2020届全国100所名校最新高考模拟示范卷高三文科数学模拟测试试题(一)(word无答案)

合集下载

【名校试题】2020届全国100所名校高三模拟金典卷文科数学(一)试题(解析版)

【名校试题】2020届全国100所名校高三模拟金典卷文科数学(一)试题(解析版)

100所名校高考模拟金典卷·数学(一)(120分钟 150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|24},{|22}A x x B x x =-<≤=-≤<,则A B =U ( ) A. {|22}x x -<< B. {|24}x x -≤≤ C. {|22}x x -≤≤ D. {|24}x x -<≤【答案】B 【解析】 【分析】直接利用并集的定义计算即可.【详解】由已知,集合{|24},{|22}A x x B x x =-<≤=-≤<,所以{|24}A B x x ⋃=-≤≤. 故选:B【点睛】本题考查集合的并集运算,考查学生的基本计算能力,是一道基础题. 2.已知a 是实数,()11a a i -++是纯虚数,则复数z a i =+的模等于( )A. 2B.C.D. 1【答案】C 【解析】 【分析】()11a a i -++是纯虚数可得1a =,则1z i =+,再根据模计算的公式计算即可.【详解】()11a a i -++是纯虚数,则实部为0,虚部不为0,即1a =,所以1z i =+,||z =故选:C【点睛】本题考查复数模的计算,涉及到复数的相关概念,是一道容易题. 3.某产品的宣传费用x (万元)与销售额y (万元)的统计数据如下表所示:根据上表可得回归方程ˆ9.6 2.9yx =+,则宣传费用为3万元时销售额a 为( ) A. 36.5 B. 30C. 33D. 27【答案】D 【解析】 【分析】由题表先计算出x ,将其代入线性回归方程即可. 【详解】由已知,1(4235) 3.54x =+++=, 由回归方程过点(),x y ,故36.5y =, 即1(452450)36.54y a =+++=,解得27a =. 故选:D【点睛】本题考查线性回归方程的简单应用,回归方程一定过样本点的中心(,)x y ,考查学生的基本计算能力,是一道容易题.4.已知在等差数列{}n a 中,34576, 11a a a a ++==,则1a =( ) A. 3 B. 7C. 7-D. 3-【答案】C 【解析】 【分析】由3456a a a ++=,可得42,a =结合7 11a =,可得公差d ,再由413a a d =+可得1a . 【详解】由等差数列的性质,得345436a a a a ++==, 所以42,a =公差7493743a a d -===-, 又4132a a d =+=,所以17a =-. 故选:C【点睛】本题考查等差数列的性质及等差数列基本量的计算,考查学生的运算能力,是一道容易题. 5.已知抛物线24y x =的准线与圆2260x y x m +--=相切,则实数m 的值为( )A. 8B. 7C. 6D. 5【答案】B 【解析】 【分析】由题可得准线方程为1x =-,再利用圆心到直线的距离等于半径计算即可得到答案. 【详解】由已知,抛物线的准线方程为1x =-,圆2260x y x m +--=的标准方程为22(3)9x y m -+=+,由1x =-与圆相切,所以圆心到直线的距离()314d =--==, 解得7m =. 故选:B【点睛】本题主要考查抛物线的定义,涉及到直线与圆的位置关系,考查学生的运算求解能力,是一道容易题.6.已知平面向量a r ,b r满足a =r ,||3b =r ,(2)a a b ⊥-r r r ,则23a b -r r ( )A.B.C. 4D. 5【答案】A 【解析】 【分析】由(2)0a a b ⋅-=r r r ,可得2a b ⋅=r r,将其代入|23|a b -==r r .【详解】由题意可得||2a ==r ,且(2)0a a b ⋅-=r r r, 即220a a b -⋅=r r r,所以420a b -⋅=r r,所以2a b ⋅=r r.由平面向量模的计算公式可得|23|a b -==r r ==故选:A【点睛】本题考查利用数量积计算向量的模,考查学生的数学运算能力,是一道容易题.7.已知定义在R 上的函数()y f x =,对于任意的R x ∈,总有()()123f x f x -++=成立,则函数()y f x =的图象( )A. 关于点()1,2对称B. 关于点33,22⎛⎫⎪⎝⎭对称 C. 关于点()3,3对称 D. 关于点()1,3对称【答案】B 【解析】 【分析】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,再结合()()123f x f x -++=简单推导即可得到.【详解】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,则(2)(1(21))3(221)f a x f x a f x a -=--+=-+-+3(32)2()f a x b f x =--+=-,所以有23,320b a =-=,解得33,22a b ==.所以函数()y x =的图象关于点33,22⎛⎫⎪⎝⎭对称. 故选:B【点睛】本题考查函数图象的对称性,考查学生的逻辑推理能力,当然也可以作一个示意图得到,是一道中档题.8.