酶切位点和保护碱基对应表

合集下载

酶切位点保护碱基表

酶切位点保护碱基表

酶切位点保护碱基-PCR引物设计用于限制性内切酶酶切反应来源:easylabs 发布时间:2009-11-08 查看次数:12704本文给出了分子克隆中常用限制性内切酶的保护碱基序列,如AccI,A flIII,AscI,AvaI,BamHI,BglII,BssHII,BstEII,BstXI,ClaI,Eco RI,HaeIII,HindIII,KpnI,MluI,NcoI,NdeI,NheI,NotI,NsiI,Pa cI,PmeI,PstI,PvuI,SacI,SacII,SalI,ScaI,SmaI,SpeI,SphI,StuI,XbaI,XhoI,XmaI,为什么要添加保护碱基?在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。

由于直接暴露在末端的酶切位点不容易直接被限制性核酸内切酶切开,因此在设计PCR引物时,人为的在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高将来酶切时的活性。

其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。

该如何添加保护碱基?添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。

什么样的酶切位点,添加几个保护碱基,是有数据可以参考的。

添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC含量。

如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。

为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。

实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。

在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。

单实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A260位的寡核苷酸。

限制性内切酶酶切位点及保护碱基

限制性内切酶酶切位点及保护碱基

寡核苷酸近末端位点的酶切(Cleavage Close to the End of DNA Fragments (oligonucleotides))为什么要添加保护碱基?在分子克隆实验中,有时我们会在待扩增的目的基因片段两端加上特定的酶切位点,用于后续的酶切和连接反应。

由于直接暴露在末端的酶切位点不容易直接被限制性核酸内切酶切开,因此在设计PCR引物时,人为的在酶切位点序列的5‘端外侧添加额外的碱基序列,即保护碱基,用来提高将来酶切时的活性。

其次,在分子克隆实验中选择载体的酶切位点时,相临的两个酶切位点往往不能同时使用,因为一个位点切割后留下的碱基过少以至于影响旁边的酶切位点切割。

该如何添加保护碱基?添加保护碱基时,最关心的应该是保护碱基的数目,而不是种类。

什么样的酶切位点,添加几个保护碱基,是有数据可以参考的。

添加什么保护碱基,如果严格点,是根据两条引物的Tm值和各引物的碱基分布及GC含量。

如果某条引物Tm值偏小,GC%较低,添加时多加G或C,反之亦反。

为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。

实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。

在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。

单位的寡实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A260核苷酸。

取1 µg已标记了的寡核苷酸与20单位的内切酶,在20°C条件下分别反应2小时和20小时。

反应缓冲液含70 mM Tris-HCl (pH 7.6), 10 mM MgCl,25 mM DTT及适量的NaCl或KCl(视酶的具体要求而定)。

20%的PAGE(7 M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。

本实验采用自连接的寡核苷酸作为对照。

各种酶切位点的保护碱基引物设计必看

各种酶切位点的保护碱基引物设计必看

各种酶切位点的保护碱基引物设计必看Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】各种酶切位点的保护碱基酶不同,所需要的酶切位点的保护碱基的数量也不同。

一般情况下,在酶切位点以外多出3个碱基即可满足几乎所有限制酶的酶切要求。

在资料上查不到的,我们一般都随便加3个碱基做保护。

寡核苷酸近末端位点的酶切(Cleavage Close to the End of DNA Fragments(oligonucleotides)为了解不同内切酶对识别位点以外最少保护碱基数目的要求,NEB采用了一系列含识别序列的短双链寡核苷酸作为酶切底物进行实验。

