正态分布、T分布、F分布表
6.2数理统计中几种常用的分布.

性质3. 设T~t(n),则:T ~F(1,n) .
2
证明:
由t分布定义 T
2
X Y /n
其中X∼N(0,1),Y~χ (n),且X与Y相互独立. 2 2 (1) / 1 X /1 2 F T 2 Y /n ( n) / n
且 2 (1)与 2 ( n)相互独立.
由F分布定义, ∴ F = T2~F(1,n) .
2
条件: 的点χ
P ( n)
2 2
2
( n )
f ( x)dx
2
(n)为χ 2(n)分布的上分位点.
χ (n)分布 的上分位点 图形如右图.
χ2(n)分布的上分位点可以查 附表5.
2Hale Waihona Puke 13例1:求2 2 0 ( 10 ) , )。 .05 0.1 (20
1.) 因为
P X z0.05 1 P X z0.05 1 0.05 0.95.
P X 1.64 0.9495.
P X 1.65 0.9505.
z0.05 1.64 1.65 1.645. 2
4
2.)
P X z0.005 1 PX z0.005 1 0.005 0.995.
i 1 n i 1
n
EX i2 n.
2 DX i
D D(
2n.
10
4.应用中心极限定理可得,若 若 X ~ 2 (n) ,则当n充分大时, X n 2n 的分布近似正态分布N(0,1).
11
2 (n)
分布的密度函 数的图形如右 图.
t分布表_精品文档

t分布表1. 什么是t分布表t分布表(t-distribution table)是统计学中常用的一种参考表格,用于计算学生t分布的临界值。
t分布是由William Gosset于1908年引入的,也被称为学生分布。
与正态分布不同的是,t分布的形状取决于自由度。
自由度(degrees of freedom,缩写为df)是t分布中的一个参数,表示数据集中的可用信息的数量。
t 分布在小样本情况下(自由度较低)更适用,而正态分布在大样本情况下更为适用。
t分布表通过提供t分布的不同自由度和置信水平下的临界值,帮助研究人员进行统计推断。
2. t分布表的用途t分布表的主要用途是计算t检验的临界值。
t检验是一种用于比较两个样本均值之间差异的统计方法。
通过比较计算出的t值与t分布表中的临界值,可以确定样本均值差异的显著性。
在进行t检验时,需要指定置信水平和自由度,然后参考t分布表找到对应的临界值。
此外,t分布表还可用于计算统计推断中的置信区间。
置信区间是对参数的估计范围,用于描述样本估计值与真实值之间的不确定性。
通过查找t分布表,可以确定在给定的置信水平和样本大小下,t分布的临界值,从而得到参数的置信区间。
3. t分布表的构造t分布表按照不同的自由度和置信水平划分为不同的表格,每个表格中包含了对应自由度和置信水平的t值。
以表格的行表示自由度,表格的列表示置信水平。
例如,当样本自由度为9,置信水平为95%时,在t分布表中可以找到一个特定的值,即为t(0.025, 9)。
这个值是指在自由度为9的条件下,95%置信水平对应的t临界值。
在进行t检验或计算置信区间时,可以通过查找t分布表得到相应的临界值。
需要注意的是,由于t分布的对称性质,t分布表中只提供了t值的正侧临界值。
要获得t值的负侧临界值,可以通过对应正侧临界值取反得到。
4. 实际使用示例假设现有一组实验数据,样本容量为15。
我们想要计算该样本的平均值的置信区间。
标准正态分布对照表

标准正态分布对照表摘要:一、标准正态分布的定义与性质1.标准正态分布的定义2.标准正态分布的概率密度函数3.标准正态分布的累积分布函数二、标准正态分布对照表的应用1.对照表的构成与意义2.对照表的使用方法3.对照表在实际问题中的应用举例三、标准正态分布与其他分布的关系1.标准正态分布与正态分布的关系2.标准正态分布与t 分布的关系3.标准正态分布与卡方分布的关系四、标准正态分布在统计学中的重要性1.描述性统计分析中的应用2.推断性统计分析中的应用3.概率论与数理统计的基础知识正文:标准正态分布,又称为高斯分布(Gaussian distribution),是一种连续型概率分布。
它具有对称的钟形曲线,其分布的均值(μ)为0,标准差(σ)为1。
标准正态分布广泛应用于统计学、概率论、工程学等领域,其对照表是研究和解决实际问题的关键工具。
一、标准正态分布的定义与性质标准正态分布的定义可以追溯到19 世纪初,德国数学家卡尔·弗里德里希·高斯(Carl Friedrich Gauss)对这一分布的深入研究。
标准正态分布的概率密度函数为:f(x) = (1 / (√(2π))) * e^(-(x^2) / 2)其累积分布函数为:F(x) = 1 / (√(2π)) * ∫[e^(-(t^2) / 2), t ≤ x] dt二、标准正态分布对照表的应用标准正态分布对照表是一个重要的工具,它可以帮助我们快速查找标准正态分布在一定置信水平下的临界值。
对照表通常包括正态分布的累积分布函数值、z 分数(Z-score)以及对应的概率。
使用对照表时,我们可以根据实际问题中所给的置信水平,找到对应的z 分数,从而求解问题。
例如,在产品质量控制中,我们希望确定一个产品的合格率。
已知过去经验表明,合格率约为95%。
我们可以使用对照表查找标准正态分布在95% 置信水平下的z 分数,得到±1.96。
然后,将这个z 分数代入到正态分布的累积分布函数中,得到产品的合格率。
统计学附录_F分布,t分布临界值表_全

14.88
9.36
7.15
5.99
5.29
4.82
4.48
4.24
4.04
3.89
3.77
3.66
3.58
3.50
3.44
3.38
3.33
3.29
3.25
3.22
3.18
3.15
3.13
3.10
3.08
3.06
3.04
3.03
2.90
2.79
2.67
2.57
937.1
39.33
14.73
9.20
7.23
6.93
6.68
6.48
6.30
6.16
6.03
5.92
5.82
5.73
5.65
5.58
5.52
5.46
5.41
5.36
5.32
5.28
5.24
4.98
4.73
4.50
22500
199.2
46.19
23.15
15.56
12.03
10.05
8.81
7.96
7.34
6.88
6.52
6.23
6.00
3.28
3.25
3.21
3.18
2.95
2.74
2.54
24940
199.5
42.62
20.03
12.78
9.47
7.65
6.50
5.73
5.17
4.76
4.43
4.17
3.96
3.79
3.64
t分布表精确完整图

t分布在概率论和统计学中,t-分布(t-distribution)用于根据小样本来估计呈正态分布且方差未知的总体的均值。
如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。
t分布曲线形态与n(确切地说与自由度df)大小有关。
与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df 愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。