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生 B. 200号学生 C. 616号学生 D. 815号学生【答案】C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到, 所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .【点睛】本题主要考查系统抽样.9.函数||4x e y x=的图象可能是( )A. B.C. D.【答案】C 【解析】 【分析】由函数的奇偶性可排除B ;由(1),(3)f f 可排除选项A 、D.【详解】设||()4x e f x x =,定义域为{|0}x x ≠,||()()4x e f x f x x-=-=-,所以()f x 为奇函数,故排除选项B ;又(1)14e f =<,排除选项A ;3(3)112e f =>,排除选项D.故选:C【点睛】本题考查由解析式选函数图象的问题,涉及到函数的性质,此类题一般从单调性、奇偶性、特殊点的函数值入手,是一道容易题.10.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A.163πB.3π C.29π D.169π【答案】D 【解析】 【分析】由三视图可知该几何体为底面是圆心角为23π的扇形,高是4的圆锥体,再利用圆锥体积公式计算即可. 【详解】从三视图中提供的图形信息与数据信息可知:该几何体的底面是圆心角为23απ=的扇形,高是4的圆锥体, 容易算得底面面积2112442233S r παπ==⨯⨯=,所以其体积111644339V ππ=⨯⨯⨯=. 故选:D【点睛】本题考查三视图还原几何体以及几何体体积的计算,考查学生的空间想象能力、数学运算能力,是一道中档题.11.已知函数()sin (0)f x x x ωωω=+>的图象上存在()()12,0,,0A x B x 两点,||AB 的最小值为2π,再将函数()y f x =的图象向左平移3π个单位长度,所得图象对应的函数为()g x ,则()g x =( ) A. 2sin 2x - B. 2sin2xC. 2cos 26x π⎛⎫-⎪⎝⎭D. 2sin 26x π⎛⎫-⎪⎝⎭【答案】A 【解析】 【分析】()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭,由min ||2AB π=可得T π=,2ω=,再由平移变换及诱导公式可得()g x 的解析式.【详解】()sin 2sin 3f x x x x πωωω⎛⎫==+ ⎪⎝⎭, 因为||AB 的最小值为12222T ππω=⨯=,解得2ω=. 因为函数()y f x =的图象向左平移3π个单位长度, 所得图象对应的函数为()g x ,所以()2sin 22sin(2)2sin 233g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A【点睛】本题考查三角函数图象的变换,涉及到辅助角公式、诱导公式的应用,考查学生的逻辑推理能力,是一道中档题.12.如图所示,在棱锥P ABCD -中,底面ABCD 是正方形,边长为2,22PD PA PC ===,.在这个四棱锥中放入一个球,则球的最大半径为( )A.2 B.21 C. 2D.21【答案】D 【解析】 【分析】由题意,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD ,SA SB SC SP 、、、,则把此四棱锥分为五个棱锥,设它们的高均为R ,求出四棱锥的表面积S 以及四棱锥的体积P ABCD V -,利用公式13P ABCD V S -=⨯R ⨯,计算即可.【详解】由已知,22PD AD PA ===,,所以222PD AD PA +=,所以PD AD ⊥,同理PD CD ⊥,又CD AD D =I ,所以PD ⊥平面ABCD ,PD AB ⊥,又AB AD ⊥,PD AD D ⋂=,所以AB ⊥平面PAD ,所以PA AB ⊥,设此球半径为R ,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD ,SA SB SC SP 、、、,则把此四棱锥分为五个棱锥,它们的高均为R . 四棱锥的体积112223323P ABCD ABCD V S PD -=⨯⨯==W , 四棱锥的表面积S 2112222222242222PAD PAB ABCDS S S =++=⨯+⨯⨯=+V V W , 因13P ABCD V S -=⨯R ⨯,所以32212142221P ABCDVRS-====-++.故选:D【点睛】本题考查几何体内切球的问题,考查学生空间想象能力、转化与化归的能力,是一道有一定难度的压轴选择题.二、填空题:本题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.设实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,则34z x y=-的最大值是__________.【答案】4【解析】【分析】作出可行域,344zy x=-,易知截距越小,z越大,【详解】根据实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,画出可行域,如图,平移直线34y x=即可得到目标函数的最大值.344zy x=-,易知截距越小,z越大,平移直线34y x=,可知当目标函数经过点A时取得最大值,由11y y x =-⎧⎨=--⎩,解得()0,1A -,所以max 304(1) 4.z =⨯-⨯-=故答案为:4【点睛】本题考查简单的线性规划及应用,考查学生数形结合的思想,是一道容易题. 