结构力学
结构力学

结构动力学是研究工程结构在动载荷作用下的响应和性能的分支学科。动载荷是指随时间而改变的载荷。在 动载荷作用下,结构内部的应力、应变及位移也必然是时间的函数。由于涉及时间因素,结构动力学的研究内容 一般比结构静力学复杂的多。(见结构动力学)
结构稳定理论
结构稳定理论是研究工程结构稳定性的分支。现代工程中大量使用细长型和薄型结构,如细杆、薄板和薄壳。
结构力学
基础学科
01 简介
03 发展简史 05 研究方法
目录
02 工作任务 04 学科体系 06 能量法
结构力学是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科, 它是土木工程专业和机械类专业学生必修的学科。结构力学研究的内容包括结构的组成规则,结构在各种效应 (外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位 移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。结构力学通 常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计 算机进行结构计算的理论基础。
能量法
结构力学中的能量原理以内部和外部力量的能量或作业的形式表达应力,应变或变形,位移,材料特性和外 部影响之间的关系。由于能量是一个标量,这些关系为固体力学中可变形体的控制方程提供了方便和可选的方法。 它们也可以用于获得相当复杂系统的近似解,绕过了解一组控制偏微分方程的困难任务。
感谢观看
简介
结构力学是一门古老的学科,又是一门迅速发展的学科。新型工程材料和新型工程结构的大量出现,向结构 力学提供了新的研究内容并提出新的要求。计算机的发展,又为结构力学提供了有力的计算工具。另一方面,结 构力学对数学及其他学科的发展也起了推动作用。有限元法这一数学方法的出现和发展就和结构力学的研究有密 切关系。在固体力学领域中,材料力学给结构力学提供了必要的基本知识,弹性力学和塑性力学是结构力学的理 论基础。另外,结构力学与流体力学相结合形成边缘学科——结构流体弹性力学。
结构力学(全套课件131P) ppt课件

的两根链杆的杆轴可以平行、交叉,或延长线交于
一点。
当两个刚片是由有交汇点的虚铰相连时,两个刚
片绕该交点(瞬时中心,简称瞬心)作相对转动。
从微小运动角度考虑,虚铰的作用相当于在瞬时
中心的一个实铰的作用。
19
20
规则二 (三刚片规则): 三个刚片用不全在一条直线上的三个单铰(可以
是虚铰)两两相连,组成无多余约束的几何不变体 系。
两个平行链杆构成沿平行方向上的无穷远虚铰。
三个刚片由三个单铰两两相连,若三个铰都有交 点,容易由三个铰的位置得出体系几何组成的结论 。当三个单铰中有或者全部为无穷远虚铰时,可由 分析得出以下依据和结论:
1、当有一个无穷远虚铰时,若另两个铰心的连 线与该无穷远虚铰方向不平行,体系几何不变;若 平行,体系瞬变。
3、通过依次从外部拆除二元体或从内部(基础、 基本三角形)加二元体的方法,简化体系后再作分 析。
41
第一部分 静定结构内力计算
静定结构的特性: 1、几何组成特性 2、静力特性 静定结构的内力计算依据静力平衡原理。
第三章 静定梁和静定刚架
§3-1 单 跨 静 定 梁
单跨静定梁的类型:简支梁、伸臂梁、悬臂梁 一、截面法求某一指定截面的内力
15
1、单约束(见图2-2-2) 连接两个物体(刚片或点)的约束叫单约束。
1)单链杆(链杆)(上图) 一根单链杆或一个可动铰(一根支座链杆)具
有1个约束。 2)单铰(下图)
一个单铰或一个固定铰支座(两个支座链杆) 具有两个约束。 3)单刚结点
一个单刚结点或一个固定支座具有3个约束。
16
2、复约束 连接3个(含3个)以上物体的约束叫复约束。
三、对体系作几何组成分析的一般途径
结构力学

杆端位移 结点位移 变形协调条件
●
单元集成法求整体刚度矩阵的步骤:
第一步,由单元刚度矩阵[k]e ,求单元贡献矩阵[K] e 。 第二步,叠加各单元贡献矩阵,得到整体刚度矩阵[K] 。
结点力 杆端力 平衡条件
§13.4.2 单元定位向量
(2)杆端位移、杆端力的正负号规定 与坐标轴正方向一致 或 顺时针为正
(单元杆端位移列阵 与 单元杆端力列阵)
§13.2 单元分析(一)
——局部坐标系中的单元刚度矩阵 单元杆端力和杆端位移之间的
转换关系称为单元刚度方程,它表示单元在
杆端有任意给定位移时所产生的杆端力。而 单元刚度矩阵 的转换矩阵。 是杆端力与杆端位移之间
50年代由航空结构工程师发展,逐渐波及土木工程;
20世纪60年代,1960年由R. H. Clough命名 为“有限单元法”(FEM)以来,有限元法蓬勃 发展。不仅结构分析必不可少,而且成为“现 象分析”的一种手段(场问题、时间维问题等 )。1967年首次出版专著,监凯维奇(O. C.
