7段数码管显示电路

合集下载

八位七段数码管动态显示电路设计

八位七段数码管动态显示电路设计

八位七段数码管动态显示电路的设计一七段显示器介绍七段显示器,在许多产品或场合上经常可见。

其内部结构是由八个发光二极管所组成,为七个笔画与一个小数点,依顺时针方向为A、B、C、D、E、F、G与DP等八组发光二极管之排列,可用以显示0~9数字及英文数A、b、C、d、E、F。

目前常用的七段显示器通常附有小数点,如此使其得以显示阿拉伯数之小数点部份。

七段显示器的脚位和线路图如下图4.1所示( 其第一支接脚位于俯视图之左上角)。

图4.1、七段显示器俯视图由于发光二极管只有在顺向偏压的时候才会发光。

因此,七段显示器依其结构不同的应用需求,区分为低电位动作与高电位动作的两种型态的组件,另一种常见的说法则是共阳极( 低电位动作)与共阴极( 高电位动作)七段显示器,如下图4.2所示。

( 共阳极) ( 共阴极)图4.2、共阳极(低电位动作)与共阴极(高电位动作)要如何使七段显示器发光呢?对于共阴极规格的七段显示器来说,必须使用“ Sink Current ”方式,亦即是共同接脚COM为VCC,并由Cyclone II FPGA使接脚成为高电位,进而使外部电源将流经七段显示器,再流入Cyclone II FPGA的一种方式本实验平台之七段显示器模块接线图如下图4.5所示。

此平台配置了八组共阳极之七段显示器,亦即是每一组七段显示器之COM接脚,均接连至VCC电源。

而每一段发光二极管,其脚位亦均与Cyclone II FPGA接连。

四位一体的七段数码管在单个静态数码管的基础上加入了用于选择哪一位数码管的位选信号端口。

八个数码管的a、b、c、d、e、f、g、h、dp都连在了一起,8个数码管分别由各自的位选信号来控制,被选通的数码管显示数据,其余关闭。

图4.5、七段显示器模块接线图七段显示器之常见应用如下➢可作为与数值显示相关之设计。

⏹电子时钟应用显示⏹倒数定时器⏹秒表⏹计数器、定时器⏹算数运算之数值显示器二七段显示器显示原理七段显示器可用来显示单一的十进制或十六进制的数字,它是由八个发光二极管所构成的( 每一个二极管依位置不同而赋予不同的名称,请参见图4.1 ) 。

七段数码管显示数字电路

七段数码管显示数字电路

七段数码管显示数字电路学习 2008—11—02 15:15:18 阅读2837 评论0 字号:大中小CD4511是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点如下:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS电路能提供较大的拉电流.可直接驱动LED显示器.CD4511 是一片 CMOS BCD-锁存/7 段译码/驱动器,引脚排列如图 2 所示。

其中a b c d 为 BCD 码输入,a为最低位。

LT为灯测试端,加高电平时,显示器正常显示,加低电平时,显示器一直显示数码“8”,各笔段都被点亮,以检查显示器是否有故障。

BI为消隐功能端,低电平时使所有笔段均消隐,正常显示时, B1端应加高电平.另外 CD4511有拒绝伪码的特点,当输入数据越过十进制数9(1001)时,显示字形也自行消隐。

LE是锁存控制端,高电平时锁存,低电平时传输数据。

a~g是 7 段输出,可驱动共阴LED数码管。

另外,CD4511显示数“6”时,a段消隐;显示数“9”时,d段消隐,所以显示6、9这两个数时,字形不太美观图3是 CD4511和CD4518配合而成一位计数显示电路,若要多位计数,只需将计数器级联,每级输出接一只 CD4511 和 LED 数码管即可。

所谓共阴 LED 数码管是指 7 段 LED 的阴极是连在一起的,在应用中应接地。

限流电阻要根据电源电压来选取,电源电压5V时可使用300Ω的限流电阻。

用CD4511实现LED与单片机的并行接口方法如下图: (略)CD4511 引脚图其功能介绍如下:BI:4脚是消隐输入控制端,当BI=0 时,不管其它输入端状态如何,七段数码管均处于熄灭(消隐)状态,不显示数字.LT:3脚是测试输入端,当BI=1,LT=0 时,译码输出全为1,不管输入 DCBA 状态如何,七段均发亮,显示“8"。