14.曲线()e 43x f x x =+-在点()(0,)0f 处的切线方程为__________. 【答案】52y x =- 【解析】 【分析】直接利用导数的几何意义计算即可.【详解】因为()02f =-,'()4xf x e =+,所以'0(0)45f e =+=,所以切线方程为()25y --=()0x -,即5 2.y x =- 故答案为:52y x =-【点睛】本题考查导数的几何意义,考查学生的基本计算能力,是一道容易题.15.已知数列{}n a 满足:11a =,12nn n a a +=+,则数列{}n a 的前n 项和n S =__________.【答案】122n n +-- 【解析】 【分析】利用累加法可得数列{}n a 的通项公式,再利用分组求和法求和即可.【详解】由已知,12nn n a a +-=,当2n ≥时,()()()211213211212222112n n n n n n a a a a a a a a ---=+-+-+⋅⋅⋅+-=+++⋅⋅⋅+==--, 又11a =满足上式,所以21nn a =-,()212122222212n n n n S n n n +-=++⋅⋅⋅+-=-=---.故答案为:122n n +--【点睛】本题考查累加法求数列的通项以及分组求和法求数列的和,考查学生的运算求解能力,是一道中档题.16.已知双曲线22221x y a b-=(0b a >>)的左、右焦点分别是1F 、2F ,P 为双曲线左支上任意一点,当1222PF PF 最大值为14a时,该双曲线的离心率的取值范围是__________.【答案】 【解析】 【分析】112222111224|24|2PF PF a PF PF aPF a PF ==+++,1PF c a ≥-,分2c a a -≤,2a c a ≥-两种情况讨论,要注意题目中隐含的条件b a >.【详解】由已知,112222111224|24|2PF PF a PF PF aPF a PF ==+++,因为1PF c a ≥-,当2c a a -≤时,21121444a a PF a PF ≤=++,当且仅当12PF a =时,1222PF PF 取最大值14a, 由2a c a ≥-,所以3e ≤;当2c a a ->时,1222PF PF 的最大值小于14a,所以不合题意. 因为b a >,所以22211b e a=->,所以e >3.e <≤故答案为:【点睛】本题考查双曲线的离心率的取值范围问题,涉及到双曲线的概念与性质及基本不等式,考查学生的逻辑推理能力,是一道有一定难度的题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第1~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.成绩分组 频数[)75,80 2 [)80,856[)85,90 16[)90,9514[)95,1002高二(1)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;(2)在抽取的学生中,从成绩为[]95,100的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率. 【答案】(1)0.85;(2)715【解析】 【分析】(1)利用1减去[)75,80的概率即可得到答案;(2)高一年级成绩为[]95,100的有4人,记为1234, , , A A A A ,高二年级成绩为[]95,100的有2名,记为12,B B ,然后利用列举法即可.【详解】(1)高一年级知识竞赛的达标率为10.0350.85-⨯=.(2)高一年级成绩为[]95,100的有0.025404⨯⨯=(名),记为1234, , , A A A A , 高二年级成绩为[]95,100的有2名,记为12,B B .选取2名学生的所有可能为121314111223242122343132414212, , , , , , , , , , , , , , A A A A A A A B A B A A A A A B A B A A A B A B A B A B B B ,共15种;其中2名学生来自于同一年级的有12131423243412,,,,,,A A A A A A A A A A A A B B ,共7种. 所以这2名学生来自于同一年级的概率为715. 【点睛】本题考查统计与古典概率的计算,涉及到频率分布直方图和频数分布表,考查学生简单的数学运算,是一道容易题.18.在ABC V 中,角、、A B C 所对的边分别是a b c 、、,且2B A C =+,b =(1)若3sin 4sin C A =,求c 的值; (2)求a c+的最大值【答案】(1)4;(2)【解析】 【分析】(1)由已知,易得3B π=,由正弦定理可得34c a =,再由角B 的余弦定理即可得到答案;(2)正弦定理得sin sin sin a c b A C B ===,所以,a A c C ==,sin )a c A C +=+,再利用两角和的正弦公式以辅助角公式可得6a c A π⎛⎫+=+ ⎪⎝⎭,即可得到最大值.