材料力学习题解答组合变形

合集下载

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第10章 组合受力与变形杆件的强度计算

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第10章 组合受力与变形杆件的强度计算

解:危险截面在 A 处,其上之内力分量为: 弯矩: M y = FP1 a , M z = FP2 H 扭矩: M x = FP2 a 轴力: FNx = FP1 在截面上垂直与 M 方向的垂直线 ab 与圆环截 求得 M y 与 M z 的矢量和 M 过截面中心, 面边界交于 a、b 两点,这两点分别受最大拉应力和最大压应力。但由于轴向压力的作用,最 大压应力值大于最大拉应力值,故 b 点为危险点,其应力状态如图所示。 10-7 试求图 a 和 b 中所示之二杆横截面上最大正应力及其比值。 解: (a)为拉弯组合
7
y
y
A
O
0.795
B
14.526
+13.73MPa
z
(a)
O O
+14.43MPa
(b)
C
y
A
C
B B
y
A
O O
B
z
12.6mm
14.1mm
zC
−15.32MPa
16.55MPa
zC
z
(c)
(d)
习题 10-9 解图

+ σ max
= 14.526 − 0.795 = 13.73 MPa
− σ max = −14.526 − 0.795 = −15.32 MPa
Ebh
由此得
2 FP 6e
e=
10-9
ε1 − ε 2 h × ε1 + ε 2 6
图中所示为承受纵向荷载的人骨受力简图。试:
1.假定骨骼为实心圆截面,确定横截面 B-B 上的应力分布; 2.假定骨骼中心部分(其直径为骨骼外直径的一半)由海绵状骨质所组成,忽略海绵状承受 应力的能力,确定横截面 B-B 上的应力分布;

材料力学习题组合变形#(精选.)

材料力学习题组合变形#(精选.)

组合变形基 本 概 念 题一、选择题1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到 形心的距离e 和中性轴到形心距离d 之间的关系是( )。

A .e = dB .e >dC .e 越小,d 越大D .e 越大,d 越小2.三种受压杆件如图所示,设杆1、杆2和杆3中的最大压应力(绝对值)分别用1max σ、2max σ、3max σ表示,则( )。

A .1max σ=2max σ=3max σB .1max σ>2max σ=3max σC .2max σ>1max σ=3max σD .2max σ<1max σ=3max σ 题2图3.在图示杆件中,最大压应力发生在截面上的( )。

A .A 点B .B 点C .C 点D .D 点题3图 题4图4. 铸铁杆件受力如图4所示,危险点的位置是( )。

A .①点B .②点C .⑧点D .④点5. 图示正方形截面直柱,受纵向力P 的压缩作用。

则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。

A .1﹕2B .2﹕5C .4﹕7D .5﹕26. 图示矩形截面偏心受压杆件发生的变形为( )。

A .轴向压缩和平面弯曲组合B .轴向压缩,平面弯曲和扭转组合C .轴向压缩,斜弯曲和扭转组合D .轴向压缩和斜弯曲组合-41-题5图 题6图 7. 图所示悬臂梁的横截面为等边角钢,外力P 垂直于梁轴,其作用线与形心轴y 垂直,那么该梁所发生的变形是( )。

A .平面弯曲B .扭转和斜弯曲C .斜弯曲D .两个相互垂直平面(xoy 平面和xoz 平面)内的平面弯曲题7图 8. 图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危险点位置有四种答案,正确的是( )。

A .截面形心B .竖边中点A 点C .横边中点B 点D .横截面的角点D 点题8图 题9图9. 图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M ,扭矩为T ,截面上A 点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W 。

河海大学材料力学习题解答

河海大学材料力学习题解答

2-11 [σ]=11MPa, d=?解:2-16 试校核图示销钉的剪切强度。

已知F =120kN.销钉直径d =30mm.材料的容许应力[τ]=70MPa 。

若强度不够.应改用多大直径的销钉?解:MPa A F 88841049210120243./=⨯⨯⨯==-πτ 不满足强度条件46324110571810702101202-⨯=⨯⨯⨯=≥=.][τπF d A cm d 33.≥NkN b h P 40221==γkNF P F F MN N i O111104060032...:)(==⨯-⨯⨯=∑强度条件:cmd m d AF N583102861101110111142363..)/(.][≥⨯=⨯⋅⨯⨯≥≤=-πσσ以上解不合理:柔度:7557451.)//(/=⨯==d i l μλ3-3 图示组合圆轴.内部为钢.外圈为铜.内、外层之间无相对滑动。

