《函数的单调性》教学设计与反思
《函数的单调性》教学设计

《函数的单调性》教学设计一、教学内容1. 函数单调性的定义:函数单调递增和单调递减的定义及其性质。
2. 单调性的判断方法:利用导数、图像以及定义法判断函数的单调性。
3. 单调性在实际问题中的应用:求解最值问题、不等式问题等。
二、教学目标1. 理解函数单调性的定义,掌握单调递增和单调递减的概念。
2. 学会利用导数、图像以及定义法判断函数的单调性。
3. 能够运用单调性解决实际问题,提高解决问题的能力。
三、教学难点与重点1. 教学难点:单调性的判断方法,特别是利用导数判断单调性。
2. 教学重点:函数单调性的定义,单调性的判断方法以及单调性在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:笔记本、彩笔、函数图像绘制工具。
五、教学过程1. 实践情景引入:通过一个实际问题,引发学生对函数单调性的思考。
例题:某商品的价格随销售量的增加而减少,问销售量为多少时,商品的价格最低?3. 单调性的判断方法:(1)利用导数:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数的单调性。
(2)利用图像:引导学生观察函数图像,判断函数的单调性。
(3)利用定义法:讲解如何利用定义法判断函数的单调性。
4. 单调性在实际问题中的应用:通过例题,讲解单调性在求解最值问题、不等式问题等方面的应用。
5. 随堂练习:让学生通过实际问题,运用所学知识解决,巩固所学内容。
六、板书设计1. 函数单调性的定义。
2. 单调性的判断方法:导数法、图像法、定义法。
3. 单调性在实际问题中的应用。
七、作业设计(1)y = x^2(2)y = x^2(3)y = 2x + 3某商品的价格随销售量的增加而减少,已知销售量为100时,价格为5000元,销售量为200时,价格为4000元。
求销售量为多少时,商品的价格最低?八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解了函数单调性的概念及其应用,通过讲解和练习,使学生掌握了单调性的判断方法。
《函数的单调性》教学设计与反思

《函数的单调性》教学设计与反思《函数的单调性》教学设计与反思一、主题本篇文章的主题为《函数的单调性》的教学设计与反思。
我们将探讨如何通过合理的教学设计,使学生更好地理解和掌握函数的单调性,以及在教学过程中遇到的问题和解决方法。
二、引入函数的单调性是中学数学中一个重要的概念。
它不仅是解决许多数学问题的关键,也在其他学科和实际生活中有着广泛的应用。
因此,设计一个有效的教学方案,使学生深入理解和掌握这一概念,具有重要意义。
三、教学设计1、引入阶段:通过展示一些具有代表性的函数图像,引导学生观察并理解什么是函数的单调性。
2、呈现阶段:通过具体的函数例子,讲解单调性的概念和应用,并引出单调性的证明方法。
3、讲解阶段:针对学生在理解过程中可能遇到的困难,进行详细的讲解和演示,帮助学生掌握单调性的概念和证明方法。
4、练习阶段:设计一系列的练习题,让学生在课堂上进行练习,以巩固所学的知识。
5、总结阶段:对本节课的内容进行总结,并引导学生回顾所学的主要知识点。
四、反思在教学过程中,我发现以下问题:部分学生在练习阶段遇到困难,需要对单个学生进行针对性的辅导;部分学生对单调性的概念理解不深,需要改进教学方法,使学生更好地理解这一概念。
针对以上问题,我提出以下改进建议:在练习阶段,增加对学生的辅导时间,帮助学生解决遇到的问题;在概念讲解阶段,引入更多的实例和图示,帮助学生更好地理解单调性的概念。
五、总结本篇文章对《函数的单调性》的教学设计进行了详细的描述,并对教学过程中遇到的问题进行了反思和提出改进建议。
通过合理的教学设计,可以使学生更好地理解和掌握函数的单调性,为后续的学习打下坚实的基础。
在教学过程中不断进行反思和改进,可以提高教学质量,更好地满足学生的学习需求。
高中《数学》函数的单调性教学设计学情分析教材分析课后反思