【详解】(1)因为2B A C =+, 又A B C π++=,得3B π=.又3sin 4sin C A =,由正弦定理得34c a =,即34a c =, 由余弦定理2222cosb ac ac B =+-,得22331132442c c c c ⎛⎫=+-⨯⨯⨯ ⎪⎝⎭,解得4c =或4c =-(舍). (2)由正弦定理得sin sin sin a c b A C B ===213213sin ,sin 33a A c C ∴==, 213(sin sin )3a c A C ∴+=+ 213[sin sin()]3A AB =++ 21321313sin sin sin sin cos 3233A A A A A π⎡⎤⎡⎤⎛⎫=++=++⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎣⎦213sin 6A π⎛⎫=+ ⎪⎝⎭,由203A π<<,得5666A πππ<+=,当62A ππ+=,即3A π=时,max ()213a c +=.【点睛】本题考查正余弦定理解三角形,涉及到两角和的正弦公式及辅助角公式的应用,考查学生的数学运算求解能力,是一道容易题.19.在菱形ABCD 中,,3ADC AB a π∠==,O 为线段CD 的中点(如图1).将AOD △沿AO 折起到'AOD △的位置,使得平面'AOD ⊥平面ABCO ,M 为线段'BD 的中点(如图2).(Ⅰ)求证:'OD BC ⊥; (Ⅱ)求证:CM ∥平面'AOD ; (Ⅲ)当四棱锥'D ABCO -3时,求a 的值. 【答案】(Ⅰ)见解析. (Ⅱ)见解析. (Ⅲ) 2a =. 【解析】 【分析】(Ⅰ)证明OD '⊥AO . 推出OD '⊥平面ABCO . 然后证明OD '⊥BC .(Ⅱ)取P 为线段AD '的中点,连接OP ,PM ;证明四边形OCMP 为平行四边形,然后证明CM ∥平面AOD ';(Ⅲ)说明OD '是四棱锥D '﹣ABCO 的高.通过体积公式求解即可.【详解】(Ⅰ)证明:因为在菱形ABCD 中,3ADC π∠=,O 为线段CD 的中点,所以'OD AO ⊥. 因为平面'AOD ⊥平面ABCO 平面'AOD I 平面ABCO AO =,'OD ⊂平面'AOD ,所以'OD ⊥平面ABCO . 因为BC ⊂平面ABCO ,所以'OD BC ⊥. (Ⅱ)证明:如图,取P 为线段'AD 的中点,连接OP,PM ; 因为在'ABD ∆中,P ,M 分别是线段'AD ,'BD 的中点, 所以//PM AB ,12PM AB =. 因为O 是线段CD 的中点,菱形ABCD 中,AB DC a ==,//AB DC , 所以122a OC CD ==. 所以OC //AB ,12OC AB =. 所以//PM OC ,PM OC =.所以四边形OCMP 为平行四边形, 所以//CM OP ,因为CM ⊄平面'AOD ,OP ⊂平面'AOD ,所以//CM 平面'AOD ;(Ⅲ)由(Ⅰ)知'OD ⊥平面ABCO .所以'OD 是四棱锥'D ABCO -的高,又S=222a a ⎛+ ⎝⎭= ,'2a OD =因为1'3V S OD =⨯⨯==所以2a =.【点睛】本题考查线面平行与垂直的判定定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力,是基础题20.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,过右焦点F 作与x 轴垂直的直线,与椭圆的交点到x 轴的距离为32.(1)求椭圆C 的方程;(2)设O 为坐标原点,过点F 的直线'l 与椭圆C 交于A B 、两点(A B 、不在x 轴上),若OE OA OB =+u u u r u u u r u u u r,求四边形AOBE 面积S 的最大值.【答案】(1)22143x y +=;(2)3. 【解析】 【分析】(1)由12c a =,232b a =结合222a bc =+解方程组即可;(2)设':1l x ty =+,联立直线'l 与椭圆的方程得到根与系数的关系,因为OE OA OB =+u u u r u u u r u u u r,可得四边形AOBE为平行四边形,12122||2AOB S S OF y y =⨯-==△化简即可解决. 【详解】(1)由已知得12c a =, Q 直线经过右焦点,2222231,||2c y b y a b a ∴+===, 又222a b c =+Q,2,1a b c ∴===,故所求椭圆C 的方程为22143x y +=.(2)Q 过()1,0F 的直线与椭圆C 交于A B 、两点(A B 、不在x 轴上), ∴设':1l x ty =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩,得22(34)690t y ty ++-=,设()()1122,,,A x y B x y ,则122122634934t y y t y y t -⎧+=⎪⎪+⎨-⎪=⎪+⎩,OE OA OB =+u u u r u u u r u u u rQ ,∴四边形AOBE 为平行四边形,122122||234AOBS OF y y t S =∴⨯-===+△,1m ≥, 得2621313m S m m m==++,由对勾函数的单调性易得当1m =,即0t =时,max 32S =. 【点睛】本题考查直线与椭圆的位置关系,涉及到椭圆的方程、椭圆中面积的最值问题,考查学生的逻辑推理能力,是一道中档题. 