它主要用来检测数码管是否损坏。

LE:锁定控制端,当LE=0时,允许译码输出. LE=1时译码器是锁定保持状态,译码器输出被保持在LE=0时的数值。

七段LED数码管显示电路设计(精)

七段LED数码管显示电路设计(精)

实验七七段LED数码管显示电路设计一、实验目的1.学习EDA软件的基本操作2.学习使用原理图进行设计输入3.初步掌握软件输入、编译、仿真和编程的过程4.学习实验开发系统的使用方法二、实验说明本实验通过七段LED数码管显示电路的设计,初步掌握EDA 设计方法中的设计输入、编译、综合、仿真和编程的基本过程。

七段LED数码管显示电路有四个数据输入端(D0-D3),七个数据输出端(A-G。

三、实验要求1、完成七段LED数码管显示电路的原理图输入并进行编译2、对设计的电路经行仿真验证3、编程下载并在实验开发系统上验证设计结果四、实验步骤1、新建工程2、新建Verilog HDL文件3、在文本输入窗口键入代码4、保存HDL文件5、编译文件直至没有错误6、新建波形文件7、添加观察信号8、添加输入激励,保存波形文件9、功能仿真七段LED数码管显示电路真值表:输入D3D2D1D0G F E D C B A 000000111111 100010000110 200101011011 300111001111 401001100110 501011101101 601101111101 701110001111 810001111111910011101111 A10101110111 B10111111100 C11001111001 D110111011110 E11101111001 F11111110001五、电路原理图啊Verilog代码描述:module qiduan(data_in,data_out;input [3:0]data_in;output [6:0]data_out;reg [6:0]data_out;always @(data_inbegincasex(data_in4'b0000:data_out<=7'b0111111;4'b0001:data_out<=7'b0000110; 4'b0010:data_out<=7'b1011011; 4'b0011:data_out<=7'b1001111; 4'b0100:data_out<=7'b1100110; 4'b0101:data_out<=7'b1101101; 4'b0110:data_out<=7'b1111100; 4'b0111:data_out<=7'b0000111; 4'b1000:data_out<=7'b1111111; 4'b1001:data_out<=7'b1100111; 4'b1010:data_out<=7'b1110111; 4'b1011:data_out<=7'b1111100; 4'b1100:data_out<=7'b0111001; 4'b1101:data_out<=7'b1011110; 4'b1110:data_out<=7'b1111001; 4'b1111:data_out<=7'b1110001; default:data_out<=7'b0000000; endcaseendendmodule仿真波形:六、实验体会七段LED数码管显示电路是常用的数码管之一,它有四个数据输入端(D0-D3),七个数据输出端(A-G。

可编程逻辑器件实验EDA-七段数码管显示电路

可编程逻辑器件实验EDA-七段数码管显示电路

实验四 七段数码管显示电路
一、实验目的
实现十六进制计数显示。

二、硬件需求
EDA/SOPC 实验箱一台。

三、实验原理
七段数码管分共阳极与共阴极两种。

共阳极数码管其工作特点是,当笔段电极接低电平,公共阳极接高电平时,相应笔段可以发光。

共阴极数码管则与之相反,它是将发光二极管的阴极短接后作为公共阴极,当驱动信号为高电平、公共阴极接低电平时,才能发光。

图2-13为共阳极数码管和共阴极数码管的内部结构图。

a b c d e f g h
a
b
c
d
e
f
g
h
a b c d e f g h
DIG
DIG
共阴极七段数码管
共阳极七段数码管
图2-13 共阳极数码管和共阴极数码管的内部结构图
用七段数码管除了可以显示0~9的阿拉伯数字外,还可以显示一些英语字母。

下表是常见的字母与7段显示关系(共阴极数码管)。

编写一个0~F 轮换显示的电路(注意:选用实验箱中的共阳数码管DP1A ,FPGA 上
P25引脚连接50MHz时钟。

实验时为了便于观察,要将50MHz时钟经过分频得到1Hz时钟)。

五、实验步骤
(1)实验程序
(2)仿真结果
为方便观察程序功能,分频改为6分频,从上图可以看出数码管输出能够连续变化,同时输出正确稳定的七位码。

(3)管脚绑定
(4)实验实际结果
从实际的上电结果可以看出,每过一秒,数码管数值增1,并发生跳变显示。

实验28255七段数码管静动态显示

实验28255七段数码管静动态显示

微机实验报告书同组名单:实验日期:2012.12.21实验题目:七段数码管的静态显示实验目标:掌握数码管显示数字的原理(功能:键盘输入一位十进制数字(0~9),用七段数码管显示。