实验结果对于确定双酶切顺序将会有帮助(比如在多接头上切割位点很接近时),或者当切割位点靠近DNA末端时也很有用。

在本表中没有列出的酶,则通常需在识别位点两端至少加上6个保护碱基,以确保酶切反应的进行。

实验方法:用γ-[32P]ATP在T4多聚核苷酸激酶的作用下标记0.1A260单位的寡核苷酸。

取1 μg 已标记了的寡核苷酸与20单位的内切酶,在20°C条件下分别反应2小时和20小时。

反应缓冲液含70 mM Tris-HCl (pH , 10 mM MgCl2 , 5 mM DTT及适量的NaCl或KCl(视酶的具体要求而定)。

20%的PAGE(7 M尿素)凝胶电泳分析,经放射自显影确定酶切百分率。

本实验采用自连接的寡核苷酸作为对照。

若底物有较长的回文结构,切割效率则可能因为出现发夹结构而降低。

2.双酶切的问题参看目录,选择共同的buffer。

其实,双酶切选哪种buffer是实验的结果,takara公司从1979年开始生产限制酶以来,做了大量的基础实验,也积累了很多经验,目录中所推荐的双酶切buffer完全是依据具体实验结果得到的。

有共同buffer的,通常按照常规的酶切体系,在37℃进行同步酶切。

常用酶切位点表(含保护碱基)课件.doc

常用酶切位点表(含保护碱基)课件.doc

切割率%酶寡核苷酸序列2 hr 20 hrAcc I G GTCGAC C 0 0CG GTCGAC CG 0 0CCG GTCGAC CGG 0 0Afl III C ACATGT G 0 0CC ACATGT GG >90 >90CCC ACATGT GGG >90 >90Asc I GGCGCGCC >90 >90A GGCGCGCC T >90 >90TT GGCGCGCC AA >90 >90Ava I C CCCGGG G 50 >90CC CCCGGG GG >90 >90TCC CCCGGG GGA >90 >90BamH I C GGATCC G 10 25CG GGATCC CG >90 >90CGC GGATCC GCG >90 >90Bgl II C AGATCT G 0 0GA AGATCT TC 75 >90GGA AGATCT TCC 25 >90BssH II G GCGCGC C 0 0AG GCGCGC CT 0 0TTG GCGCGC CAA 50 >90BstE II G GGT(A/T)ACC C 0 10BstX I AACTGCAGAA CCAATGCATTGG 0 0 AAAACTGCAG CCAATGCATTGG AA 25 50CTGCAGAA CCAATGCATTGG ATGCAT 25 >90Cla I C ATCGAT G 0 0GATCGAT C 0 0CC ATCGAT GG >90 >90CCC ATCGAT GGG 50 50EcoR I G GAATTC C >90 >90>90 >90CG GAATTC CGCCG GAATTC CGG >90 >90Hae III GG GGCC CC >90 >90AGC GGCC GCT >90 >90TTGC GGCC GCAA >90 >90Hind III C AAGCTT G 0 0CC AAGCTT GG 0 0CCC AAGCTT GGG 10 75Kpn I G GGTACC C 0 0GG GGTACC CC >90 >90CGG GGTACC CCG >90 >90Mlu I G ACGCGT C 0 0CG ACGCGT CG 25 50Nco I C CCATGG G 0 0CATG CCATGG CATG 50 75Nde I C CATATG G 0 0CC CATATG GG 0 0CGC CATATG GCG 0 0GGGTTT CATATG AAACCC 0 0GGAATTC CATATG GAATTCC 75 >90GGGAATTC CATATG GAATTCCC 75 >90Nhe I G GCTAGC C 0 0CG GCTAGC CG 10 25CTA GCTAGC TAG 10 50切割率%酶寡核苷酸序列2 hr 20 hrNot I TT GCGGCCGC AA 0 0ATTT GCGGCCGC TTTA 10 10AAATAT GCGGCCGC TATAAA 10 10 ATAAGAAT GCGGCCGC TAAACTAT 25 90 AAGGAAAAAA GCGGCCGC AAAAGGAAAA 25 >90Nsi I TGC ATGCAT GCA 10 >90 CCA ATGCAT TGGTTCTGCAGTT >90 >90Pac I TTAATTAA 0 0G TTAATTAA C 0 25CC TTAATTAA GG 0 >90Pme I GTTTAAAC 0 0G GTTTAAAC C 0 25GG GTTTAAAC CC 0 50AGCTTT GTTTAAAC GGCGCGCCGG 75 >90Pst I G CTGCAG C 0 0TGCA CTGCAG TGCA 10 10 AA CTGCAG AACCAATGCATTGG >90 >90AAAA CTGCAG CCAATGCATTGGAA >90 >90CTGCAG AACCAATGCATTGGATGCAT 0 0Pvu I C CGATCG G 0 0AT CGATCG AT 10 25TCG CGATCG CGA 0 10 Sac I C GAGCTC G 10 10Sac II GCCGCGG C 0 0TCC CCGCGG GGA 50 >90Sal I GTCGAC GTCAAAAGGCCATAGCGGCCGC 0 0 GC GTCGAC GTCTTGGCCATAGCGGCCGCG 10 50G 10 75ACGC GTCGAC GTCGGCCATAGCGGCCGCGGAASca I GAGTACT C 10 25AAA AGTACT TTT 75 75Sma I CCCGGG 0 10CCCCGGG G 0 10CC CCCGGG GG 10 50TCC CCCGGG GGA >90 >90Spe I GACTAGT C 10 >90GG ACTAGT CC 10 >90CGG ACTAGT CCG 0 50CTAG ACTAGT CTAG 0 50Sph I G GCATGC C 0 0CAT GCATGC ATG 0 25ACAT GCATGC ATGT 10 50Stu I AAGGCCT T >90 >90GA AGGCCT TC >90 >90AAA AGGCCT TTT >90 >90Xba I CTCTAGA G 0 0GC TCTAGA GC >90 >90TGC TCTAGA GCA 75 >90CTAG TCTAGA CTAG 75 >90Xho I C CTCGAG G 0 0CC CTCGAG GG 10 25CCG CTCGAG CGG 10 75Xma I CCCCGGG G 0 0CC CCCGGG GG 25 75CCC CCCGGG GGG 50 >90TCCC CCCGGG GGGA >90 >90。