设随机变量T ∼ t n, 则其密度函数为:t n(x)=Γ(n+12)Γ(n2)√nπ(1+x2)−n+12,−∞<x<∞该密度函数的图形如下:t分布表如下:n | α0.250.10 0.050.0250.010.005 1 1.0000 3.0777 6.3138 12.7062 31.8205 63.6567 20.8165 1.8856 2.9200 4.3027 6.9646 9.9248 30.7649 1.6377 2.3534 3.1824 4.5407 5.8409 40.7407 1.5332 2.1318 2.7764 3.7469 4.6041 50.7267 1.4759 2.0150 2.5706 3.3649 4.0321 60.7176 1.4398 1.9432 2.4469 3.1427 3.7074 70.7111 1.4149 1.8946 2.3646 2.9980 3.4995 80.7064 1.3968 1.8595 2.3060 2.8965 3.3554 90.7027 1.3830 1.8331 2.2622 2.8214 3.2498 100.6998 1.3722 1.8125 2.2281 2.7638 3.1693 110.6974 1.3634 1.7959 2.2010 2.7181 3.1058 120.6955 1.3562 1.7823 2.1788 2.6810 3.0545 130.6938 1.3502 1.7709 2.1604 2.6503 3.0123 140.6924 1.3450 1.7613 2.1448 2.6245 2.9768 150.6912 1.3406 1.7531 2.1314 2.6025 2.9467160.6901 1.3368 1.7459 2.1199 2.5835 2.9208 170.6892 1.3334 1.7396 2.1098 2.5669 2.8982 180.6884 1.3304 1.7341 2.1009 2.5524 2.8784 190.6876 1.3277 1.7291 2.0930 2.5395 2.8609 200.6870 1.3253 1.7247 2.0860 2.5280 2.8453 210.6864 1.3232 1.7207 2.0796 2.5176 2.8314 220.6858 1.3212 1.7171 2.0739 2.5083 2.8188 230.6853 1.3195 1.7139 2.0687 2.4999 2.8073 240.6848 1.3178 1.7109 2.0639 2.4922 2.7969 250.6844 1.3163 1.7081 2.0595 2.4851 2.7874 260.6840 1.3150 1.7056 2.0555 2.4786 2.7787 270.6837 1.3137 1.7033 2.0518 2.4727 2.7707 280.6834 1.3125 1.7011 2.0484 2.4671 2.7633 290.6830 1.3114 1.6991 2.0452 2.4620 2.7564 300.6828 1.3104 1.6973 2.0423 2.4573 2.7500 310.6825 1.3095 1.6955 2.0395 2.4528 2.7440 320.6822 1.3086 1.6939 2.0369 2.4487 2.7385 330.6820 1.3077 1.6924 2.0345 2.4448 2.7333 340.6818 1.3070 1.6909 2.0322 2.4411 2.7284 350.6816 1.3062 1.6896 2.0301 2.4377 2.7238 360.6814 1.3055 1.6883 2.0281 2.4345 2.7195 370.6812 1.3049 1.6871 2.0262 2.4314 2.7154 380.6810 1.3042 1.6860 2.0244 2.4286 2.7116 390.6808 1.3036 1.6849 2.0227 2.4258 2.7079 400.6807 1.3031 1.6839 2.0211 2.4233 2.7045 410.6805 1.3025 1.6829 2.0195 2.4208 2.7012 420.6804 1.3020 1.6820 2.0181 2.4185 2.6981 430.6802 1.3016 1.6811 2.0167 2.4163 2.6951 440.6801 1.3011 1.6802 2.0154 2.4141 2.6923 450.6800 1.3006 1.6794 2.0141 2.4121 2.6896 460.6799 1.3002 1.6787 2.0129 2.4102 2.6870 470.6797 1.2998 1.6779 2.0117 2.4083 2.6846 480.6796 1.2994 1.6772 2.0106 2.4066 2.6822 490.6795 1.2991 1.6766 2.0096 2.4049 2.6800 500.6794 1.2987 1.6759 2.0086 2.4033 2.6778 510.6793 1.2984 1.6753 2.0076 2.4017 2.6757 520.6792 1.2980 1.6747 2.0066 2.4002 2.6737 530.6791 1.2977 1.6741 2.0057 2.3988 2.6718 540.6791 1.2974 1.6736 2.0049 2.3974 2.6700 550.6790 1.2971 1.6730 2.0040 2.3961 2.6682 560.6789 1.2969 1.6725 2.0032 2.3948 2.6665 570.6788 1.2966 1.6720 2.0025 2.3936 2.6649 580.6787 1.2963 1.6716 2.0017 2.3924 2.6633 590.6787 1.2961 1.6711 2.0010 2.3912 2.6618600.6786 1.2958 1.6706 2.0003 2.3901 2.6603 610.6785 1.2956 1.6702 1.9996 2.3890 2.6589 620.6785 1.2954 1.6698 1.9990 2.3880 2.6575 630.6784 1.2951 1.6694 1.9983 2.3870 2.6561 640.6783 1.2949 1.6690 1.9977 2.3860 2.6549 650.6783 1.2947 1.6686 1.9971 2.3851 2.6536 660.6782 1.2945 1.6683 1.9966 2.3842 2.6524 670.6782 1.2943 1.6679 1.9960 2.3833 2.6512 680.6781 1.2941 1.6676 1.9955 2.3824 2.6501 690.6781 1.2939 1.6672 1.9949 2.3816 2.6490 700.6780 1.2938 1.6669 1.9944 2.3808 2.6479 710.6780 1.2936 1.6666 1.9939 2.3800 2.6469 720.6779 1.2934 1.6663 1.9935 2.3793 2.6459 730.6779 1.2933 1.6660 1.9930 2.3785 2.6449 740.6778 1.2931 1.6657 1.9925 2.3778 2.6439 750.6778 1.2929 1.6654 1.9921 2.3771 2.6430 760.6777 1.2928 1.6652 1.9917 2.3764 2.6421 770.6777 1.2926 1.6649 1.9913 2.3758 2.6412 780.6776 1.2925 1.6646 1.9908 2.3751 2.6403 790.6776 1.2924 1.6644 1.9905 2.3745 2.6395 800.6776 1.2922 1.6641 1.9901 2.3739 2.6387 810.6775 1.2921 1.6639 1.9897 2.3733 2.6379 820.6775 1.2920 1.6636 1.9893 2.3727 2.6371 830.6775 1.2918 1.6634 1.9890 2.3721 2.6364 840.6774 1.2917 1.6632 1.9886 2.3716 2.6356 850.6774 1.2916 1.6630 1.9883 2.3710 2.6349 860.6774 1.2915 1.6628 1.9879 2.3705 2.6342 870.6773 1.2914 1.6626 1.9876 