)解题思路:1.静态显示:按图10 (a)连接好电路,将8255的A口 PAO-PA鲂别与七段数码管的断码驱动输入端a-g项链,位码驱动输入端S1接+5V, SO dp2.动态显示:按图10 (b)连接好电路,七段数码管段码连接不变,位码驱动输入端S1, S0接8255C口的PC1, PCQ编程在两个数码管上显示“56” 程序框图:静态显示见图11( a),动态显示见图11 (b)。

学号:_______ 姓名: 班级:________S 10琵接电路图图11流程图关键问题分析(静态显示):1、按键判断和程序结束判断按键来说,由于程序中必须输入数字,所以没有必要对是否按键进行判断, 只需要判断按键是否在0-9之间即可。

用以下程序即可:条件转移指令,即在小于时转移 条件转移指令,即在大于时转移程序中还要用到“ cmp'即比较指令,用来比较输入数与0、9的大小关系 程序结束:如若输入的数字小于0或者大于9,必须直接跳出程序,即结束指令必 须单独占用一个程序段,这样,程序顺序执行完毕也可以顺利返回DOS 2、七段码显示。

始丿将所得字符的 ASCII 码减如H1查表求出对应的盅码将段码自8药5A 口输出(b)cmp al,'0'jl exit; jl,cmp al,'9' 从键盘接收字符实验指导书中给出了七段码的字型代码。

这样一来, 七段码的显示只需要用换码 指令“XLAT 便可以轻松实现。

前提是必须将七段码字型编成数码表以字符串的 形式写进程序中。

3、数字键ASCII 码与数值间的转换。

因为0的ASCII 码为30H,所以数字键ASCII 码与数值间的转换时只需减去30F 即可, 可用下列语句实现:sub al,30h 程序清单:静态显示:data segmentioport equ 0c800h-0280hio8255aequ ioport+288h io8255b equ ioport+28bhled db 3fh,06h,5bh,4fh,66h,6dh,7dh,07h,7fh,6fhmesg1 db dataends codesegment0dh,0ah,'Input a num (0--9h):',0dh,0ah,'$' assume cs:code,ds:datastart: mov ax,data mov ds,ax mov dx,io8255b从键盘接收字符 是否小于 0 如若小于 0,则跳转到 exit 退岀程序 是否大于 9 如若大于 9,则跳转到 exit 退岀程序 将所得字符的ASCII 码减30H,数字键ascii 码同数值转换 为数码表的起始地址 求岀相应的段码 从8255的A 口输岀 转 zbymov al,80hout dx,al ;10000000B ,控制字PA 以方式0输岀 使8255的A 口为输岀方式zby: mov dx,offset mesg1 ;mov ah,09h int 21h movah,01 ;int 21h cmp al,'0' ;jl exit ;cmp al,'9'; jg exit ;sub al,30h ; movbx,offset led ;bxxlat ;mov dx,io8255a ; outdx,al jmp zby ;exit: mov ah,4ch ; 显示提示信息 返回 DOSint 21h code ends end start动态显示:data segmentioport equ 0c800h-0280hio8255a equ ioport+28ahio8255b equ ioport+28bhio8255c equ ioport+288hled db 3fh,06h,5bh,4fh,66h,6dh,7dh,07h,7fh,6fh ; 段码buffer1 db 5,6 ; 存放要显示的个位和十位bz dw ? ; 位码data endscode segmentassume cs:code,ds:datastart: mov ax,data mov ds,ax mov dx,io8255bmov al,80h ;10000000B out dx,almov di,offset buffer1 ;loop2: mov bh,02 zby: mov byte ptr bz,bhpush di dec di add di, bz movbl,[di] ;bl pop di mov al,0 movdx,io8255a out dx,al mov bh,0mov si,offset led ; add si,bx ;mov al,byte ptr [si] movdx,io8255c ;out dx,al mov al,byte ptr bz ;mov dx,io8255a out dx,al movcx,3000delay: loop delay ;,控制字PA以方式0输岀设di 为显示缓冲区为要显示的数置led 数码表偏移地址为SI 求岀对应的led 数码自8255A的口输岀使相应的数码管亮延时将8255设为A口输岀mov bh,byte ptr bzshr bh,1jnz zbymov dx,0ffhmov ah,06int 21hje loop2 ; 有键按下则退出mov dx,io8255amov al,0 ; 关掉数码管显示out dx,almov ah,4ch ; 返回int 21hcode endsend start运行结果:静态显示:在键盘上输入一个 0-9 的任意数字,会显示在数码管上。