常用酶切位点表含保护碱基

常用酶切位点表含保护碱基
TTAATTAA
0
0
GTTAATTAA C
0
25
CC TTAATTAA GG
0
>90
Pme I
0
0
GTTTAAAC
GGTTTAAAC C
0
25
GG GTTTAAAC CC
0
50
AGCTTT GTTTAAAC GGCGCGCCGG
75
>90
Pst I
GCTGCAG C
0
0
TGCA CTGCAG TGCA
>90
>90
25
50
CTGCAGAA CCAATGCATTGG ATGCAT
25
>90
Cla I
CATCGAT G
0
0
GATCGAT C
0
0
CCATCGAT GG
>90
>90
CCC ATCGAT GGG
50
50
EcoR I
GGAATTC C
>90
>90
CG GAATTC CG
>90
>90
CCG GAATTC CGG
10
10
AA CTGCAG AACCAATGCATTGG
>90
>90
AAAA CTGCAG CCAATGCATTGGAA
>90
>90
CTGCAG AACCAATGCATTGGATGCAT
0
0
Pvu I
CCGATCG G
0
0
AT CGATCG AT
10
25
TCG CGATCG CGA

引物设计时酶切位点的保护碱基表

引物设计时酶切位点的保护碱基表

克隆PCR产物的方法之一,是在PCR产物两端设计一定的限制酶切位点,经酶切后克隆至用相同酶切的载体中。

但实验证明,大多数限制酶对裸露的酶切位点不能切断。

必须在酶切位点旁边加上一个至几个保护碱基,才能使所定的限制酶对其识别位点进行有效切断。

有研究者使用了15种限制酶,分别比较了各种限制酶在其酶切位点旁边分别加0、1、2、3个保护碱基后的切断情况。

结果显示,基本上所有限制酶,在其酶切位点旁边加上3个以上的保护碱基后,可以对其酶切位点进行有效切断。

一般来讲,在酶切位点前加入两个GC碱基,因为如果保护碱基为A T的话,保护碱基在PCR 产物的末端,A T之间只有两个氢键,结合力差,容易在末端产生单链,这样的话限制性内切酶就无法作用。