2.3700 2.6335 880.6773 1.2912 1.6624 1.9873 2.3695 2.6329 890.6773 1.2911 1.6622 1.9870 2.3690 2.6322 900.6772 1.2910 1.6620 1.9867 2.3685 2.6316 910.6772 1.2909 1.6618 1.9864 2.3680 2.6309 920.6772 1.2908 1.6616 1.9861 2.3676 2.6303 930.6771 1.2907 1.6614 1.9858 2.3671 2.6297 940.6771 1.2906 1.6612 1.9855 2.3667 2.6291 950.6771 1.2905 1.6611 1.9853 2.3662 2.6286 960.6771 1.2904 1.6609 1.9850 2.3658 2.6280 970.6770 1.2903 1.6607 1.9847 2.3654 2.6275 980.6770 1.2902 1.6606 1.9845 2.3650 2.6269 990.6770 1.2902 1.6604 1.9842 2.3646 2.6264 1000.6770 1.2901 1.6602 1.9840 2.3642 2.6259 1010.6769 1.2900 1.6601 1.9837 2.3638 2.6254 1020.6769 1.2899 1.6599 1.9835 2.3635 2.6249 1030.6769 1.2898 1.6598 1.9833 2.3631 2.62441040.6769 1.2897 1.6596 1.9830 2.3627 2.6239 1050.6768 1.2897 1.6595 1.9828 2.3624 2.6235 1060.6768 1.2896 1.6594 1.9826 2.3620 2.6230 1070.6768 1.2895 1.6592 1.9824 2.3617 2.6226 1080.6768 1.2894 1.6591 1.9822 2.3614 2.6221 1090.6767 1.2894 1.6590 1.9820 2.3610 2.6217 1100.6767 1.2893 1.6588 1.9818 2.3607 2.6213 1110.6767 1.2892 1.6587 1.9816 2.3604 2.6208 1120.6767 1.2892 1.6586 1.9814 2.3601 2.6204 1130.6767 1.2891 1.6585 1.9812 2.3598 2.6200 1140.6766 1.2890 1.6583 1.9810 2.3595 2.6196 1150.6766 1.2890 1.6582 1.9808 2.3592 2.6193 1160.6766 1.2889 1.6581 1.9806 2.3589 2.6189 1170.6766 1.2888 1.6580 1.9804 2.3586 2.6185 1180.6766 1.2888 1.6579 1.9803 2.3584 2.6181 1190.6766 1.2887 1.6578 1.9801 2.3581 2.6178 1200.6765 1.2886 1.6577 1.9799 2.3578 2.6174 1210.6765 1.2886 1.6575 1.9798 2.3576 2.6171 1220.6765 1.2885 1.6574 1.9796 2.3573 2.6167 1230.6765 1.2885 1.6573 1.9794 2.3570 2.6164 1240.6765 1.2884 1.6572 1.9793 2.3568 2.6161 1250.6765 1.2884 1.6571 1.9791 2.3565 2.6157 1260.6764 1.2883 1.6570 1.9790 2.3563 2.6154 1270.6764 1.2883 1.6569 1.9788 2.3561 2.6151 1280.6764 1.2882 1.6568 1.9787 2.3558 2.6148 1290.6764 1.2881 1.6568 1.9785 2.3556 2.6145 1300.6764 1.2881 1.6567 1.9784 2.3554 2.6142 1310.6764 1.2880 1.6566 1.9782 2.3552 2.6139 1320.6764 1.2880 1.6565 1.9781 2.3549 2.6136 1330.6763 1.2879 1.6564 1.9780 2.3547 2.6133 1340.6763 1.2879 1.6563 1.9778 2.3545 2.6130 1350.6763 1.2879 1.6562 1.9777 2.3543 2.6127 1360.6763 1.2878 1.6561 1.9776 2.3541 2.6125 1370.6763 1.2878 1.6561 1.9774 2.3539 2.6122 1380.6763 1.2877 1.6560 1.9773 2.3537 2.6119 1390.6763 1.2877 1.6559 1.9772 2.3535 2.6117 1400.6762 1.2876 1.6558 1.9771 2.3533 2.6114 1410.6762 1.2876 1.6557 1.9769 2.3531 2.6111 1420.6762 1.2875 1.6557 1.9768 2.3529 2.6109 1430.6762 1.2875 1.6556 1.9767 2.3527 2.6106 1440.6762 1.2875 1.6555 1.9766 2.3525 2.6104 1450.6762 1.2874 1.6554 1.9765 2.3523 2.6102 1460.6762 1.2874 1.6554 1.9763 2.3522 2.6099 1470.6762 1.2873 1.6553 1.9762 2.3520 2.60971480.6762 1.2873 1.6552 1.9761 2.3518 2.6095 1490.6761 1.2873 1.6551 1.9760 2.3516 2.6092 1500.6761 1.2872 1.6551 1.9759 2.3515 2.6090 1510.6761 1.2872 1.6550 1.9758 2.3513 2.6088 1520.6761 1.2871 1.6549 1.9757 2.3511 2.6086 1530.6761 1.2871 1.6549 1.9756 2.3510 2.6083 1540.6761 1.2871 1.6548 1.9755 2.3508 2.6081 1550.6761 1.2870 1.6547 1.9754 2.3506 2.6079 1560.6761 1.2870 1.6547 1.9753 2.3505 2.6077 1570.6761 1.2870 1.6546 1.9752 2.3503 2.6075 1580.6760 1.2869 1.6546 1.9751 2.3502 2.6073 1590.6760 1.2869 1.6545 1.9750 2.3500 2.6071 1600.6760 1.2869 1.6544 1.9749 2.3499 2.6069 1610.6760 1.2868 1.6544 1.9748 2.3497 2.6067 1620.6760 1.2868 1.6543 1.9747 2.3496 2.6065 1630.6760 1.2868 1.6543 1.9746 2.3494 2.6063 1640.6760 1.2867 1.6542 1.9745 2.3493 2.6061 1650.6760 1.2867 1.6541 1.9744 2.3492 2.6060 