若该轴受扭后.两种材料均处于弹性范围.横截面上的切应力应如何分布?两种材料各承受多少扭矩?dxd φργ= γτG =50 503-10(b) F=40kN, d=20mm 解:中心c 位置380/=c x 等效后:kNF M 936103802003.)/(=⨯-=-由F 引起的切应力MPa d kN A F 442403243.)/()/(==='πτ由M 引起的剪切力满足321r F r F r F B A c ///==Mr F r F r F B A C =++321解得kNF C 839.=C 铆钉切应力最大MPa d kN A F C 712683924.)/(./===''πτMpac 1169.=''+'=τττ第四章弯曲变形4-12 切应力流4-14 图示铸铁梁.若[t σ]=30MPa,[c σ]=60MPa,试校核此梁的强度。

已知=z I 764×108-m 4。

组合变形习题及参考答案

组合变形习题及参考答案

组合变形一、判断题1.斜弯曲区别与平面弯曲的基本特征是斜弯曲问题中荷载是沿斜向作用的。

( )2.斜弯曲时,横截面的中性轴是通过截面形心的一条直线。

( )3.梁发生斜弯曲变形时,挠曲线不在外力作用面内。

( )4.正方形杆受力如图1所示,A点的正应力为拉应力。

( )图 15. 上图中,梁的最大拉应力发生在B点。

( )6. 图2所示简支斜梁,在C处承受铅垂力F的作用,该梁的AC段发生压弯组合变形,CB段发生弯曲变形。

( )图 27.拉(压)与弯曲组合变形中,若不计横截面上的剪力则各点的应力状态为单轴应力。

( )8.工字形截面梁在图3所示荷载作用下,截面m--m上的正应力如图3(C)所示。

( )图 39. 矩形截面的截面核心形状是矩形。

( )10.截面核心与截面的形状与尺寸及外力的大小有关。

( )11.杆件受偏心压缩时,外力作用点离横截面的形心越近,其中性轴离横截面的形心越远。

( )12.计算组合变形的基本原理是叠加原理。

()二、选择题1.截面核心的形状与()有关。

A、外力的大小B、构件的受力情况C、构件的截面形状D、截面的形心2.圆截面梁受力如图4所示,此梁发生弯曲是()图 4A、斜弯曲B、纯弯曲C、弯扭组合D、平面弯曲三、计算题1.矩形截面悬臂梁受力F1=F,F2=2F,截面宽为b,高h=2b,试计算梁内的最大拉应力,并在图中指明它的位置。

图 52.图6所示简支梁AB上受力F=20KN,跨度L=2.5m,横截面为矩形,其高h=100mm,宽b=60mm,若已知α=30°,材料的许用应力[σ]=80Mpa,试校核梁的强度。

3.如图7所示挡土墙,承受土压力F=30KN,墙高H=3m,厚0.75m,许用压应力[σ]ˉ=1 Mpa,许用拉应力[σ]﹢=0.1 Mpa,墙的单位体积重量为,试校核挡土墙的强度。

图 6 图 74.一圆直杆受偏心压力作用,其偏心矩e=20mm,杆的直径d=70mm,许用应力[σ]=120Mpa,试求此杆容许承受的偏心压力F之值。

材料力学-9-组合受力与变形

材料力学-9-组合受力与变形
Nanjing University of Technology
材料力学 (9)
材料力学
第9章 组合受力与变形
第9章 组合受力与变形
一、工程实例
烟囱 传动轴 立柱
自重 →轴向压缩 +水平方向的风力 →弯曲
齿轮垂直啮合力 →弯曲 +齿轮水平啮合力 →扭转
二、概念 组合变形:构件在荷载作用下发生两种或两种以上的基本变 形,则构件的变形称为组合变形。
y x z y
9.1 斜弯曲
FPz FPy
例题1
FPy
x
解:1.外力分析,建立坐标系方向如 图所示
FPz FPsin 5, FPy FP cos5
2. 内力分析(绘制内力图)
中间截面为梁的危险截面。
1 M z max FPy 4 FP cos 5 4
FPz
z
My图
FP
F
F
F FN N A