21.设函数()2a 2xf x x alnx (a 0)x-=-+>. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)记函数()f x 的最小值为()g a ,证明:()g a 1<.【答案】(I )()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增;(II )详见解析. 【解析】 【分析】(I )对函数()f x 求导,解导函数所对应的不等式即可求出结果; (II )由(I )先得到()g a ,要证()1g a <,即证明1ln 1a a a a --<,即证明2111ln a a a--<,构造函数()211ln 1h a a a a =++-,用导数的方法求函数()h a 的最小值即可. 【详解】(Ⅰ)显然()f x 的定义域为()0,+∞.()()()()222242332222221x x a x x a x a x x f x a x x x x x+----++=-⋅='-+=. ∵220x +>,0x >,∴若()0,x a ∈,0x a -<,此时()0f x '<,()f x 在()0,a 上单调递减; 若(),x a ∈+∞,0x a ->,此时()0f x '>,()f x 在(),a +∞上单调递增; 综上所述:()f x 在()0,a 上单调递减,在(),a +∞上单调递增. (Ⅱ)由(Ⅰ)知:()()min 1ln f x f a a a a a==--, 即:()1ln g a a a a a=--. 要证()1g a <,即证明1ln 1a a a a --<,即证明2111ln a a a--<, 令()211ln 1h a a a a =++-,则只需证明()211ln 10h a a a a=++->,∵()()()22333211122a a a a h a a a a a a'-+--=--==,且0a >, ∴当()0,2a ∈,20a -<,此时()0h a '<,()h a 在()0,2上单调递减; 当()2,a ∈+∞,20a ->,此时()0h a '>,()h a 在()2,+∞上单调递增, ∴()()min 1112ln21ln20244h a h ==++-=->. ∴()211ln 10h a a a a =++->.∴()1g a <. 【点睛】本题主要考查导数在函数中的应用,通常需要对函数求导,用导数的方法研究函数的单调性,最值等,属于常考题型.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分.22.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:cos 4sin (0)C a a ρθθ=>,直线的参数方程为21x ty t=-+⎧⎨=-+⎩,(t 为参数).直线l 与曲线C 交于M N ,两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程.(2)设()2,1P --,若||,||,||PM MN PN 成等比数列,求a 和的||MN 值.【答案】(1)22cos 4sin (0)a a ρθρθ=>,10x y -+=;(2)10.【解析】 【分析】(1)利用直角坐标、极坐标、参数方程互化公式即可解决;(2)将直线参数方程标准化,联立抛物线方程得到根与系数的关系,再利用直线参数方程的几何意义即可解决.【详解】(1)曲线2:cos 4sin (0)C a a ρθθ=>,两边同时乘以ρ,可得22cos 4sin (0)a a ρθρθ=>,化简得24(0)x ay a =>;直线l 的参数方程为21x ty t =-+⎧⎨=-+⎩(t 为参数),消去参数t ,可得1x y -=-,即10x y -+=.(2)直线l 的参数方程21x ty t =-+⎧⎨=-+⎩(t 为参数)化为标准式为2212x t y ⎧=-+⎪⎪⎨='+'⎪-⎪⎩('t 为参数),代入24(0)x ay a =>并整理得'2'1)8(1)0t a t a -+++=, 设M N ,两点对应的参数为''12, t t ,由韦达定理可得''121)t t a +=+,''128(1)0t t a ⋅=+>, 由题意得2||||||MN PM PN =⋅,即2''''1212t t t t -=⋅, 可得()2''''''1212124t t t t t t +-⋅=⋅, 即232(1)40(1)a a +=+,0a >,解得1,4a =所以2''121||81104MN t t ⎛⎫=⋅=+= ⎪⎝⎭,||MN =【点睛】本题考查极坐标与参数方程的应用,涉及到极坐标方程、普通方程、参数方程的互化,以及直线参数方程的几何意义求距离的问题,是一道容易题. 23.已知函数()|||2|f x x a x =-++. (1)当1a =时,求不等式()3f x ≤的解集; (2)()00,50x f x ∃∈-≥R ,求实数a 的取值范围. 【答案】(1){|21}x x -#;(2)[7,3]-【解析】 【分析】(1)当1a =时,()|1||2|f x x x =-++,分2x -≤,21x -<<,1x ≥三种情况讨论即可; (2)()00,50x f x ∃∈-≥R ,则()min 5f x ≥,只需找到()f x 的最小值解不等式即可. 