时的额定功耗为1W,在100℃的工作温度时,其允许的功耗已降到50%即0.5W;若在150℃工作温度条件下,则允许功耗降到20%即0.2W。

这一点在实际使用时十分重要。

表3 几种典型的电流检测电阻
7.热电动势要小
典型值为0.05 μV/℃。

典型的电流检测电阻
电流检测电阻的生产厂家很多,同一生产厂家也会生产出几种或几十种不同的电流检测电阻(如不同的电流测量范围、不同的精度、不同的封装等)。

这里介绍VISHAY公司的高精电流检测电阻CSM系列,它们是CSM2512及CSM3637及一些同类产品。

1.主要特点
CSM系列高精度电流检测电阻的主要特点:
①温度系数最大值为±15×10-6/℃;
②额定功率为1~3W;
③阻值允差±0.1%;
④阻值范围2~200mΩ;
⑤最大检测电流可达38A;
⑥贴片式元件(SMD);
⑦四端精密凯尔文结构,提高测量精度;
⑧有无铅产品;
⑨工作温度范围-55~+125℃。

2.主要性能参数
CSM2512与CSM3637的主要性能参数如表1所示。

在工作温度(环境温度TA下)大于70℃时,要降功耗使用,如图5所示。

3.尺寸及焊盘尺寸
该系列电流检测电阻的外廓尺寸及焊盘尺寸如表2所示,外形如图6所示。

表4 电流检测电阻的应用
其他同类产品简介
这里再介绍一些其他同类产品,这都是VISHAY公司的产品,它们都是精密电流检测电阻,其型号是200系列、300系列及VCS101/3。

它们的外形如图7所示,主要参数如表3所示。

应用领域
电流检测电阻的应用领域极广。

主要应用与工业、消费类、汽车、通信、医疗、仪器及军用/航空和航天。

这方面的应用如表4所示。

来源:/info-23054.htm。

相关文档
最新文档