其实加保护碱基的多少,是具体情况具体讨论,比如HindIII、BamHI等就得有三个保护碱基,少了一个就无法切动。

注释:
1.如果要加在序列的5‘端,就在酶切位点识别碱基序列(红色)的5’端加上相应的碱基(黑色),相同如果要在3‘端加保护碱基,就在酶切位点识别碱基序列(红色)的3’端加上相应的碱基(黑色)。

2.切割率:正确识别并酶切的效率
3. 加保护碱基时最好选用切割率高时加的相应碱基。

酶切位点保护碱基

酶切位点保护碱基

酶寡核苷酸序列切割率%2 hr20 hrNot I TT GCGGCCGC AAATTT GCGGCCGC TTTAAAATAT GCGGCCGC TATAAAATAAGAAT GCGGCCGC TAAACTATAAGGAAAAAA GCGGCCGC AAAAGGAAAA10102525101090>90Nsi I TGC ATGCAT GCACCA ATGCAT TGGTTCTGCAGTT10>90>90>90Pac I TTAATTAAG TTAATTAA CCC TTAATTAA GG 025>90Pme I GTTTAAACG GTTTAAAC CGG GTTTAAAC CCAGCTTT GTTTAAAC GGCGCGCCGG752550>90Pst I G CTGCAG CTGCA CTGCAG TGCAAA CTGCAG AACCAATGCATTGGAAAA CTGCAG CCAATGCATTGGAACTGCAG AACCAATGCATTGGATGCAT10>90>9010>90>90Pvu I C CGATCG GAT CGATCG ATTCG CGATCG CGA102510Sac I C GAGCTC G1010Sac II G CCGCGG CTCC CCGCGG GGA50>90Sal I GTCGAC GTCAAAAGGCCATAGCGGCCGC GC GTCGAC GTCTTGGCCATAGCGGCCGCGGACGC GTCGAC GTCGGCCATAGCGGCCGCGGAA10105075Sca I G AGTACT CAAA AGTACT TTT 10752575C CCCGGG G CC CCCGGG GG TCC CCCGGG GGA10>901050>90Spe I G ACTAGT CGG ACTAGT CCCGG ACTAGT CCGCTAG ACTAGT CTAG 1010>90>905050Sph I G GCATGC CCAT GCATGC ATGACAT GCATGC ATGT102550Stu I A AGGCCT TGA AGGCCT TCAAA AGGCCT TTT >90>90>90>90>90>90Xba I C TCTAGA GGC TCTAGA GCTGC TCTAGA GCACTAG TCTAGA CTAG>907575>90>90>90Xho I C CTCGAG GCC CTCGAG GGCCG CTCGAG CGG10102575Xma I C CCCGGG GCC CCCGGG GGCCC CCCGGG GGGTCCC CCCGGG GGGA2550>9075>90>90酶寡核苷酸序列切割率%2 hr20 hrAcc I G GTCGAC CCG GTCGAC CGCCG GTCGAC CGG 0Afl III C ACATGT GCC ACATGT GGCCC ACATGT GGG>90>90>90>90Asc I GGCGCGCCA GGCGCGCC TTT GGCGCGCC AA >90>90>90>90>90>90CC CCCGGG GG TCC CCCGGG GGA >90>90>90>90BamH I C GGATCC GCG GGATCC CGCGC GGATCC GCG10>90>9025>90>90Bgl II C AGATCT GGA AGATCT TCGGA AGATCT TCC7525>90>90BssH II G GCGCGC CAG GCGCGC CTTTG GCGCGC CAA50>90BstE II G GGT(A/T)ACC C010BstX I AACTGCAGAA CCAATGCATTGGAAAACTGCAG CCAATGCATTGG AACTGCAGAA CCAATGCATTGG ATGCAT252550>90Cla I C ATCGAT GG ATCGAT CCC ATCGAT GGCCC ATCGAT GGG>9050>9050EcoR I G GAATTC CCG GAATTC CGCCG GAATTC CGG >90>90>90>90>90>90Hae III GG GGCC CCAGC GGCC GCTTTGC GGCC GCAA >90>90>90>90>90>90Hind III C AAGCTT GCC AAGCTT GGCCC AAGCTT GGG1075Kpn I G GGTACC CGG GGTACC CCCGG GGTACC CCG>90>90>90>90Mlu I G ACGCGT CCG ACGCGT CG2550Nco I C CCATGG GCATG CCATGG CATG5075Nde I C CATATG GCC CATATG GGCGC CATATG GCGGGGTTT CATATG AAACCCGGAATTC CATATG GAATTCCGGGAATTC CATATG GAATTCCC7575>90>90Nhe I G GCTAGC CCG GCTAGC CGCTA GCTAGC TAG10102550。