1660.6760 1.2867 1.6541 1.9744 2.3490 2.6058 1670.6760 1.2866 1.6540 1.9743 2.3489 2.6056 1680.6760 1.2866 1.6540 1.9742 2.3487 2.6054 1690.6759 1.2866 1.6539 1.9741 2.3486 2.6052 1700.6759 1.2866 1.6539 1.9740 2.3485 2.6051 1710.6759 1.2865 1.6538 1.9739 2.3484 2.6049 1720.6759 1.2865 1.6538 1.9739 2.3482 2.6047 1730.6759 1.2865 1.6537 1.9738 2.3481 2.6045 1740.6759 1.2864 1.6537 1.9737 2.3480 2.6044 1750.6759 1.2864 1.6536 1.9736 2.3478 2.6042 1760.6759 1.2864 1.6536 1.9735 2.3477 2.6041 1770.6759 1.2864 1.6535 1.9735 2.3476 2.6039 1780.6759 1.2863 1.6535 1.9734 2.3475 2.6037 1790.6759 1.2863 1.6534 1.9733 2.3474 2.6036 1800.6759 1.2863 1.6534 1.9732 2.3472 2.6034 1810.6758 1.2862 1.6533 1.9732 2.3471 2.6033 1820.6758 1.2862 1.6533 1.9731 2.3470 2.6031 1830.6758 1.2862 1.6532 1.9730 2.3469 2.6030 1840.6758 1.2862 1.6532 1.9729 2.3468 2.6028 1850.6758 1.2861 1.6531 1.9729 2.3467 2.6027 1860.6758 1.2861 1.6531 1.9728 2.3466 2.6025 1870.6758 1.2861 1.6530 1.9727 2.3465 2.6024 1880.6758 1.2861 1.6530 1.9727 2.3463 2.6022 1890.6758 1.2860 1.6530 1.9726 2.3462 2.6021 1900.6758 1.2860 1.6529 1.9725 2.3461 2.6020 1910.6758 1.2860 1.6529 1.9725 2.3460 2.60181920.6758 1.2860 1.6528 1.9724 2.3459 2.6017 1930.6758 1.2860 1.6528 1.9723 2.3458 2.6015 1940.6758 1.2859 1.6527 1.9723 2.3457 2.6014 1950.6757 1.2859 1.6527 1.9722 2.3456 2.6013 1960.6757 1.2859 1.6527 1.9721 2.3455 2.6011 1970.6757 1.2859 1.6526 1.9721 2.3454 2.6010 1980.6757 1.2858 1.6526 1.9720 2.3453 2.6009 1990.6757 1.2858 1.6525 1.9720 2.3452 2.6008 2000.6757 1.2858 1.6525 1.9719 2.3451 2.6006 2010.6757 1.2858 1.6525 1.9718 2.3450 2.6005 2020.6757 1.2858 1.6524 1.9718 2.3449 2.6004 2030.6757 1.2857 1.6524 1.9717 2.3449 2.6003 2040.6757 1.2857 1.6524 1.9717 2.3448 2.6001 2050.6757 1.2857 1.6523 1.9716 2.3447 2.6000 2060.6757 1.2857 1.6523 1.9715 2.3446 2.5999 2070.6757 1.2857 1.6522 1.9715 2.3445 2.5998 2080.6757 1.2856 1.6522 1.9714 2.3444 2.5997 2090.6757 1.2856 1.6522 1.9714 2.3443 2.5996 2100.6757 1.2856 1.6521 1.9713 2.3442 2.5994 2110.6757 1.2856 1.6521 1.9713 2.3442 2.5993 2120.6756 1.2856 1.6521 1.9712 2.3441 2.5992 2130.6756 1.2855 1.6520 1.9712 2.3440 2.5991 2140.6756 1.2855 1.6520 1.9711 2.3439 2.5990 2150.6756 1.2855 1.6520 1.9711 2.3438 2.5989 2160.6756 1.2855 1.6519 1.9710 2.3437 2.5988 2170.6756 1.2855 1.6519 1.9710 2.3437 2.5987 2180.6756 1.2854 1.6519 1.9709 2.3436 2.5986 2190.6756 1.2854 1.6518 1.9709 2.3435 2.5985 2200.6756 1.2854 1.6518 1.9708 2.3434 2.5984 2210.6756 1.2854 1.6518 1.9708 2.3433 2.5983 2220.6756 1.2854 1.6517 1.9707 2.3433 2.5982 2230.6756 1.2854 1.6517 1.9707 2.3432 2.5981 2240.6756 1.2853 1.6517 1.9706 2.3431 2.5980 2250.6756 1.2853 1.6517 1.9706 2.3430 2.5979 2260.6756 1.2853 1.6516 1.9705 2.3430 2.5978 2270.6756 1.2853 1.6516 1.9705 2.3429 2.5977 2280.6756 1.2853 1.6516 1.9704 2.3428 2.5976 2290.6756 1.2853 1.6515 1.9704 2.3427 2.5975 2300.6756 1.2852 1.6515 1.9703 2.3427 2.5974 2310.6756 1.2852 1.6515 1.9703 2.3426 2.5973 2320.6755 1.2852 1.6514 1.9702 2.3425 2.5972 2330.6755 1.2852 1.6514 1.9702 2.3425 2.5971 2340.6755 1.2852 1.6514 1.9702 2.3424 2.5970 2350.6755 1.2852 1.6514 1.9701 2.3423 2.59692360.6755 1.2851 1.6513 1.9701 2.3423 2.5968 2370.6755 1.2851 1.6513 1.9700 2.3422 2.5967 2380.6755 1.2851 1.6513 1.9700 2.3421 2.5966 2390.6755 1.2851 1.6513 1.9699 2.3421 2.5966 2400.6755 1.2851 1.6512 1.9699 2.3420 2.5965 2410.6755 1.2851 1.6512 1.9699 2.3419 2.5964 2420.6755 1.2851 1.6512 1.9698 2.3419 2.5963 2430.6755 1.2850 1.6511 1.9698 2.3418 2.5962 