【详解】(1)当1a =时,()|1||2|f x x x =-++,①当2x -≤时,()21f x x =-- ,令()3f x ≤,即213x --≤,解得2x ≥-,所以2x =-, ②当21x -<<时,()3f x =,显然()3f x ≤成立,21x ∴-<<,③当1x ≥时,()21f x x =+,令()3f x ≤,即213x +≤,解得1x ≤,所以1x =. 综上所述,不等式的解集为{|21}x x-#.(2)0()|||2||()(2)||2|,f x x a x x a x a x =-++--+=+∃∈R Q …,有()050f x -…成立, ∴要使()05f x ≥有解,只需|2|5a +≤,解得73a ≤≤-, ∴实数a 的取值范围为[7,3]-.【点睛】本题考查解绝对值不等式以及不等式能成立问题,考查学生的基本计算能力,是一道容易题.。

2020届高三模拟考试文科数学试题

2020届高三模拟考试文科数学试题

2020届高三第一次模拟考试文科数学 2020.6全卷满分150分,时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。

2.作答选择题时,选出每个小题答案后,用2B 铅笔把答题卡上对应题目的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。

3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.设集合{}|0A x x =>,集合{}|1B x y x ==-,则A B =( )A .{}|0x x >B .{}|01x x <≤C .{}|01x x ≤<D .{}|1x x ≥2.已知i 为虚数单位,下列各式的运算结果为纯虚数的是( )A .(1)i i +B .2(1)i i - C .22(1)i i + D .234i i i i +++3.已知,a b R ∈,则a b <“”是22log log a b <“”的( )条件。

A .充分而不必要 B .必要而不充分 C .充要 D .既不充分也不必要 4.已知数据122020,,,x x x 的方差为4,若()()231,2,,2020i i y x i =--=,则新数据122020,,,y y y 的方差为( )A. 16B. 13C. 8-D. 16-5.函数||xx y xπ=的图象大致形状是( )AB C D6.我国古代木匠精于钻研,技艺精湛,常常设计出巧夺天工的建筑.在一座宫殿中,有一件特别的“柱脚”的三视图如图所示,则该几何体的体积为( )A .843π+ B .883π+ C .84π+ D .88π+7.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若2a =,3c =, 且满足2cos cos a c B b C -=(),则BC AB ⋅的值为( ) A. 2B. 3C.1-D.3-8.已知函数||()||x f x e x =+,则满足1(21)()3f x f -<的x 取值范围是( )A.1233(,)B. 1233[,)C. 1223(,)D. 12[23,)9.已知是抛物线的焦点,过焦点的直线交抛物线的准线于点,点在抛物线上,且,则直线的斜率为( )A .B .C .D .10.空间中,m,n 是两条不同的直线,,αβ是两个不同的平面,则下列命题正确的是( ) A. 若//,//m n αα,则//m n B. 若//,,m n αβαβ⊂⊂,则//m n C. 若=,,m n n m αβα⊂⊥,则n β⊥ D. 若,//,m m n n αβ⊥⊂,则αβ⊥11.函数()2sin()0,||2f x x πωϕωϕ=+><()的最小正周期为π,若其图象向右平移6π个单位后得到的函数为奇函数,则函数()f x 的图象( )A. 关于点03π(,)对称 B. 在22ππ(-,)上单调递增C. 关于直线3x π=对称 D. 在6x π=处取最大值12.已知函数()ln x f x e x=,若关于x 的方程()()210f x mf x -+=恰好有四个不相等的实数根,则实数m 的取值范围是( ) A .()2,+∞B .()1,+∞C .()1,2D .()2,4二、填空题:本题共4小题,每小题5分,共20分。

2020届全国100所名校高三模拟金典卷(一)数学(文)试题(解析版)

2020届全国100所名校高三模拟金典卷(一)数学(文)试题(解析版)

2020届全国100所名校高三模拟金典卷(一)数学(文)试题一、单选题1.已知集合{|24},{|22}A x x B x x =-<≤=-≤<,则A B =U ( ) A .{|22}x x -<< B .{|24}x x -≤≤ C .{|22}x x -≤≤ D .{|24}x x -<≤【答案】B【解析】直接利用并集的定义计算即可. 【详解】由已知,集合{|24},{|22}A x x B x x =-<≤=-≤<,所以{|24}A B x x ⋃=-≤≤. 故选:B 【点睛】本题考查集合的并集运算,考查学生的基本计算能力,是一道基础题.2.已知a 是实数,()11a a i -++是纯虚数,则复数z a i =+的模等于( )A .2B CD .1【答案】C【解析】()11a a i -++是纯虚数可得1a =,则1z i =+,再根据模的计算的公式计算即可. 