Zienkiewicz)与其学生张佑启(Y. K. Cheung ) 合写《结构与连续力学的有限元法》( 张后来成 为“有限条法”创始人), 该书成为世界名著, 第三版中译本名为《有限元法》。
手算怕繁、电算怕乱
§13.1.1 矩阵位移法的基本思路
◆ 基本原理与传统的位移法相同:
1. 以结点位移为基本未知量;
2. 基本环节: (1)离散化:整个结构分解为若干个单元(在杆件结 构中,通常取一根杆件为一个单元); (2)单元分析:分析单元的杆端力和杆端位移及荷载 之间的关系; (3)整体分析:利用结构的变形协调条件和平衡条件 将各单元集合成整体结构,得到求解基本未知量的矩 阵位移法的基本方程 。
结构力学

1、体系分类:有多余约束的几何可变体系、没有多余约束的几何可变体系(几何常变、几何瞬变)、有多余约束的几何不变体系、有多余约束的几何不变体系。
(1)两根不在一条直线上的链杆用一个铰连接后,称为二元体。
在一个体系上加上或去掉一个二元体,是不会改变体系原来性质的2、体系简单组成规则(1)两刚片规则:两个刚片用一个铰和一根链杆相联结,且三个铰不在一条直线上,或用三链杆连接且三根链杆不相互平行、不交于一点,则组成几何不变体系,并且无多余约束。
(2)三刚片规则:三个刚片用三个虚铰两两相连(即6根链杆),且三个虚铰不在一条直线上,则组成几何不变体系,并且无多余约束。
瞬变体系:三根链杆虚交于一点或三根平行且不等长。
常变体系:三链杆平行且等长或三杆实交于一点。
几何结构的判断:1、若某体系用不完全交于一点也不完全平行的三根链杆与基础相连,则可以只分析该体系。
2、找二元体,如有,可撤去或加上,使体系简化。
3、从直接观察出的几何不变部分开始,应用体系组成规律,逐步扩大不变部分直至整体。
(链杆可以当作刚体,刚体有时可当作链杆,两端铰接的折杆或曲杆可用直杆代替)3、刚片、约束、自由度概念 (1)自由度是指确定体系位置所需独立坐标的数目。
(2)刚片就是几何尺寸和形状都不变的平面刚体(由于我们在讨论体系的几何构造时是不考虑材料变形的,因此我们可以把一根梁、一根柱、一根链杆甚至体系中已被确定为几何不变的部分看作是一个刚片)(3)减少自由度的装置称为约束(可以减少1个自由度的装置是1个约束)4、各约束相当的链杆数目(链杆可减少一个自由度,相当于一个约束) (1)一个单铰可以减少两个自由度,相当于两个约束(相当于两根链杆) (2)连接n个刚片的复铰,相当于2(n-1) 个链杆(3)一个刚结点能减少三个自由度,相当于三个约束(相当于三根链杆) (4)连接n个刚片的复刚结可折算成(n-1)个单刚结,相当于3(n-1)个链杆(点在平面内的自由度为:2;刚片在平面内的自由度为:3;基础自由度为零)5、刚架内力图画法及有关规定(1)作刚架内力图的常规步骤:1、先求反力;2、然后逐杆分段、定点(求杆端内力);3、最后联线(区段叠加法画弯矩图)(2)有关规定:A铰结点、自由端处无外力偶作用,则杆端弯矩为零,否则杆端弯矩与外力偶矩相等,且使杆同侧受拉;B ①铰链中心弯矩为零;②中间铰链不影响弯矩、剪力与荷载集度间的微积分关系。
结构力学总结

式中,n为结构的超静定次数, W为体系的计算自由度。 (2)去约束法 将多余约束去掉,使原结构转化为静定结构,则所去联系总数, 即为原结构的超静定次数。 (3)框格法 框格法计算超静定次数的公式
n 3m h
式中,m为封闭框格数,h为单铰数
n=3×5-7=8 n=3×7-13=8
3. 力法的基本概念 基本未知量:多余约束力。 基本结构:去掉多余联系后的结构。 基本方程:利用基本结构与原结构变形一致的条件建立的求解 多余约束力的方程,又称为力法的典型方程或简称力法方程。 4. 力法的思路 力法的思路是搭桥法。即:综合考虑结构的平衡条件、物理条 件和位移条件,将超静定结构的计算转化为静定结构的计算。 可见,力法计算实际上是对静定结构进行计算。