《函数的单调性》教学设计一、教学内容解析1. 教材内容及地位本节课是人教版版《数学》(必修1)第二章第3节函数单调性的第一课时,主要学习用符号语言(不等式)刻画函数的变化趋势(上升或下降)及简单应用.它是学习函数概念后研究的第一个、也是最基本的一个性质,为后继学习奠定了理性思维基础.如研究幂函数、指数函数、对数函数和三角函数的性质,包括导函数内容等;在对函数定性分析、求最值和极值、比较大小、解不等式、函数零点的判定以及与其他知识的综合问题上都有重要的应用.因此,它是高中数学核心知识之一,是函数教学的战略要地.2. 教学重点函数单调性的概念,判断和证明简单函数的单调性.3. 教学难点函数单调性概念的生成,证明单调性的代数推理论证.二、学生学情分析1. 教学有利因素学生在初中阶段,通过学习一次函数、二次函数和反比例函数,已经对函数的单调性有了“形”的直观认识,了解用“V随X的增大而增大(减小)”描述函数图象的上升(下降)的趋势.亳州一中实验班的学生基础较好,数学思维活跃,具备一定的观察、辨析、抽象概括和归纳类比等学习能力.2. 教学不利因素本节课的最大障碍是如何用数学符号刻画一种运动变化的现象,从直观到抽象、从有限到无限是个很大的跨度.而高一学生的思维正处在从经验型向理论型跨越的阶段,逻辑思维水平不高,抽象概括能力不强.另外,他们的代数推理论证能力非常薄弱.这些都容易产生思维障碍.三、课堂教学目标1.理解函数单调性的相关概念.掌握证明简单函数单调性的方法.2.通过实例让学生亲历函数单调性从直观感受、定性描述到定量刻画的自然跨越,体会数形结合、分类讨论和类比等思想方法.3.通过探究函数单调性,让学生感悟从具体到抽象、从特殊到一般、从局部到整体、从有限到无限、从感性到理性的认知过程,体验数学的理性精神和力量.4.引导学生参与课堂学习,进一步养成思辨和严谨的思维习惯,锻炼探究、概括和交流的学习能力.四、教学策略分析在学生认识函数单调性的过程中会存在两方面的困难:一是如何把“随x 的增大而增大(减小)”这一描述性语言“翻译”为严格的数学符号化语言,尤其抽象概括出用“任意”刻画“无限”现象;二是用定义证明单调性的代数推理论证.对高一学生而言,作差后的变形和因式符号的判断也有一定的难度.为达成课堂教学目标,突出重点,突破难点,我们主要采取以下形式组织学习材料:1. 指导思想.充分发挥多媒体形象、动态的优势,借助函数图象、表格和几何画板直观演示.在学生已有认知基础上,通过师生对话自然生成.2.在“创设情境”阶段.观察并分析沙漠某天气温变化的趋势,结合初中已学函数的图象,让学生直观感受函数单调性,明确相关概念.3.在“引导探索”阶段.首先创设认知冲突,让学生意识到继续学习的必要性;然后设置递进式“问题串”,借助多媒体引导学生对“随x 的增大而增大”进行探究、辨析、尝试、归纳和总结,并回顾已有知识经验,实现函数单调性从“直观性”到“描述性”再到“严谨性”的跨越.4. 在“学以致用”阶段.首先通过3个判断题帮助学生从正、反两方面辨析,逐步形成对概念正确、全面而深刻的认识.然后教师示范用定义证明函数单调性的方法,一起提炼基本步骤,强化变形的方向和符号判定方法.接着请学生板演实践.五、教学过程(一)通过问题,引入课题分别作出函数y=x+1,y=-x+1,y=x²的图像,并且观察自变量变化时,函数图像有什么变化趋势?y=-x+10 1X1y=x²1问题一问题二如何描述函数图像的上升或下降?图像上升,y 随着x的增大而增大图像上升,y随着x的增大而减小向题三如何用符号化的数学语言来描述y 随着x 的增大而增大呢?(二)引导探究,生成概念探究在函数y=f(x)的给定区间上任取x₁,x₂,当x₁<x₂时,有f(x)<f(x₂),这时我们就说函数y=f(x)在给定区间上是增函数.单调性的定义一般的,设函数f(x) 的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有_f(x)<f(x₂),那么就说函数f(x) 在区间D上是增函数;如果对于定义域I内某个区间D 上的任意两个自变量的值x₁,x₂,当x₁<x₂时,都有f(x)>f(x),那么就说函数f(x) 在区间D上是减函数;如果函数y=f(x) 在区间D上是增函数或是减函数,就说这个函数在这个区间上具有(严格的)单调性;区间D 叫做函数y=f(x)的单调区间(三)学以致用,理解感悟概念理解( 1 ) 已知,因为f(-1)<f(2), 所以函数f(x)是增函数.(2)能不能说y= (x≠0)定义域(-∝,0)∪(0,+∝)上是单调减函数?(3)对于函数f(x),x∈D,若x,x₂∈D,(x₂-x) [f(x₂)-f(x₁)]>0 ,则函数f(x)在D上是增函数.(4)y=f(x) 在区间D上是减函数,若x,x₂∈D,且x₁<x₂,则f(x)>f(x₂).- 用于比较函数值的大小(5)y=f(x) 在区间D上是减函数,若x,x₂∈D,且f(x₁)>f(x₂),则x₁<x₂…用于比较自变量值的大小概念升华:(1)x,x₂具有任意性;(2)单调性是相对区间而言的,在一点处不具有单调性,单调区间之间用“,”隔开(不可用“U”符号连接)(3)定义的等价变形;(4)“知二推一”的应用典型例题—根据图像,指出函数的单调区间,并指明函数在这些区间上的增减性。
高一数学北师大版必修1教学教案第二章3函数的单调性