【详解】()11a a i -++是纯虚数,则实部为0,虚部不为0,即1a =,所以1z i =+,||z =故选:C 【点睛】本题考查复数模的计算,涉及到复数的相关概念,是一道容易题.3.某产品的宣传费用x (万元)与销售额y (万元)的统计数据如下表所示:根据上表可得回归方程ˆ9.6 2.9yx =+,则宣传费用为3万元时销售额a 为( ) A .36.5 B .30C .33D .27【答案】D【解析】由题表先计算出x ,将其代入线性回归方程即可. 【详解】 由已知,1(4235) 3.54x =+++=, 由回归方程过点(),x y ,故36.5y =, 即1(452450)36.54y a =+++=,解得27a =. 故选:D 【点睛】本题考查线性回归方程的简单应用,回归方程一定过样本点的中心(,)x y ,考查学生的基本计算能力,是一道容易题.4.已知在等差数列{}n a 中,34576, 11a a a a ++==,则1a =( ) A .3 B .7C .7-D .3-【答案】C【解析】由3456a a a ++=,可得42,a =结合7 11a =,可得公差d ,再由413a a d =+可得1a . 【详解】由等差数列的性质,得345436a a a a ++==, 所以42,a =公差7493743a a d -===-, 又4132a a d =+=,所以17a =-. 故选:C 【点睛】本题考查等差数列的性质及等差数列基本量的计算,考查学生的运算能力,是一道容易题.5.已知抛物线24y x =的准线与圆2260x y x m +--=相切,则实数m 的值为( ) A .8 B .7 C .6 D .5【答案】B【解析】由题可得准线方程为1x =-,再利用圆心到直线的距离等于半径计算即可得到答案. 【详解】由已知,抛物线的准线方程为1x =-,圆2260x y x m +--=的标准方程为22(3)9x y m -+=+,由1x =-与圆相切,所以圆心到直线的距离()314d =--==, 解得7m =. 故选:B 【点睛】本题主要考查抛物线的定义,涉及到直线与圆的位置关系,考查学生的运算求解能力,是一道容易题.6.已知平面向量a r ,b r满足a =r ,||3b =r ,(2)a a b ⊥-r r r ,则23a b -r r ( )A .BC .4D .5【答案】A【解析】由(2)0a a b ⋅-=r r r,可得2a b ⋅=r r,将其代入|23|a b -==r r .【详解】由题意可得||2a ==r ,且(2)0a a b ⋅-=r r r,即220a a b -⋅=r r r,所以420a b -⋅=r r, 所以2a b ⋅=r r.由平面向量模的计算公式可得|23|a b -==r r==故选:A 【点睛】本题考查利用数量积计算向量的模,考查学生的数学运算能力,是一道容易题. 7.已知定义在R 上的函数()y f x =,对于任意的R x ∈,总有()()123f x f x -++=成立,则函数()y f x =的图象( ) A .关于点()1,2对称 B .关于点33,22⎛⎫⎪⎝⎭对称 C .关于点()3,3对称 D .关于点()1,3对称【答案】B【解析】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,再结合()()123f x f x -++=简单推导即可得到. 【详解】设(,)A x y 是()y f x =图象上任意一点,A 关于(,)a b 对称的点为()'2,2A a x b y --也在()y f x =的图象上,则(2)(1(21))3(221)f a x f x a f x a -=--+=-+-+3(32)2()f a x b f x =--+=-,所以有23,320b a =-=,解得33,22a b ==.所以函数()y x =的图象关于点33,22⎛⎫⎪⎝⎭对称. 故选:B 【点睛】本题考查函数图象的对称性,考查学生的逻辑推理能力,当然也可以作一个示意图得到,是一道中档题.8.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生【答案】C【解析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.9.函数||4x e y x=的图象可能是( )A .B .C .D .【答案】C【解析】由函数的奇偶性可排除B ;由(1),(3)f f 可排除选项A 、D. 【详解】设||()4x e f x x =,定义域为{|0}x x ≠,||()()4x e f x f x x-=-=-,所以()f x 为奇函数,故排除选项B ;又(1)14e f =<,排除选项A ;3(3)112e f =>,排除选项D.故选:C 【点睛】本题考查由解析式选函数图象的问题,涉及到函数的性质,此类题一般从单调性、奇偶性、特殊点的函数值入手,是一道容易题.10.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .163πB .3π C .29π D .169π【答案】D【解析】由三视图可知该几何体为底面是圆心角为23π的扇形,高是4的圆锥体,再利用圆锥体积公式计算即可. 【详解】从三视图中提供的图形信息与数据信息可知:该几何体的底面是圆心角为23απ=的扇形,高是4的圆锥体, 容易算得底面面积2112442233S r παπ==⨯⨯=,所以其体积111644339V ππ=⨯⨯⨯=. 