2440.6755 1.2850 1.6511 1.9697 2.3417 2.5961 2450.6755 1.2850 1.6511 1.9697 2.3417 2.5960 2460.6755 1.2850 1.6511 1.9697 2.3416 2.5960 2470.6755 1.2850 1.6510 1.9696 2.3415 2.5959 2480.6755 1.2850 1.6510 1.9696 2.3415 2.5958 2490.6755 1.2850 1.6510 1.9695 2.3414 2.5957 2500.6755 1.2849 1.6510 1.9695 2.3414 2.5956 2510.6755 1.2849 1.6509 1.9695 2.3413 2.5956 2520.6755 1.2849 1.6509 1.9694 2.3412 2.5955 2530.6755 1.2849 1.6509 1.9694 2.3412 2.5954 2540.6755 1.2849 1.6509 1.9693 2.3411 2.5953 2550.6755 1.2849 1.6509 1.9693 2.3411 2.5952 2560.6754 1.2849 1.6508 1.9693 2.3410 2.5952 2570.6754 1.2849 1.6508 1.9692 2.3409 2.5951 2580.6754 1.2848 1.6508 1.9692 2.3409 2.5950 2590.6754 1.2848 1.6508 1.9692 2.3408 2.5949 2600.6754 1.2848 1.6507 1.9691 2.3408 2.5949 2610.6754 1.2848 1.6507 1.9691 2.3407 2.5948 2620.6754 1.2848 1.6507 1.9691 2.3407 2.5947 2630.6754 1.2848 1.6507 1.9690 2.3406 2.5947 2640.6754 1.2848 1.6506 1.9690 2.3406 2.5946 2650.6754 1.2848 1.6506 1.9690 2.3405 2.5945 2660.6754 1.2847 1.6506 1.9689 2.3404 2.5944 2670.6754 1.2847 1.6506 1.9689 2.3404 2.5944 2680.6754 1.2847 1.6506 1.9689 2.3403 2.5943 2690.6754 1.2847 1.6505 1.9688 2.3403 2.5942 2700.6754 1.2847 1.6505 1.9688 2.3402 2.5942 2710.6754 1.2847 1.6505 1.9688 2.3402 2.5941 2720.6754 1.2847 1.6505 1.9687 2.3401 2.5940 2730.6754 1.2847 1.6505 1.9687 2.3401 2.5940 2740.6754 1.2846 1.6504 1.9687 2.3400 2.5939 2750.6754 1.2846 1.6504 1.9686 2.3400 2.5938 2760.6754 1.2846 1.6504 1.9686 2.3399 2.5938 2770.6754 1.2846 1.6504 1.9686 2.3399 2.5937 2780.6754 1.2846 1.6504 1.9685 2.3398 2.5936 2790.6754 1.2846 1.6503 1.9685 2.3398 2.59362800.6754 1.2846 1.6503 1.9685 2.3397 2.5935 2810.6754 1.2846 1.6503 1.9684 2.3397 2.5934 2820.6754 1.2846 1.6503 1.9684 2.3396 2.5934 2830.6754 1.2846 1.6503 1.9684 2.3396 2.5933 2840.6754 1.2845 1.6502 1.9684 2.3395 2.5933 2850.6754 1.2845 1.6502 1.9683 2.3395 2.5932 2860.6753 1.2845 1.6502 1.9683 2.3395 2.5931 2870.6753 1.2845 1.6502 1.9683 2.3394 2.5931 2880.6753 1.2845 1.6502 1.9682 2.3394 2.5930 2890.6753 1.2845 1.6501 1.9682 2.3393 2.5929 2900.6753 1.2845 1.6501 1.9682 2.3393 2.5929 2910.6753 1.2845 1.6501 1.9681 2.3392 2.5928 2920.6753 1.2845 1.6501 1.9681 2.3392 2.5928 2930.6753 1.2844 1.6501 1.9681 2.3391 2.5927 2940.6753 1.2844 1.6501 1.9681 2.3391 2.5927 2950.6753 1.2844 1.6500 1.9680 2.3391 2.5926 2960.6753 1.2844 1.6500 1.9680 2.3390 2.5925 2970.6753 1.2844 1.6500 1.9680 2.3390 2.5925 2980.6753 1.2844 1.6500 1.9680 2.3389 2.5924 2990.6753 1.2844 1.6500 1.9679 2.3389 2.5924 3000.6753 1.2844 1.6499 1.9679 2.3388 2.5923 3010.6753 1.2844 1.6499 1.9679 2.3388 2.5923 3020.6753 1.2844 1.6499 1.9679 2.3388 2.5922 3030.6753 1.2844 1.6499 1.9678 2.3387 2.5922 3040.6753 1.2843 1.6499 1.9678 2.3387 2.5921 3050.6753 1.2843 1.6499 1.9678 2.3386 2.5920 3060.6753 1.2843 1.6498 1.9677 2.3386 2.5920 3070.6753 1.2843 1.6498 1.9677 2.3386 2.5919 3080.6753 1.2843 1.6498 1.9677 2.3385 2.5919 3090.6753 1.2843 1.6498 1.9677 2.3385 2.5918 3100.6753 1.2843 1.6498 1.9676 2.3384 2.5918 3110.6753 1.2843 1.6498 1.9676 2.3384 2.5917 3120.6753 1.2843 1.6498 1.9676 2.3384 2.5917 3130.6753 1.2843 1.6497 1.9676 2.3383 2.5916 3140.6753 1.2843 1.6497 1.9675 2.3383 2.5916 3150.6753 1.2842 1.6497 1.9675 2.3382 2.5915 3160.6753 1.2842 1.6497 1.9675 2.3382 2.5915 3170.6753 1.2842 1.6497 1.9675 2.3382 2.5914 3180.6753 1.2842 1.6497 1.9675 2.3381 2.5914 3190.6753 1.2842 1.6496 1.9674 2.3381 2.5913 3200.6753 1.2842 1.6496 1.9674 2.3381 2.5913 3210.6753 1.2842 1.6496 1.9674 2.3380 2.5912 