函数的单调性教学设计与反思一.教材分析函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标【教学目标】1.知识与技能理解函数单调性概念;掌握用定义判断和证明一些简单函数单调性的方法;了解函数单调区间。
2.过程与方法培养从概念出发,进一步研究其性质的意识及能力;体会感悟数形结合、分类讨论的思想.3.情感态度价值观由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣.【教学重难点】重点:函数单调性的概念,判断和证明一些简单函数单调性的方法.难点:关于函数单调性概念的符号语言的认知,应用定义证明单调性的代数推理论证【教学过程】一.导课要研究函数的单调性,我们先从熟知的函数入手,下面请同学们作出函数y=x+1 和y=x+1 的图像.1.思考: 从左到右看,图像的变化趋势如何?随着自变量的变化,函数值如何变化?2.观察动画回答:(1)由函数y=x2图像,观察图像的变化趋势。
(2)函数y=x2中y随x如何变化?那么,我们怎样用符号语言表达函数值的增减变化呢?〖设计意图〗从图像直观感知函数单调性在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解.二.新知探究1.请同学们阅读课本37页(3分钟)2.老师强调相关概念:函数递增时,图像是_________函数递减时, 图像是________在函数y=f(x)的定义域内的一个区间内A上,如果对于任意两个数x1,x2∈A,当x1<x2时,都有f(x1)<f(x2),那么就称函数在区间A上是增加的,有时也称函数在区间A上是递增的。
函数单调性的教学设计与反思

函数单调性的教学设计与反思教学目标:知识与技能:(1)理解增函数和减函数的定义,会用定义判断和证明函数的单调性。
(2)体会数形结合,分类讨论的数学思想情感目标:通过对简单函数单调性的探究,培养学生运用概念解题的能力,激发学生浓厚的学习兴趣。
教学重点和难点:教学重点:函数单调性的概念教学难点:用单调性定义证明函数单调性的变形方向教材分析:新课程把函数思想作为主轴,在前面对函数的有关概念表示方法学习之后,学生对函数的学习方法仍有困难,因此教师要从简单函数作为切入点,引领学生掌握探讨函数性质。
从数、形方面寻找规律十分重要,也为学生们后续学习用函数思想思考解决数学问题打下一个良好的基础。
学情分析:本堂课是学生在初中学了线性函数及高中学习函数的基本概念、函数的表示方法之后,由函数图像的上升(或下降)抽象到用数学语言表达自变量的变化和函数值的变化规律,首次用代数推理论证学习函数的性质,学习难度大。
为培养学生良好的学习习惯,要从学生已有的函数知识,实际生活中的函数模型入手。
教学过程设计:创设情景:1.对于初中学过的一次函数:(1) y=x+1,(2) y=-x+1,同学们知道这两个函数随x的增大,函数值y有什么变化?2.作出上述两个函数和y=x2的图像,从左向右看,图像的升降情况如何?设计意图:通过上述引例的分析使学生了解有些函数在整个定义域内随自变量的增大,函数值也增大;有的函数在整个定义域内随自变量的增大,函数值却在减少;而有些函数只在定义域的某些子区间上增大,却在其他的子区间上减少,过渡到本课内容。
新课(由形到数)对区间A内的任意x1, x2,当x1<x2时,有f(x1)<f(x2)从而概况出单调递增函数的定义:教学反思:1.由形到数:借助学生对已有的一次函数,二次函数的直观图形,获得增(减)函数的图像特征和规律,使学生产生了函数单调性的感性认识。
2.对单调性的直观感受到数学语言的定性描述刻画,循序渐进,不断深入,由特殊函数的性质推广到一般函数的性质,由特殊到一般培养了学生的合情推理的思想,符合学生的认知过程。
函数的单调性教学设计-经典教学教辅文档