BCD7段数码管显示译码器电路设计

BCD7段数码管显示译码器电路设计

以上语句等效为: process(indicator, sig)
variable temp : std_logic ; begin
temp := ‘0’ ; temp :=temp xor (sig(0) and indicator(0)); temp :=temp xor (sig(1) and indicator(1)); temp :=temp xor (sig(2) and indicator(2)); temp :=temp xor (sig(3) and indicator(3)); output <= temp ; end process ;Biblioteka 例:变量赋值实现循环语句功能
process(indicator, sig) variable temp : std_logic;
begin temp := ‘0’ ; for i in 0 to 3 loop
temp:=temp xor (sig(i) and indicator(i));
end loop ; output <= temp; end process;
PROCESS (a,b) BEGIN
--sequential statements END PROCESS;
PROCESS BEGIN
-- sequential statements WAIT ON (a,b) ; END PROCESS;
BCD-7段显示译码器工作原理
• BCD-7段译码器是由7个发光二极(LED) 管构成,LED由特殊的半导体材料砷化镓、 磷砷化镓等制成,组装成分段式或点阵式 LED显示器件(半导体显示器)。分段式显示 器(LED数码管)由7条线段围成8型,每一段 包含一个发光二极管。外加正向电压时二 极管导通,发出清晰的光,有红、黄、绿 等色。只要按规律控制各发光段的亮、灭, 就可以显示各种字形或符号。

EDA实验二 八位七段数码管动态显示电路的设计

EDA实验二  八位七段数码管动态显示电路的设计

实验名称八位七段数码管动态显示电路的设计一、实验目的1、了解数码管的工作原理。

2、学习七段数码管显示译码器的设计。

3、学习Verilog的CASE语句及多层次设计方法。

二、实验原理七段数码管是电子开发过程中常用的输出显示设备。

在实验系统中使用的是两个四位一体、共阴极型七段数码管。

其单个静态数码管如下图4-1所示。

图4-1 静态七段数码管由于七段数码管公共端连接到GND(共阴极型),当数码管的中的那一个段被输入高电平,则相应的这一段被点亮。

反之则不亮。

共阳极性的数码管与之相么。

四位一体的七段数码管在单个静态数码管的基础上加入了用于选择哪一位数码管的位选信号端口。

八个数码管的a、b、c、d、e、f、g、h、dp都连在了一起,8个数码管分别由各自的位选信号来控制,被选通的数码管显示数据,其余关闭。

三、实验内容本实验要求完成的任务是在时钟信号的作用下,通过输入的键值在数码管上显示相应的键值。

在实验中时,数字时钟选择1KHZ作为扫描时钟,用四个开关做为输入,当四个开关置为一个二进制数时,在数码管上显示其十六进制的值。

实验箱中的拨动开关与FPGA的接口电路,以及开关FPGA的管脚连接在实验一中都做了详细说明,这里不在赘述。

数码管显示模块的电路原理如图4-2所示,表4-1是其数码管的输入与FPGA的管脚连接表。

图4-2 数字时钟信号模块电路原理信号名称对应FPGA管脚名说明7SEG-A G6 七段码管A段输入信号7SEG-B G7 七段码管B段输入信号7SEG-C H3 七段码管C段输入信号7SEG-D H4 七段码管D段输入信号7SEG-E H5 七段码管E段输入信号7SEG-F H6 七段码管F段输入信号7SEG-G J4 七段码管G段输入信号7SEG-DP L8 七段码管dp段输入信号7SEG-SEL0 G5 七段码管位选输入信号7SEG-SEL1 G3 七段码管位选输入信号7SEG-SEL2 F4 七段码管位选输入信号表4-1 数码管与FPGA的管脚连接表四、实验步骤1、打开QUARTUSII软件,新建一个工程。