3220.6753 1.2842 1.6496 1.9674 2.3380 2.5912 3230.6753 1.2842 1.6496 1.9673 2.3379 2.59113240.6752 1.2842 1.6496 1.9673 2.3379 2.5911 3250.6752 1.2842 1.6496 1.9673 2.3379 2.5910 3260.6752 1.2842 1.6495 1.9673 2.3378 2.5910 3270.6752 1.2841 1.6495 1.9672 2.3378 2.5909 3280.6752 1.2841 1.6495 1.9672 2.3378 2.5909 3290.6752 1.2841 1.6495 1.9672 2.3377 2.5909 3300.6752 1.2841 1.6495 1.9672 2.3377 2.5908 3310.6752 1.2841 1.6495 1.9672 2.3377 2.5908 3320.6752 1.2841 1.6495 1.9671 2.3376 2.5907 3330.6752 1.2841 1.6494 1.9671 2.3376 2.5907 3340.6752 1.2841 1.6494 1.9671 2.3376 2.5906 3350.6752 1.2841 1.6494 1.9671 2.3375 2.5906 3360.6752 1.2841 1.6494 1.9670 2.3375 2.5905 3370.6752 1.2841 1.6494 1.9670 2.3375 2.5905 3380.6752 1.2841 1.6494 1.9670 2.3374 2.5905 3390.6752 1.2841 1.6494 1.9670 2.3374 2.5904 3400.6752 1.2840 1.6493 1.9670 2.3374 2.5904 3410.6752 1.2840 1.6493 1.9669 2.3373 2.5903 3420.6752 1.2840 1.6493 1.9669 2.3373 2.5903 3430.6752 1.2840 1.6493 1.9669 2.3373 2.5902 3440.6752 1.2840 1.6493 1.9669 2.3372 2.5902 3450.6752 1.2840 1.6493 1.9669 2.3372 2.5902 3460.6752 1.2840 1.6493 1.9668 2.3372 2.5901 3470.6752 1.2840 1.6493 1.9668 2.3371 2.5901 3480.6752 1.2840 1.6492 1.9668 2.3371 2.5900 3490.6752 1.2840 1.6492 1.9668 2.3371 2.5900 3500.6752 1.2840 1.6492 1.9668 2.3370 2.5899 3510.6752 1.2840 1.6492 1.9667 2.3370 2.5899 3520.6752 1.2840 1.6492 1.9667 2.3370 2.5899 3530.6752 1.2840 1.6492 1.9667 2.3370 2.5898 3540.6752 1.2839 1.6492 1.9667 2.3369 2.5898 3550.6752 1.2839 1.6492 1.9667 2.3369 2.5897 3560.6752 1.2839 1.6491 1.9666 2.3369 2.5897 3570.6752 1.2839 1.6491 1.9666 2.3368 2.5897 3580.6752 1.2839 1.6491 1.9666 2.3368 2.5896 3590.6752 1.2839 1.6491 1.9666 2.3368 2.5896 3600.6752 1.2839 1.6491 1.9666 2.3368 2.5896 3610.6752 1.2839 1.6491 1.9666 2.3367 2.5895 3620.6752 1.2839 1.6491 1.9665 2.3367 2.5895 3630.6752 1.2839 1.6491 1.9665 2.3367 2.5894 3640.6752 1.2839 1.6491 1.9665 2.3366 2.5894 3650.6752 1.2839 1.6490 1.9665 2.3366 2.5894 3660.6752 1.2839 1.6490 1.9665 2.3366 2.5893 3670.6752 1.2839 1.6490 1.9664 2.3366 2.58933680.6752 1.2839 1.6490 1.9664 2.3365 2.5893 3690.6752 1.2839 1.6490 1.9664 2.3365 2.5892 3700.6752 1.2838 1.6490 1.9664 2.3365 2.5892 3710.6752 1.2838 1.6490 1.9664 2.3364 2.5891 3720.6751 1.2838 1.6490 1.9664 2.3364 2.5891 3730.6751 1.2838 1.6489 1.9663 2.3364 2.5891 3740.6751 1.2838 1.6489 1.9663 2.3364 2.5890 3750.6751 1.2838 1.6489 1.9663 2.3363 2.5890 3760.6751 1.2838 1.6489 1.9663 2.3363 2.5890 3770.6751 1.2838 1.6489 1.9663 2.3363 2.5889 3780.6751 1.2838 1.6489 1.9663 2.3363 2.5889 3790.6751 1.2838 1.6489 1.9662 2.3362 2.5889 3800.6751 1.2838 1.6489 1.9662 2.3362 2.5888 3810.6751 1.2838 1.6489 1.9662 2.3362 2.5888 3820.6751 1.2838 1.6489 1.9662 2.3361 2.5888 3830.6751 1.2838 1.6488 1.9662 2.3361 2.5887 3840.6751 1.2838 1.6488 1.9662 2.3361 2.5887 3850.6751 1.2838 1.6488 1.9661 2.3361 2.5887 3860.6751 1.2837 1.6488 1.9661 2.3360 2.5886 3870.6751 1.2837 1.6488 1.9661 2.3360 2.5886 3880.6751 1.2837 1.6488 1.9661 2.3360 2.5886 3890.6751 1.2837 1.6488 1.9661 2.3360 2.5885 3900.6751 1.2837 1.6488 1.9661 2.3359 2.5885 3910.6751 1.2837 1.6488 1.9660 2.3359 2.5885 3920.6751 1.2837 1.6488 1.9660 2.3359 2.5884 3930.6751 1.2837 1.6487 1.9660 2.3359 2.5884 3940.6751 1.2837 1.6487 1.9660 2.3358 2.5884 3950.6751 1.2837 1.6487 1.9660 2.3358 2.5883 3960.6751 1.2837 1.6487 1.9660 2.3358 2.5883 3970.6751 1.2837 1.6487 1.9660 2.3358 2.5883 3980.6751 1.2837 1.6487 1.9659 2.3358 2.5882 3990.6751 1.2837 1.6487 1.9659 2.3357 2.5882 