教学设计方案模板:吐鲁番某天的气温变化曲线图成绩1:随着工夫的变化,气温的变化趋势如何?成绩2:作出一次函数f(x)=x和二次函数f(x)=x2的图象,从左向右看,图象的升降趋势如何?(从左向右看,f(x)=x的图象在(-∞,+∞)上呈逐渐上升趋势,f(x)=x2的图象在(-∞,0)降落,在(0,+∞)上升。
)从熟习的一次函数、二次函数动手,以具体函数的图象为例,让先生直观感知函数图象的升降变化特点,完成对函数单调性的第一次认识。
成绩3:如何用x,f(x)的变化描述函数图象的降落、上升?以f(x)=x2为例,教师几何画板演示,引导先生观察图象,在(-∞,0)上,图象下降,当x逐渐增大时,f(x)是逐渐减小的。
在图象下降f(x)随着x的增大而减小,图象上升f(x)随着x的增大而增大。
用几何画板直观展现,引导先生从直观的图象特点过渡到含有数学符号的自然言语,完成对函数单调性的第二次认知。
经过二次函数成绩7:对于普通函数y=f(x),如何定义增函数的?普通地,设函数f(x)的定义域为I,如果对于定义域I 内某个区间D上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数,D称为y=f(x)的单调增区间。
增函数的普通图象:成绩8:请同学们类比增函数定义给出减函数定义。
设函数y=f(x)的定义域为I,区间D∈I.如果对于区间D内的任意两个值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说y=f(x)在区间D上是减函数,D称为y=f(x)的减区间。
减函数的普通图象:例1 根据图象指单调区间有(0,4),。
“函数的单调性”教案

“函数的单调性”教案一、教学目标1. 理解函数单调性的概念,掌握判断函数单调性的方法。
2. 能够运用函数单调性解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力,提高学生对函数知识的兴趣。
二、教学内容1. 函数单调性的定义与性质2. 判断函数单调性的方法3. 函数单调性在实际问题中的应用三、教学重点与难点1. 函数单调性的定义与性质2. 判断函数单调性的方法3. 函数单调性在实际问题中的应用四、教学方法1. 采用启发式教学,引导学生主动探究函数单调性的定义与性质。
2. 通过例题讲解,让学生掌握判断函数单调性的方法。
3. 结合实际问题,培养学生运用函数单调性解决问题的能力。
五、教学过程1. 导入新课:回顾上一节课的内容,引导学生思考函数的单调性。
2. 讲解函数单调性的定义与性质:详细讲解函数单调性的概念,引导学生理解并掌握函数单调性的性质。
3. 判断函数单调性的方法:讲解如何判断函数的单调性,引导学生通过实例分析来掌握判断方法。
4. 运用函数单调性解决实际问题:给出实际问题,引导学生运用函数单调性进行解决,培养学生的应用能力。
5. 课堂小结:对本节课的内容进行总结,强调函数单调性的重要性。
6. 布置作业:设计具有针对性的作业,巩固学生对函数单调性的理解和掌握。
六、教学评估1. 课堂提问:通过提问了解学生对函数单调性的理解程度,及时发现并解决学生在学习过程中遇到的困惑。
2. 作业批改:重点关注学生对函数单调性概念的掌握和判断方法的运用,及时给予反馈和指导。
3. 课堂练习:设计一些具有代表性的练习题,让学生在课堂上独立完成,检验学生对函数单调性的掌握情况。
七、教学拓展1. 引导学生思考函数单调性与其他数学概念的联系,如导数、极限等。
2. 介绍函数单调性在实际应用中的重要作用,如经济学、物理学等领域。
3. 鼓励学生进行课外阅读,了解函数单调性的更多相关知识,提高学生的知识面。
八、教学反思1. 反思教学过程中的优点和不足,总结经验教训,为今后的教学提供参考。
高中数学_《函数单调性》教学设计学情分析教材分析课后反思

函数的单调性教学设计学情分析:学生刚接触单调性,面对函数的单调性的定义描述会感到困惑:什么是增、减函数?因此正确理解函数的单调性是学习中一个难点.本节课从生活中的问题入手,丰富的问题情境会使学生产生浓厚的兴趣,以此来突破本堂课的难点.效果分析:函数的单调性的定义是对函数图象特征的一种数学描述,它经历了由图象直观感知到自然语言描述,再到数学符号语言描述的进化过程。
本节课首先给出生活中的实例和动画,调动学生的参与意识,通过直观图形得出结论,渗透数形结合的数学思想。
再抽象出数学语言的概念,学生自然而然的就接受了。
接下来采取提出问题引导学生进一步思考。
问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始。
通过问题,引发学生的进一步学习的好奇心。
当堂检测反馈效果学生学习效果良好。
教材分析:《函数单调性》人教版高中数学必修一第一章第三节的内容。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。
掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。
评测练习:1.如图133是定义在区间[-5,5]上的函数y =f (x ),则下列关于函数y=f (x )的说法错误的是( )A .函数在区间[-5,-3]上单调递增B .函数在区间[1,4]上单调递增C .函数在区间[-3,1]∪[4,5]上单调递减D .函数在区间[-5,5]上没有单调性图1-3-32.函数f (x )在R 上是减函数,则有( ) A. f (3)<f (5) B .f (3)≤f (5) C. f (3)>f (5) D .f (3)≥f (5)3.已知函数f (x )=kx (k ≠0)在区间(0,+∞)上是增函数,则实数k 的取值范围是________.4.证明:函数y =xx +1在(-1,+∞)上是增函数.《函数的单调性》教学反思1.本节课给出函数单调性的数学语言。