酶切位点保护碱基表格

酶切位点保护碱基表格
GCGTCGACGTCTTGGCCATAGCGGCCGCGG
ACGCGTCGACGTCGGCCATAGCGGCCGCGGAA 0
10
10 0
50
75 Sca I GAGTACTC
AAAAGTACTTTT 10
75 25
75 Sma I CCCGGG
CCCCGGGG
>90 0
>90
>90 Asc I GGCGCGCC
AGGCGCGCCT
TTGGCGCGCCAA >90
>90
>90 >90
>90
>90 Ava I CCCCGGGG
CCCCCGGGGG
TCCCCCGGGGGA 50
>90
>90 >90
>90
>90 BamH I CGGATCCG
AGCGGCCGCT
TTGCGGCCGCAA >90
>90
>90 >90
>90
>90 Hind III CAAGCTTG
CCAAGCTTGG
CCCAAGCTTGGG 0
0
10 0
0
75 Kpn I GGGTACCC
GGGGTACCCC
CGGGGTACCCCG 0
TCCCCCCGGGGGGA 0
25
50
>90 0
75
>90
>90
注释:
1.如果要加在序列的5‘端,就在酶切位点识别碱基序列(红色)的5’端加上相应的碱基(黑色),相同如果要在3‘端加保护碱基,就在酶切位点识别碱基序列(红色)的3’端加上相应的碱基(黑色)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8 10 12 18 20 22 8 10 12 12 16 20 24 28 12 22 8 10 12 8 10 12 24 8 14 22 24 26 8 10 12 8 8 12 28 30 32 8 12 6 8 10 12 8 10 12 14
0 0 0 0 75 75 0 10 10 0 10 10 25 25 10 >90 0 0 0 0 0 0 75 0 10 >90 >90 0 0 10 0 10 0 50 0 10 10 10 75 0 0 10 >90 10 10 0 0
% Cleavage 2 hr 20 hr 0 0 0 0 0 0 0 0 >90 >90 >90 >90 >90 >90 >90 >90 >90 >90 50 >90 >90 >90 >90 >90 10 25 >90 >90 >90 >90 0 0 75 >90 25 >90 0 0 0 0 50 >90 0 10 0 0 25 50 25 >90 0 0 0 0 >90 >90 50 50 >90 >90 >90 >90 >90 >90 >90 >90 >90 >90 >90 >90 0 0 0 0 10 75 0 0 >90 >90 >90 >90 0 0 25 50 0 0 50 75
XhoI
XmaI
GGCATGCC CATGCATGCATG ACATGCATGCATGT AAGGCCTT GAAGGCCTTC AAAAGGCCTTTT CTCTAGAG GCTCTAGAGC TGCTCTAGAGCA CTAGTCTAGACTAG CCTCGAGG CCCTCGAGGG CCGCTCGAGCGG CCCCGGGG CCCCCGGGGG CCCCCCGGGGGG TCCCCCCGGGGGGA
NdeI
NheI
NotI
NsiI PacI
PmeI
PstI
PvuI
SacI SacII SalI
ScaI SmaI
SpeI