实验四 七段数码管显示实验报告

实验四 七段数码管显示实验报告

实验四七段数码管显示实验一、实验目的掌握数码管显示数字的原理。

二、实验内容1.静态显示:数码管为共阴极,通过BCD码译码驱动器CD4511驱动,其输入端A~D输入4位BCD码,位码输入低电平选中。

按图4-1连接好电路,将8255的A口PA0~PA3与七段数码管LED1的BCD码驱动输入端A1~D1相连,8255的A口PA4~PA7与七段数码管LED2的BCD码驱动输入端A2~D2相连,8255的B口PB0~PB3与七段数码管LED3的BCD码驱动输入端A3~D3相连,8255的B口PB4~PB7与七段数码管LED4的BCD码驱动输入端A4~D4相连,8255的C口PC0~PC3分别与七段数码管LED4~LED4的位驱动输入端DG1~DG4相连。

编程从键盘上每输入4个0~9数字,在七段数码管LED4~LED4上依次显示出来。

图4-12.动态显示:数码管为共阴极,段码采用相同驱动,输入端加高电平,选中的数码管对应段点亮,位码采用同相驱动,位码输入端低电平选中,按图4-2连接好电路,图中只画了2个数码管,实际是8个数码管,将8255的A口PA0~PA7分别与七段数码管的段码驱动输入端a~g相连(32TCI0模块上的J1连32LED8模块J2),8255的C口的PC0~PC7接七段数码管的段码驱动输入(32TCI0模块上的J3连32LED8模块J1),跳线器K1连2和3。

编程在8个数码管上显示“12345678”。

按任意键推出运行。

图4-2三、编程提示1.由于DVCC卡使用PCI总线,所以分配的IO地址每台微机可能都不用,编程时需要了解当前的微机使用那段IO地址并进行处理。

2.对实验内容1,七段数码管字型代码与输入的关系如下表:四、参考流程图1.实验内容一的参考流程图图4-3 2.实验内容二的参考流程图图4-4五、参考程序1.内容一的参考程序源程序清单如下:data segmentioport equ 0c400h-0280hio8255a equ ioport+288hio8255b equ ioport+289hio8255c equ ioport+28ahio8255k equ ioport+28bhled db 3fh,06h,5bh,4fh,66h,6dh,7dh,07h,7fh,6fhmesg1 db 0dh,0ah,'Input a num (0--9),other key is exit:',0dh,0ah,'$'bz db ?cz db 04hdata endscode segmentassume cs:code,ds:datastart: mov ax,datamov ds,axmov dx,io8255k ;使8255的A口为输出方式mov ax,80hout dx,alsss0: mov si,offset bzmov cx,04hsss1: mov dx,offset mesg1 ;显示提示信息mov ah,09hint 21hmov ah,01 ;从键盘接收字符int 21hcmp al,'0' ;是否小于0jl exit ;若是则退出cmp al,'9' ;是否大于9jg exit ;若是则退出sub al,30h ;将所得字符的ASCII码减30Hmov [si],al ;存入显示缓冲区inc si ;显示缓冲区指针加1dec cx ;判断输入满4个数字吗?jnz sss1 ;不满继续mov si,offset bz ;从显示缓冲区取第一个数字的BCD 码mov al,[si]and al,0fh ;屏蔽高四位暂存ALinc si ;显示缓冲区指针加1mov ah,[si] ;取第二个数字的BCD码到AHsal ah,4h ;右移4次到高四位add al,ah ;两个BCD码合并成一个字节mov bl,al ;暂存入BLinc simov al,[si] ;取第三个数字的BCD码and al,0fhinc simov ah,[si] ;取第四个数字的BCD码到AHsal ah,4hadd ah,almov al,ahmov dx,io8255a ;从8255的A口输出(后两个数字)out dx,almov al,blmov dx,io8255b ;从8255的B口输出(前两个数字)out dx,almov al,0f0hmov dx,io8255c ;从8255的C口输出位码out dx,almov dl,0ffhmov ah,06int 21hje sss0 ;有键按下则退出exit: mov ah,4ch ;返回int 21hcode endsend start2.内容二的参考程序源程序清单如下:data segmentioport equ 0C400h-0280hio8255c equ ioport+28ahio8255k equ ioport+28bhio8255a equ ioport+288hled db 3fh,06h,5bh,4fh,66h,6dh,7dh,07h,7fh,6fh ;段码buffer1 db 01h,02h,03h,04h,05h,06h,07h,08h ;存放要显示的十位和个位con db ? ;位码data endscode segmentassume cs:code, ds:datastart: mov ax,datamov ds,axmov dx,io8255k ;将8255设为A口C口输出mov al,80hout dx,alloop2: mov al,08h ;设置数码管位计数器初值到CON mov byte ptr con,almov si,offset buffer1 ;置显示缓冲器指针SImov ah,7fh ;置位码初值disp0: mov cx,0ffffhmov bl,ds:[si] ;取显示缓冲区显示值存BXmov bh,0hpush simov dx,io8255c ;位码从C口输出mov al,ahout dx,almov dx,io8255amov si,offset led ;置led数码表偏移地址为SIadd si,bx ;求出对应的led数码mov al,byte ptr [si]out dx,al ;段码从A口输出disp1: loop disp1 ;延时mov cx,0ffffhdisp2: loop disp2ror ah,01h ;位码右移1位pop siinc si ;显示缓冲区指针加1mov al,byte ptr condec almov byte ptr con,aljnz disp0 ;数码管位计数器减1为0吗?,不为0继续mov dx,io8255a ;为0,关数码管显示mov al,0out dx,almov dl,0ffhmov ah,06int 21hje loop2 ;有键按下则退出mov ah,4ch ;返回int 21hcode endsend start实验总结:通过这次试验,我了解到自定义数据类型可以根据自己的需要方便设定,有很大的灵活性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.4 显示模块
4.4.1 7段数码管的结构与工作原理
7段数码管一般由8个发光二极管组成,其中由7个细长的发光二极管组成
数字显示,另外一个圆形的发光二极管显示小数点。