m2 - m1 + m = 0 m1 - m2 = m
m1
m2
m1=m2
绘M图的一些原则
• 凡有悬臂杆段、简支杆段,可先绘其M图 • 直杆无荷载作用杆段, M图为直线 • 剪力相等的平行杆段, M图也平行 • 含滑动连接的杆段(两平行链杆与杆段平行),
M图为平行线 • 铰处若无集中力偶作用, M=0 • 对称性 • 区段迭加原理
(2)虚拟力的设置法:虚拟状态中的虚拟力必须取为与实际 状态所求位移相应的广义单位力,保证使虚拟状态中该虚拟 力在实际状态中所求位移上所做的虚功在数值上等于所求位 移。
5.静定结构在荷载作用下的位移计算
在荷载作用下, 结构位移计算的公式为
KP
F N FNP ds EA
k F SFSP ds GA
若
1
,则
2
N1
N2
若
1
,则
2
N1
N2,
结构力学 structural mechanics

结构力学 structural mechanics
结构力学是固体力学的一个分支,它主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。
结构力学研究的内容包括结构的组成规则,结构在各种效应(外力,温度效应,施工误差及支座变形等)作用下的响应,包括内力(轴力,剪力,弯矩,扭矩)的计算,位移(线位移,角位移)计算,以及结构在动力荷载作用下的动力响应(自振周期,振型)的计算等。
结构力学通常有三种分析的方法:能量法,力法,位移法,由位移法衍生出的矩阵位移法后来发展出有限元法,成为利用计算机进行结构计算的理论基础。
结构力学的任务
研究在工程结构在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。
结构力学的学科体系
一般对结构力学可根据其研究性质和对象的不同分为结构静力学、结构动力学、结构稳定理论、结构断裂、疲劳理论和杆系结构理论、薄壁结构理论和整体结构理论等。
结构力学的研究方法
结构力学的研究方法主要有工程结构的使用分析、实验研究、理论分析和计算三种。
在结构设计和研究中,这三方面往往是交替进行并且是相辅相成的进行的。
结构力学是一门古老的学科,又是一门迅速发展的学科。
新型工程材料和新型工程结构的大量出现,向结构力学提供了新的研究内容并提出新的要求。
计算机的发展,为结构力学提供了有力的计算工具。
另一方面,结构力学对数学及其他学科的发展也起了推动作用。
有限元法这一数学方法的出现和发展就与结构力学的研究有密切关系。
结构力学(第一章)

例4: 对图示体系作几何组成分析
解: 该体系为瞬变体系. 该体系为瞬变体系. 方法3: 方法3: 将只有两个铰与其它部分相连的 刚片看成链杆. 刚片看成链杆.
方法1: 若基础与其它部分三杆相连, 方法1: 若基础与其它部分三杆相连,去掉基础只分析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆.
几何组成作业题
1-1 b c 1-2 a d g h i j k l 交作业时间: 交作业时间:本周 5
§1. 几何组成分 析
作业: 作业: 1-1 (b)试计算图示体系的计算自由度 试计算图示体系的计算自由度
解:
或:
W = 8×311×2 3 = 1 W =1×3+ 5×2 2×2 10= 1
例6: 对图示体系作几何组成分析
解: 该体系为无多余约束几何不变体系. 该体系为无多余约束几何不变体系. 方法5: 从基础部分(几何不变部分)依次添加. 方法5: 从基础部分(几何不变部分)依次添加.