M max
M max W

l/2
l/2




讨论:
FN M max FN M max FN M max 3.横截面上中性轴的位置
在弯矩与轴力同时作用时,中性轴一定不通过横截面的形心,其具体 位置为应力为零的位置,可以具体求解出来。 应用:工程中混凝土柱抗压能力强,可以在截面施加偏心荷载,使得截 面上只有压应力,无拉应力。
MZ
z
M max= + z Wy Wz
max=
× ?
My
My Mz + Wz Wy
My
9.1 斜弯曲 例题1
一般生产车间所用的吊车大梁,两端由钢轨支撑,可 以简化为简支梁。图中l=4 m。大梁由32a热轧普通工字钢 制成,许用应力=160MPa 。起吊的重物的重量FP=80kN ,并且作用在梁的中点,位于yoz平面内,作用线与y轴之间 的夹角=5。 试校核: 吊车大梁的强度是否安全?

(完整版)材料力学习题册答案..

(完整版)材料力学习题册答案..

练习1 绪论及基本概念1-1 是非题(1)材料力学是研究构件承载能力的一门学科。

( 是 )(2)可变形固体的变形必须满足几何相容条件,即变形后的固体既不可以引起“空隙”,也不产生“挤入”现象。

(是 )(3)构件在载荷作用下发生的变形,包括构件尺寸的改变和形状的改变。

( 是 ) (4)应力是内力分布集度。

(是 )(5)材料力学主要研究构件弹性范围内的小变形问题。

(是 ) (6)若物体产生位移,则必定同时产生变形。

(非 ) (7)各向同性假设认为,材料沿各个方向具有相同的变形。

(F )(8)均匀性假设认为,材料内部各点的力学性质是相同的。

(是)(9)根据连续性假设,杆件截面上的内力是连续分布的,分布内力系的合力必定是一个力。

(非) (10)因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(非 )1-2 填空题(1)根据材料的主要性质对材料作如下三个基本假设:连续性假设 、均匀性假设 、 各向同性假设 。