4000.6751 1.2837 1.6487 1.9659 2.3357 2.5882 4010.6751 1.2837 1.6487 1.9659 2.3357 2.5881 4020.6751 1.2837 1.6487 1.9659 2.3357 2.5881 4030.6751 1.2837 1.6486 1.9659 2.3356 2.5881 4040.6751 1.2837 1.6486 1.9659 2.3356 2.5881 4050.6751 1.2836 1.6486 1.9658 2.3356 2.5880 4060.6751 1.2836 1.6486 1.9658 2.3356 2.5880 4070.6751 1.2836 1.6486 1.9658 2.3355 2.5880 4080.6751 1.2836 1.6486 1.9658 2.3355 2.5879 4090.6751 1.2836 1.6486 1.9658 2.3355 2.5879 4100.6751 1.2836 1.6486 1.9658 2.3355 2.5879 4110.6751 1.2836 1.6486 1.9658 2.3355 2.58784130.6751 1.2836 1.6486 1.9657 2.3354 2.5878 4140.6751 1.2836 1.6485 1.9657 2.3354 2.5878 4150.6751 1.2836 1.6485 1.9657 2.3354 2.5877 4160.6751 1.2836 1.6485 1.9657 2.3353 2.5877 4170.6751 1.2836 1.6485 1.9657 2.3353 2.5877 4180.6751 1.2836 1.6485 1.9657 2.3353 2.5876 4190.6751 1.2836 1.6485 1.9656 2.3353 2.5876 4200.6751 1.2836 1.6485 1.9656 2.3353 2.5876 4210.6751 1.2836 1.6485 1.9656 2.3352 2.5876 4220.6751 1.2836 1.6485 1.9656 2.3352 2.5875 4230.6751 1.2836 1.6485 1.9656 2.3352 2.5875 4240.6751 1.2836 1.6485 1.9656 2.3352 2.5875 4250.6751 1.2835 1.6484 1.9656 2.3352 2.5874 4260.6751 1.2835 1.6484 1.9655 2.3351 2.5874 4270.6751 1.2835 1.6484 1.9655 2.3351 2.5874 4280.6751 1.2835 1.6484 1.9655 2.3351 2.5874 4290.6751 1.2835 1.6484 1.9655 2.3351 2.5873 4300.6751 1.2835 1.6484 1.9655 2.3351 2.5873 4310.6751 1.2835 1.6484 1.9655 2.3350 2.5873 4320.6751 1.2835 1.6484 1.9655 2.3350 2.5873 4330.6751 1.2835 1.6484 1.9655 2.3350 2.5872 4340.6751 1.2835 1.6484 1.9654 2.3350 2.5872 4350.6751 1.2835 1.6484 1.9654 2.3350 2.5872 4360.6751 1.2835 1.6484 1.9654 2.3349 2.5872 4370.6751 1.2835 1.6483 1.9654 2.3349 2.5871 4380.6751 1.2835 1.6483 1.9654 2.3349 2.5871 4390.6750 1.2835 1.6483 1.9654 2.3349 2.5871 4400.6750 1.2835 1.6483 1.9654 2.3349 2.5870 4410.6750 1.2835 1.6483 1.9654 2.3348 2.5870 4420.6750 1.2835 1.6483 1.9653 2.3348 2.5870 4430.6750 1.2835 1.6483 1.9653 2.3348 2.5870 4440.6750 1.2835 1.6483 1.9653 2.3348 2.5869 4450.6750 1.2835 1.6483 1.9653 2.3348 2.5869 4460.6750 1.2835 1.6483 1.9653 2.3347 2.5869 4470.6750 1.2834 1.6483 1.9653 2.3347 2.5869 4480.6750 1.2834 1.6483 1.9653 2.3347 2.5868 4490.6750 1.2834 1.6483 1.9653 2.3347 2.5868 4500.6750 1.2834 1.6482 1.9652 2.3347 2.5868 4510.6750 1.2834 1.6482 1.9652 2.3346 2.5868 4520.6750 1.2834 1.6482 1.9652 2.3346 2.5867 4530.6750 1.2834 1.6482 1.9652 2.3346 2.5867 4540.6750 1.2834 1.6482 1.9652 2.3346 2.5867 4550.6750 1.2834 1.6482 1.9652 2.3346 2.58674570.6750 1.2834 1.6482 1.9652 2.3345 2.5866 4580.6750 1.2834 1.6482 1.9652 2.3345 2.5866 4590.6750 1.2834 1.6482 1.9651 2.3345 2.5866 4600.6750 1.2834 1.6482 1.9651 2.3345 2.5866 4610.6750 1.2834 1.6482 1.9651 2.3345 2.5865 4620.6750 1.2834 1.6482 1.9651 2.3344 2.5865 4630.6750 1.2834 1.6482 1.9651 2.3344 2.5865 4640.6750 1.2834 1.6481 1.9651 2.3344 2.5865 4650.6750 1.2834 1.6481 1.9651 2.3344 2.5864 4660.6750 1.2834 1.6481 1.9651 2.3344 2.5864 4670.6750 1.2834 1.6481 1.9651 2.3344 2.5864 4680.6750 1.2834 1.6481 1.9650 2.3343 2.5864 4690.6750 1.2834 1.6481 1.9650 2.3343 2.5864 4700.6750 1.2834 1.6481 1.9650 2.3343 2.5863 4710.6750 1.2834 1.6481 1.9650 2.3343 2.5863 4720.6750 1.2833 1.6481 1.9650 2.3343 2.5863 4730.6750 1.2833 1.6481 1.9650 2.3343 2.5863 4740.6750 1.2833 1.6481 1.9650 2.3342 2.5862 4750.6750 1.2833 1.6481 1.9650 2.3342 2.5862 4760.6750 1.2833 1.6481 1.9650 2.3342 2.5862 4770.6750 1.2833 1.6481 1.9649 2.3342 2.5862 4780.6750 1.2833 1.6480 1.9649 2.3342 2.5862 4790.6750 1.2833 1.6480 1.9649 2.3342 2.5861 