方法1: 若基础与其它部分三杆相连, 方法1: 若基础与其它部分三杆相连,去掉基础只分析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加.
§1. 几何组成分析
§1-2 无多余约束的几何不变体系的组成规则
一. 三刚片规则 二. 两刚片规则 三. 二元体规则 二元体: 二元体:在一个体系上用两个不共线的链杆连 接一个新结点的装置. 接一个新结点的装置. 在一个体系上加减二元体不影响原体系的机动性质. 在一个体系上加减二元体不影响原体系的机动性质.
结构力学

1、结构按其几何形状可分为杆件结构、薄壁板壳结构和实体结构。
2、结构力学的研究对象是杆件结构。
它是一门研究杆件结构强度、刚度、稳定性和合理组成的科学。
3、杆件结构按其受力特性可分为梁、拱、刚架、桁架、组合结构。
4、结点分为铰结点和刚结点。
铰结点之产生杆端轴力和剪力,不引起杆端弯矩;刚结点除产生杆端轴力和剪力,还引起杆端弯矩,当结构发生变形时,汇交于刚结点各杆端的切线之间的夹角将保持不变。
5、支座的类型:可动铰支座、固定铰支座、固定支座、定向滑动支座。
6、本来是几何可变,经微小位移后又成几何不变的体系称为几何瞬变体系。
7、顺便体系能否应用于工程结构?P8可见,即使荷载不大,也会使杆件产生非常大的内力和变形。
因此,瞬变体系在工程中不能采用,对于接近瞬变的体系也应避免。
8、凡减少一个自由度装置,称一个约束。
一根链杆相当于一个约束;一个单铰相当于两个约束;一个刚性联结相当于三个约束;联结n个刚片的复铰相当于(n-1)个单铰(n为刚片数)9、以刚片作为组成体系的基本部件进行计算的方法称为刚片法。
10、计算自由度W W=3m-2h-r (m刚片数 h 联结刚片的单铰数目r 支座链杆数目)11、平面体系几何不变的必要条件:W>0,表明体系缺少足够的约束,因此是几何可变的;W=0,表明体系具有成为几何不变所必须的最少约束数目;W<0,表明体系具有多余的约束。
12、体系本身为几何不变时必须满足W≤3的条件。
必须指出,W≤0只是几何不变的必要条件,不是充分条件。
13、静定结构与超静定结构的区别:静定结构的几何组成特征是几何不变且无多余约束;超静定结构的几何组成特征是几何不变且有多余约束;仅用静力平衡条件就可以求解的结构称为静定结构;综合运用平衡条件与位移协调条件求解的结构,称为超静定结构。
14、内力图绘制:梁上无荷载(q=0)的区段,Q图为一水平线,M图为一斜直线;梁上有均布荷载(q=常数)的区段,Q图为一斜直线,M图为二次抛物线;集中力作用点的两侧,剪力有突变,其差值等于该集中力,在集中力作用点处,M图是连续的,但因集中力偶两侧的剪力值相同,所以两侧M图的切线应相互平行;集中力偶作用处,剪力无变化,但在集中力偶两侧弯矩有突变,其差值等于该集中力偶,在M图中形成台阶,又因集中力偶两侧的剪力值相同,所以两侧M图的切线应相互平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《结构力学》复习提纲
《结构力学》复习提纲
要求:试题要涉及结构力学的主要知识点,并注重力学基本概念和计算方法的掌握。
以《结构力学(I)》作为考核的重点,分值占70%左右,内容包括:几何组成分析、静定结构的内力及位移计算、力法和位移法对超静定结构的计算、影响线及其应用;《结构力学(II)》占30%左右,内容包括:矩阵位移法(杆系有限元法)对结构的静力计算、动力计算。
试题分填空(基本概念)和计算两种题型,达到本科中等以上难度水平。
一、平面杆系结构的几何组成分析
考核几何不变体系组成的三个基本规律,能灵活利用几何组成规律对平面杆系的几何构成做出正确判断。
瞬变体系的判断,静定结构及超静定结构的几何构成。
二、静定结构