当发光二极管导通时,相应的一个点或一个笔画发光。

控制相应的二极管导通,就能显示出各种字符,尽管显示的字符形状有些失真,能显示的数符数量也有限,但其控制简单,使有也方便。

发光二极管的阳极连在一起的称为共阳极数码管,阴极连在一起的称为共阴极数码管,如图4.9所示。

4.4.2 7段数码管驱动方法
发光二极管(LED 是一种由磷化镓(GaP )等半导体材料制成的,能直接将电能转变成光能的发光显示器件。

当其内部有一一电流通过时,它就会发光。

7段数码管每段的驱动电流和其他单个LED 发光二极管一样,一般为5~10mA ;正向电压随发光材料不同表现为1.8~2.5V 不等。

7段数码管的显示方法可分为静态显示与动态显示,下面分别介绍。

(1) 静太显示
所谓静态显示,就是当显示某一字符时,相应段的发光二极管恒定地寻能可截止。

这种显示方法为每一们都需要有一个8位输出口控制。

对于51单片机,可以在并行口上扩展多片锁存74LS573作为静态显示器接口。

静态显示器的优点是显示稳定,在发光二极管导通电注一定的情况下显示器的亮度高,控制系统在运行过程中,仅仅在需要更新显示内容时,CPU 才执行一次显示更新子程序,这样大大节省了CPU 的时间,提高了CPU 的工作效率;缺点是位数较多时,所需I/O 口太多,硬件开销太大,因此常采用另外一种显示方式——动态显示。

共阴极
7段数码管内部字段LED 和引脚分布 共阳极
图4.9 7段数码管结构图
(2)动态显示
所谓动态显示就是一位一位地轮流点亮各位显示器(扫描),对于显示器的每一位而言,每隔一段时间点亮一次。

虽然在同一时刻只有一位显示器在工作(点亮),但利用人眼的视觉暂留效应和发光二极管熄灭时的余辉效应,看到的却是多个字符“同时”显示。

显示器亮度既与点亮时的导通电流有关,也与点亮时间和间隔时间的比例有关。

调整电流和时间参烽,可实现亮度较高较稳定的显示。

若显示器的位数不大于8位,则控制显示器公共极电位只需一个8位I/O口(称为扫描口或字位口),控制各位LED显示器所显示的字形也需要一个8位口(称为数据口或字形口)。