CCATATGG CCCATATGGG CGCCATATGGCG GGGTTTCATATGAAACCC GGAATTCCATATGGAATTCC GGGAATTCCATATGGAATTCCC GGCTAGCC CGGCTAGCCG CTAGCTAGCTAG TTGCGGCCGCAA ATTTGCGGCCGCTTTA AAATATGCGGCCGCTATAAA ATAAGAATGCGGCCGCTAAACTAT AAGGAAAAAAGCGGCCGCAAAAGGAAAA TGCATGCATGCA CCAATGCATTGGTTCTGCAGTT TTAATTAA GTTAATTAAC CCTTAATTAAGG GTTTAAAC GGTTTAAACC GGGTTTAAACCC AGCTTTGTTTAAACGGCGCGCCGG GCTGCAGC TGCACTGCAGTGCA AACTGCAGAACCAATGCATTGG AAAACTGCAGCCAATGCATTGGAA CTGCAGAACCAATGCATTGGATGCAT CCGATCGG ATCGATCGAT TCGCGATCGCGA CGAGCTCG GCCGCGGC TCCCCGCGGGGA GTCGACGTCAAAAGGCCATAGCGGCCGC GCGTCGACGTCTTGGCCATAGCGGCCGCGG ACGCGTCGACGTCGGCCATAGCGGCCGCGGAA GAGTACTC AAAAGTACTTTT CCCGGG CCCCGGGG CCCCCGGGGG TCCCCCGGGGGA GACTAGTC GGACTAGTCC CGGACTAGTCCG CTAGACTAGTCTAG
0 0 0 0 >90 >90 0 25 50 0 10 10 90 >90 >90 >90 0 25 >90 0 25 50 >90 0 10 >90 >90 0 0 25 10 10 0 >90 0 50 75 25 75 10 10 50 >90 >90 >90 50 50
SphI
StuI
XbaI
8 12 14 8 10 12 8 10 12 14 8 10 12 8 10 12 14
0 0 10 >90 >90 >90 0 >90 75 75 0 10 10 0 25 50 >90
0 25 50 >90 >90 >90 0 >90 >90 >90 0 25 75 0 75 &
AscI
AvaI
BamHI
BglII
BssHII
BstEII BstXI
ClaI
EcoRI
HaeIII
HindIII
KpnI
MluI NcoI
Chain Length 8 10 12 8 10 12 8 10 12 8 10 12 8 10 12 8 10 12 8 10 12 9 22 24 27 8 8 10 12 8 10 12 8 10 12 8 10 12 8 10 12 8 10 8 14
Enzyme AccI
Oligo Sequence GGTCGACC CGGTCGACCG CCGGTCGACCGG CACATGTG CCACATGTGG CCCACATGTGGG GGCGCGCC AGGCGCGCCT TTGGCGCGCCAA CCCCGGGG CCCCCGGGGG TCCCCCGGGGGA CGGATCCG CGGGATCCCG CGCGGATCCGCG CAGATCTG GAAGATCTTC GGAAGATCTTCC GGCGCGCC AGGCGCGCCT TTGGCGCGCCAA GGGT(A/T)ACCC AACTGCAGAACCAATGCATTGG AAAACTGCAGCCAATGCATTGGAA CTGCAGAACCAATGCATTGGATGCAT CATCGATG GATCGATC CCATCGATGG CCCATCGATGGG GGAATTCC CGGAATTCCG CCGGAATTCCGG GGGGCCCC AGCGGCCGCT TTGCGGCCGCAA CAAGCTTG CCAAGCTTGG CCCAAGCTTGGG GGGTACCC GGGGTACCCC CGGGGTACCCCG GACGCGTC CGACGCGTCG CCCATGGG CATGCCATGGCATG
相关文档
最新文档