(2)工程中的 强度 ,是指构件抵抗破坏的能力; 刚度 ,是指构件抵抗变形的能力。

(3)保证构件正常或安全工作的基本要求包括 强度 , 刚度 ,和 稳定性 三个方面。

(4)图示构件中,杆1发生 拉伸 变形,杆2发生 压缩 变形, 杆3发生 弯曲 变形。

(5)认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为 连续性假设 。

根据这一假设构件的应力,应变和位移就可以用坐标的 连续 函数来表示。

(6)图示结构中,杆1发生 弯曲 变形,构件2发生 剪切 变形,杆件3发生 弯曲与轴向压缩组合。

变形。

(7)解除外力后,能完全消失的变形称为 弹性变形 ,不能消失而残余的的那部分变形称为 塑性变形 。

(8)根据 小变形 条件,可以认为构件的变形远 小于 其原始尺寸。

1-3 选择题(1)材料力学中对构件的受力和变形等问题可用连续函数来描述;通过试件所测得的材料的力学性能,可用于构件内部的任何部位。

中南大学材料力学--组合变形答案

中南大学材料力学--组合变形答案

组合变形答案一、概念题1.A ;2.A ;3.D ;4.C ;5.B ;6.A ;7.C ;8.D ;9.C ;10.C11.略12. 13σσσ=-=二、计算题1截面形心和惯性矩计算:126459.5240.484.8810z z mmz mm I mm ===⨯1-1 截面上的内力:28857.6.12N M Py N mF P kN ====2max 1max 26.8[]32.3[]t Nt Zc Nc ZF Mz MPa A I F Mz MPa A I σσσσ=+=<=-+=< 安全2设切口深度为x ,则偏心距为:x /23112100.005(0.04)P t F A x σ⨯==-322121020.005(0.04)6t xMx W σ⨯⨯==⨯-61210010t t σσσ=+≤⨯ 得 212864000.00521x x x m -+== 3 2642()()P A hP F M PP A W bh bh bh σ⨯=-+=-+=-A 点的应力状态为单向压缩应力状态 454522AP bh σσσ-===-4545451122()()P P E E bh bh εσυσυ-=-=+2(1)Ebh P αευ=-4 过O 点横截面上的应力232324202()()P hP F M P P A W d d d σπππ⨯=+=+= 28T P M P W d τπ== O 点的应力状态为二向应力状态:0x y y σσσττ===220xa P E d E σεπ== 2452452454518cos 90sin 90222cos90sin 902214()x yx y xy x y x yxy b P d Pd P E d Eσσσσστπσσσσστπεσυσπ--+-=+---=+-=+-==-=- 5a 点的应力状态为二向应力状态:32412.710P P P F F F A d σπ===⨯ 3216 5.1010e T P P M M F W dτπ===⨯33031203593030120cos 60sin 6013.91022cos 240sin 240 1.24102211()(13.90.3 1.24)1014.331020010x y x y xy P x y x yxy P P F F F E σσσσστσσσσστεσυσ-+-=+-=⨯+-=+-=-⨯=-=+⨯⨯=⨯⨯2107 2.107.P e F N M N m ==采用第三强度理论校核强度31334.33[]r MPa σσσσ=-==< 安全 61) 计算954920.46.163.68491.1408.9293.75252.3488.66Pz Py Ay By Az Bz P m N m nF N F NF NF NF N F N =====-===-2) 作计算简图3) 作内力图4) 危险截面为A 截面: max max max 20.46.28.08.21.28.T z y M N mM N m M N m===-5)危险点于A 截面的边缘a 点,a 点的应力状态为二向应力状态:2.87MPa σ==2160.83eTP M M MPa W dτπ===max 3.1min 0.2212313max 23.100.22 1.662x yMPaMPaMPaMPaMPaMPaσσσσσσσστ-+=±====--== 6)采用第三强度理论校核强度313 3.32[]r MPa σσσσ=-==< 安全。

材料力学组合变形答案

材料力学组合变形答案

材料力学组合变形答案【篇一:材料力学组合变形及连接部分计算答案】,试求危险截面上的最大正应力。

解:危险截面在固定端m,,==返回8-2 受集度为的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为梁的尺寸为m,,如图所示。

已知该梁材料的弹性模量mm,mm;许用应力;;许可挠度。

试校核梁的强度和刚度。

解:=,强度安全,==返回刚度安全。

8-3(8-5) 图示一悬臂滑车架,杆ab为18号工字钢,其长度为m。

试求当荷载作用在ab的中点d处时,杆内的最大正应力。

设工字钢的自重可略去不计。

解:18号工字钢,,ab杆系弯压组合变形。

,,====返回8-4(8-6) 砖砌烟囱高重kn,受m,底截面m-m的外径的风力作用。

试求:m,内径m,自(1)烟囱底截面上的最大压应力;(2)若烟囱的基础埋深许用压应力m,基础及填土自重按,圆形基础的直径d应为多大?计算,土壤的注:计算风力时,可略去烟囱直径的变化,把它看作是等截面的。