动态显示器的优点是节省硬件资源,成本较低,但在控制系统运行过程中,要保证显示器正常显示,CPU必须每隔一段时间执行一次显示子程序,这占用了CPU的大量时间,降低了CPU工作效率,同时显示亮度较静态显示器低。

综合以上考虑,由于温度显示为精确到小数点后两位,故只需4个数码管,又考虑到CPU 工作效率与电源效率,本毕业设计采用静态显示。

为共阳极显示。

4.4.3 硬件编码
动74LS47是一款BCD码转揣为7段输出的集成电路芯片,利用它可以直接驱动共阳极的7段数码管。

它的引脚分部和真值表分别下图。

74LS47管脚定义7段数码管静态显示电路原理图之锁存电路7段数码管静态显示电跩原理图之锁存译码电路
上述设计中,单片机工作时钟由18.432MHZ 的晶振产生;电路中共有4位7段共阳极数码管,用于显示数据;
74HC573是8位锁存器,用于锁存各个数码管的显示数据;74HC138是3——8线译码器,它和6反相器74HC04一起实现地各个数码管的锁存器控制地址的译码。

4.4.4 软件设计
上述设对于共阳极数码管,控制端置0使数码管点亮,控制端置1使数码管不亮。

根字型 dp g f e d c b a 编码共阴 编码共阳 0 0 0 1 1 1 1 1 1 3F C0 1 0 0 0 0 1 1 0 0 0C F3 2 0 1 1 1 0 1 1 0 76 89 3 0 1 0 1 1 1 1 0 5E A1 4 0 1 0 0 1 1 0 1 4D B2 5 0 1 0 1 1 0 1 1 5B A4 6 0 1 1 1 1 0 1 1 7B 84 7 0 0 0 0 1 1 1 0 0E F1 8 0 1 1 1 1 1 1 1 7F 80 9 0 1 1 1 1 1 1 1 5F A0 A 0 1 0 0 1 1 1 1 6F 90 B 0 1 1 1 1 0 0 1 79 86 C 0 0 1 1 0 0 1 1 33 CC D 0 1 1 1 1 1 0 0 7C 83 E 0 1 1 1 0 0 1 1 73 8C F
1
1
1
1
63
9C
7段数码管静态显示电路原理图之CPU 电路 MCS-51单片
软件实现过程如下:
/***************************************************
7段数码管静态显示程序
***************************************************/
#include <reg52.h>
#include <stdio.h>
#include <stdlib.h>
#include <absacc.h>
#include <ctype.h>
#include <string.h>
#include <stddef.h>
#include <intrins.h>
#include <absacc.h>
#include <stdarg.h>
/* 4个7段数码管锁存器地址*/
#define LED1ADDR 0x8000
#define LED2ADDR 0x8100
#define LED3ADDR 0x8200
#define LED4ADDR 0x8300
// 0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f
/* 0-9 a-f 的7段数码管显示编码*/
unsigned char ledcode[16]={0xC0,0xF3,0x89,0xA1,0xB2,0xA4,0x84,0xF1,0x80,0xA0,0x90,0x86,0xCC,0x83,0 x8C,0x9C};
/* 存放要显示的数字值*/
unsigned char val[4];//
/* 写锁存器的子程序*/
void wraddr(unsigned int addr,unsigned char d)
{ unsigned char xdata *pa;
pa=(unsigned char xdata *)addr;
*pa=d;
}
/* 显示子程序*/
void display(void)
{ unsigned int addr[4]={LED1ADDR,LED2ADDR,LED3ADDR,LED4ADDR};
int i;
for(i=0;i<4;i++)
{ if((val[i]>=0)&&(val[i]<=15))
{ wraddr(addr[i],ledcode[val[i]]);
}
else
{ wraddr(addr[i],0xff);
}
}
}
/* 初始化子程序*/
void init(void)
{ wraddr(LED1ADDR,0XFF);
wraddr(LED2ADDR,0XFF);
wraddr(LED3ADDR,0XFF);
wraddr(LED4ADDR,0XFF);
//输入要显示的数值
val[0]=1;
val[1]=2;
val[2]=3;
val[3]=4;
}
/* 主程序入口*/
int main(void)
{ init();
while(1)
{ display();
}
}。

相关文档
最新文档