4800.6750 1.2833 1.6480 1.9649 2.3341 2.5861 4810.6750 1.2833 1.6480 1.9649 2.3341 2.5861 4820.6750 1.2833 1.6480 1.9649 2.3341 2.5861 4830.6750 1.2833 1.6480 1.9649 2.3341 2.5860 4840.6750 1.2833 1.6480 1.9649 2.3341 2.5860 4850.6750 1.2833 1.6480 1.9649 2.3341 2.5860 4860.6750 1.2833 1.6480 1.9649 2.3340 2.5860 4870.6750 1.2833 1.6480 1.9648 2.3340 2.5860 4880.6750 1.2833 1.6480 1.9648 2.3340 2.5859 4890.6750 1.2833 1.6480 1.9648 2.3340 2.5859 4900.6750 1.2833 1.6480 1.9648 2.3340 2.5859 4910.6750 1.2833 1.6480 1.9648 2.3340 2.5859 4920.6750 1.2833 1.6480 1.9648 2.3340 2.5859 4930.6750 1.2833 1.6480 1.9648 2.3339 2.5858 4940.6750 1.2833 1.6479 1.9648 2.3339 2.5858 4950.6750 1.2833 1.6479 1.9648 2.3339 2.5858 4960.6750 1.2833 1.6479 1.9648 2.3339 2.5858 4970.6750 1.2833 1.6479 1.9647 2.3339 2.5858 4980.6750 1.2833 1.6479 1.9647 2.3339 2.5857 4990.6750 1.2833 1.6479 1.9647 2.3338 2.58575000.6750 1.2832 1.6479 1.9647 2.3338 2.5857。
t分布的概念及表和查表方法

t分布介绍在概率论和统计学中,学生t-分布(t-distribution),可简称为t分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。
如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。
t分布曲线形态与n(确切地说与自由度df)大小有关。
与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。
目录1历史2定义3扩展4特征5置信区间6计算历史在概率论和统计学中,学生t-分布(Student's t-distribution)经常应用在对呈正态分布的总体的均值进行估计。
它是对两个样本均值差异进行显著性测试的学生t测定的基础。
t检定改进了Z检定(en:Z-test),不论样本数量大或小皆可应用。
在样本数量大(超过120等)时,可以应用Z检定,但Z检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t检定。
在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t检定。
当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。
学生t-分布可简称为t分布。
其推导由威廉·戈塞于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。
因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。
之后t检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。
定义由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换,统计量t 值的分布称为t分布。
假设X服从标准正态分布N(0,1),Y服从分布,那么的分布称为自由度为n 的t分布,记为。
分布密度函数,其中,Gam(x)为伽马函数。
扩展正态分布(normal distribution)是数理统计中的一种重要的理论分布,是许多统计方法的理论基础。
标准正态分布分位数表

分位数定义:对于任意给定的实数P,(0<P<1),如果存在X_xp,则让随机变量X的分布函数为f(X)。
β7{px6}p=px6?6个?7)=P,然后x_PXP?6个?7是概率分布的p分位数。
例如:在此处插入图像说明如上图所示,图像是一个标准正态分布的X_PXP?概率密度函数。
6个?7是p分位数。
高分位数定义:对于一个随机变量x和一个给定的α(0<alphaα<1),如果xαα存在呢?6等于7,那么P{x?GEQ≥Xαα?6个?7} =?αα,所谓的Xα?6个?7是X的上分位数。
此处插入图片说明如上图所示,X\Alpha?7是上层吗?标准正态分布的α分位数。
在数理统计过程中,标准正态分布的高分位数记录为:U_ualphauα6-7 Python实现首先,让我们介绍一些常见的分配函数进口scipy.stats公司作为st标准规范()正态分布St.t()訛t分布St.f()ා f分布圣基2()Chi^2χ2分布然后介绍基本操作:概率密度函数CDF分布函数PPF分布函数的反函数SF损伤函数(1-cdf)逆破坏函数这是代码实现在此处插入图像说明当你看到结果时,你可能会问为什么它与数理统计书附录中的t分位数表不同,因为这本书需要一个高位表。
画最后一幅画在此处插入图像说明把它扔掉展开文本如何查看正态分布表读数:49,2019年8月6日也就是说,首先将其转换为标准正态分布,然后通过查找表获得。
当标准正态分布变为Z时,垂直值+水平值是Z值对应的分布函数的概率。
也就是说,首先将其转换为标准正态分布,然后通过查找表获得。
当标准正态分布变为Z时,垂直值+水平值是Z值对应的分布函数的概率。
抽样分布公式t分布卡方分布F分布

抽样分布公式t分布卡方分布F分布抽样分布公式:t分布、卡方分布、F分布抽样分布是统计学中的重要概念,用于推断总体参数以及进行假设检验。
本文将重点介绍三种常见的抽样分布公式:t分布、卡方分布和F分布。
一、t分布公式t分布是用于小样本情况下进行参数估计和假设检验的重要分布。
它的定义如下:假设有一个总体,样本容量为n,总体的均值和标准差未知。
如果从该总体中随机抽取一个样本,计算样本均值与总体均值的差异,用t 值来衡量。
那么,t值的概率分布就是t分布。
t分布的公式如下:t = (x - μ) / (s / √n)其中,x为样本均值,μ为总体均值,s为样本标准差,n为样本容量。
t分布的自由度为n-1。
在实际应用中,可以利用t分布表或统计软件来查找不同自由度下的t值对应的概率。
二、卡方分布公式卡方分布是应用于统计推断的重要分布,主要用于分析分类资料或定类变量的相关性。
它的定义如下:假设有一个总体,样本容量为n,比较观察值与理论值之间的差异。
我们将差异的平方进行求和,并除以理论值,得到统计量,称为卡方统计量。
卡方分布的公式如下:χ^2 = Σ((O - E)^2 / E)其中,O为观察值,E为理论值。
卡方分布的自由度取决于总体参数的个数减去估计的参数个数。
在实际应用中,同样可以利用卡方分布表或统计软件来查找不同自由度下的卡方值对应的概率。
三、F分布公式F分布是应用于统计推断的另一重要分布,主要用于比较两个或多个总体方差是否相等。
它的定义如下:假设有两个总体A、B,分别进行抽样,计算两个样本方差的比值,得到F统计量。
F分布的公式如下:F = (s1^2 / σ1^2) / (s2^2 / σ2^2)其中,s1^2和s2^2分别为样本A和样本B的方差,σ1^2和σ2^2分别为总体A和总体B的方差。
F分布的自由度取决于样本容量和总体个数。
在实际应用中,同样可以利用F分布表或统计软件来查找不同自由度下的F值对应的概率。