1.静定结构的内力计算:利用截面法及平衡条件计算静定结构任意截面的内力,能根据内力图的规律和控制截面的内力,快速做出多跨静定梁、静定刚架、桁架及组合结构的内力图。
基本概念包括三铰拱、平面静定桁架、刚架、组合结构等指定截面的内力,利用节点平衡条件及对称性对桁架的零杆做出判断。
2.静定结构的位移计算:利用单位荷载法计算静定梁、刚架、组合结构、桁架等在荷载、温度作用及支座移动时的位移。
基本概念包括虚功原理及其应用,结构位移计算的一般公式,三个互等定理及其适用范围。
三、超静定结构
1.力法的基本原理及应用。
重点考核用力法求解超静定结构(包括超静定梁、刚架、排架、桁架及组合结构)在荷载、温度及支座移动作用下的内力,并能用对称性对结构进行简化。
力法的基本概念包括基本未知量的确定、力法基本结构的选择、基本方程的建立及含义、各系数项的含义及计算、根据弯矩图快速做出剪力图及轴力图。
2.位移法的基本原理及其应用。
重点考核用位移法求解超静定结构(包括超静定梁、刚架、排架)在荷载作用下的内力,并能用对称性对结构进行简化。
基本概念包括位移法基本未知量的确定、基本结构的选择、基本方程及系数项的含义、对称性的应用。
要求记忆等截面直杆的刚度方程及在均布荷载、跨中集中力、支座位移作用下超静定梁的杆端内力。
3.超静定结构的位移计算。
在用力法或位移法计算出超静定结构的内力后,或在给定某超静定结构的弯矩图的条件下,利用虚功原理计算出指定截面的位移;如果所求位移为结点位移,也可以考虑用位移法直接求解。
四、影响线
静定多跨梁、静定桁架等的支座反力或指定截面的内力的影响线,并利用影响线求在给定静荷载作用的影响量及移动荷载作用下某一截面内力的最大值。
基本概念包括:影响线的概念、影响线的特征及做法、影响线的应用。
五、矩阵位移法
矩阵位移法对平面桁架、刚架静力计算的步骤及结构刚度方程的建立。
基本概念包括:单元刚度方程及刚度系数含义及具体值,单元杆端力与内力、荷载向量的计算,总刚度矩阵的集成,边界条件的处理(包括先处理法和后处理法);根据单元及总刚度矩阵中每个系数的含义计算刚度矩阵中的指定元素值;定位向量的应用,根据结构位移向量计算各单元的内力。
六、动力计算
重点考核单自由度体系在简谐荷载作用下的强迫振动及两个自由度体系的自由振动计算。
基本概念包括结构动力微分方程的建立、自振频率和振型的计算,主振型的正交性,阻尼对振动的影响,对称性的应用,结构动力响应(包括结构最大位移和内力、动位移和动内力幅值)计算。
参考教材:
龙驭球主编《结构力学》上、下册,《结构力学教程》
包世华主编《结构力学》上、下册
阳日主编《结构力学II》、《结构力学II》
杨天祥主编《结构力学》上、下册
注:考试可携带计算器;
试卷不附给任何参数(单元刚度矩阵、超静定梁的固端力等),考试需要自己记忆
《混凝土结构设计原理》复习提纲
《混凝土结构设计原理》复习提纲
一、考试范围
绪论
第一章混凝土结构材料的性能
第二章混凝土结构设计方法
第三章钢筋混凝土轴心受力构件正截面承载力计算
第四章钢筋混凝土受弯构件正截面承载力计算
第五章钢筋混凝土受弯构件斜截面承载力计算
第六章钢筋混凝土受扭构件承载力计算
第七章钢筋混凝土偏心受力构件承载力计算
第八章钢筋混凝土构件的裂缝、变形和耐久性
第九章预应力混凝土构件设计
二、考试要求
1、第三章、第四章、第五章、第七章,除要求熟练掌握基本概念和基本理论外,还要求熟练掌握基本公式和计算方法。
其余章节不考计算题。
2、第九章只要求预应力混凝土的基本知识和一般规定。
预应力混凝土轴心受拉构件应力分析及计算部分
3、建筑工程方向考试按GB50010-2002《混凝土结构设计规范》要求进行,交通土建按JTG62-2004《公路钢筋混凝土及预应力混凝土桥涵设计规范》要求进行。
三、参考文献
1、沈蒲生主编,混凝土结构设计原理(第2版)
2、东南大学、天津大学、同济大学合编,混凝土结构设计原理(第3版)。