解:烟囱底截面上的最大压应力:=土壤上的最大压应力=:即即解得:返回m8-5(8-8) 试求图示杆内的最大正应力。

力f与杆的轴线平行。

解:固定端为危险截面,其中:轴力,弯矩,,z为形心主轴。

=a点拉应力最大==b点压应力最大==因此返回8-6(8-9) 有一座高为1.2m、厚为0.3m的混凝土墙,浇筑于牢固的基础上,用作挡水用的小坝。

试求:(1)当水位达到墙顶时墙底处的最大拉应力和最大压应力(设混凝土的密度为);(2)如果要求混凝土中没有拉应力,试问最大许可水深h为多大?解:以单位宽度的水坝计算:水压:混凝土对墙底的压力为:墙坝的弯曲截面系数:墙坝的截面面积:墙底处的最大拉应力为:【篇二:材料力学b试题8组合变形】心压缩杆,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e和中性轴到形心的距离d之间的关系有四种答案: (a)e?d;(b) e?d;(c) e越小,d越大; (d) e越大,d越大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)计算截面几何性
截面形心坐标
截面对形心轴的惯性矩
(2)内力分析
截开立柱横截面I-I,取上半部分
由静力平衡方程可得
所以立柱发生压弯变形。
(3)最大正应力发生在立柱左侧
力柱满足强度要求。
9.6.图示钻床的立柱为铸铁制成,P=15kN,许用拉应力为[t]=35MPa。试确定立柱所需要的直径d。
解:(1)内力分析
解:(1)轴的计算简图
画出铰车梁的内力图危险截面源自梁中间截面左侧(2) 强度计算
第三强度理论
所以铰车的最大起重量为788N
9.12.操纵装置水平杆如图所示。杆的截面为空心圆,内径d=24 mm,外径D=30mm。材料为Q235钢,[]=100 MPa。控制片受力P=600N。试用第三强度理论校核杆的强度。
解:(1)传动轴的计算简图
求传动轴的外力偶矩及传动力
(2)强度计算
a)忽略皮带轮的重量(Q=0)
轴的扭矩图为
在xz平面内弯曲的弯矩图为
在xy平面内弯曲的弯矩图为
求合成弯矩
B截面是危险截面
第三强度理论
b)考虑皮带轮的重量
xz平面的弯矩图为
xy平面的弯矩图不变,B截面仍是危险截面
根据第三强度理论
解:(1)水平杆的受力简图
列平衡方程
画出内力图
B截面是危险截面
(2)按第三强度理论计算
杆的强度足够.
9.14.图示带轮传动轴传递功率P=7kW,转速n=200r/min。皮轮重量Q=1.8kN。左端齿轮上的啮合力Pn与齿轮节圆切线的夹角(压力角)为20o。轴的材料为Q255钢,许用应力[]=80MPa。试分别在忽略和考虑带轮重量的两种情况下,按第三强度理论估算轴的直径。
解:(1) 将力P和H向截面形心简化
(2)截面ABCD上的内力
(3)截面几何性质
(4)A点的正应力
B点的正应力
C点的正应力
D点的正应力
9.8.作用于悬臂木梁上的载荷为:xy平面内的P1=800N,xz平面内的P2=1650N。若木材的许用应力[]=10MPa,矩形截面边长之比为h/b=2,试确定截面的尺寸。
材料力学习题解答(组合变形)
———————————————————————————————— 作者:
———————————————————————————————— 日期:

9.3.图示起重架的最大起吊重量(包括行走小车等)为P=40kN,横梁AC由两根No18槽钢组成,材料为Q235钢,许用应力[]=120MPa。试校核梁的强度。
解:(1)求内力
固定端弯矩最大
(2)求应力
木梁在xy平面弯曲而引起的固定端截面上的最大应力为
木梁在xz平面弯曲而引起的固定端截面上的最大应力为
(3)强度计算
固定端截面上a点是最大拉应力点,b点是最大压应力点,应力数值大小是
9.10.图示手摇铰车的轴的直径d=30mm,材料为Q235钢,[]=80MPa。试按第三强度理论求铰车的最大起重量P。
如图作截面取上半部分,由静力平衡方程可得
所以立柱发生拉弯变形。
(2)强度计算
先考虑弯曲应力
取立柱的直径d=122mm,校核其强度
立柱满足强度要求。
注:在组合变形的截面几何尺寸设计问题中,先根据主要变形设计,然后适当放宽尺寸进行强度校核,这是经常使用的方法。
9.7.在力P和H联合作用下的短柱如图所示。试求固定端截面上角点A、B、C、D的正应力。
解:(1)受力分析
当小车行走至横梁中间时最危险,此时梁AC的受力为
由平衡方程求得
(2)作梁的弯矩图和轴力图
此时横梁发生压弯组合变形,D截面为危险截面,
(3)由型钢表查得No.18工字钢
(4)强度校核
故梁AC满足强度要求。
注:对塑性材料,最大应力超出许用应力在5%以内是允许的。
9.5.单臂液压机架及其立柱的横截面尺寸如图所示。P=1600kN,材料的许用应力[]=160MPa。试校核立柱的强度。
相关文档
最新文档