故选:D 【点睛】本题考查三视图还原几何体以及几何体体积的计算,考查学生的空间想象能力、数学运算能力,是一道中档题.11.已知函数()sin 3(0)f x x x ωωω=+>的图象上存在()()12,0,,0A x B x 两点,||AB 的最小值为2π,再将函数()y f x =的图象向左平移3π个单位长度,所得图象对应的函数为()g x ,则()g x =( ) A .2sin 2x - B .2sin2xC .2cos 26x π⎛⎫-⎪⎝⎭D .2sin 26x π⎛⎫- ⎪⎝⎭【答案】A【解析】()2sin 3f x x πω⎛⎫=+⎪⎝⎭,由min ||2AB π=可得T π=,2ω=,再由平移变换及诱导公式可得()g x 的解析式.【详解】()sin 3cos 2sin 3f x x x x πωωω⎛⎫=+=+ ⎪⎝⎭,因为||AB 的最小值为12222T ππω=⨯=,解得2ω=. 因为函数()y f x =的图象向左平移3π个单位长度, 所得图象对应的函数为()g x , 所以()2sin 22sin(2)2sin 233g x x x x πππ⎡⎤⎛⎫=++=+=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A 【点睛】本题考查三角函数图象的变换,涉及到辅助角公式、诱导公式的应用,考查学生的逻辑推理能力,是一道中档题.12.如图所示,在棱锥P ABCD -中,底面ABCD 是正方形,边长为2,22PD PA PC ===,.在这个四棱锥中放入一个球,则球的最大半径为( )A .2B 21C .2D 21【答案】D【解析】由题意,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD ,SA SB SC SP 、、、,则把此四棱锥分为五个棱锥,设它们的高均为R ,求出四棱锥的表面积S 以及四棱锥的体积P ABCD V -,利用公式13P ABCD V S -=⨯R ⨯,计算即可. 【详解】由已知,22PD AD PA ===,,所以222PD AD PA +=,所以PD AD ⊥,同理PD CD ⊥,又CD AD D =I ,所以PD ⊥平面ABCD ,PD AB ⊥,又AB AD ⊥,PD AD D ⋂=,所以AB ⊥平面PAD ,所以PA AB ⊥,设此球半径为R ,最大的球应与四棱锥各个面都相切,设球心为S ,连接SD,SA SB SC SP、、、,则把此四棱锥分为五个棱锥,它们的高均为R.四棱锥的体积211222 3323P ABCD ABCDVS PD-⨯=⨯⨯=⨯=W,四棱锥的表面积S22112222222242222PAD PAB ABCDS S S=++=⨯⨯+⨯⨯⨯+=+ V V W,因为13P ABCDV S-=⨯R⨯,所以3222142221P ABCDVRS-====-++.故选:D【点睛】本题考查几何体内切球的问题,考查学生空间想象能力、转化与化归的能力,是一道有一定难度的压轴选择题.二、填空题13.设实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,则34z x y=-的最大值是__________.【答案】4【解析】作出可行域,344zy x=-,易知截距越小,z越大,【详解】根据实数x,y满足约束条件101010yx yx y+≥⎧⎪-+≥⎨⎪++≤⎩,画出可行域,如图,平移直线34y x=即可得到目标函数的最大值.344z y x =-,易知截距越小,z 越大,平移直线34y x =,可知当目标函数经过点A 时取得最大值,由11y y x =-⎧⎨=--⎩,解得()0,1A -,所以max 304(1) 4.z =⨯-⨯-=故答案为:4 【点睛】本题考查简单的线性规划及应用,考查学生数形结合的思想,是一道容易题.14.曲线()e 43xf x x =+-在点()(0,)0f 处的切线方程为__________.【答案】52y x =-【解析】直接利用导数的几何意义计算即可. 【详解】因为()02f =-,'()4xf x e =+,所以'0(0)45f e =+=,所以切线方程为()25y --=()0x -,即5 2.y x =- 故答案为:52y x =- 【点睛】本题考查导数的几何意义,考查学生的基本计算能力,是一道容易题.15.已知数列{}n a 满足:11a =,12nn n a a +=+,则数列{}n a 的前n 项和n S =__________.【答案】122n n +--【解析】利用累加法可得数列{}n a 的通项公式,再利用分组求和法求和即可. 【详解】由已知,12nn n a a +-=,当2n ≥时,()()()211213211212222112n n n n n n a a a a a a a a ---=+-+-+⋅⋅⋅+-=+++⋅⋅⋅+==--,又11a =满足上式,所以21nn a =-,()212122222212n n n n S n n n +-=++⋅⋅⋅+-=-=---.故答案为:122n n +-- 【点睛】本题考查累加法求数列的通项以及分组求和法求数列的和,考查学生的运算求解能力,是一道中档题.16.已知双曲线22221x y a b-=(0b a >>)的左、右焦点分别是1F 、2F ,P 为双曲线左支上任意一点,当1222PF PF 最大值为14a时,该双曲线的离心率的取值范围是__________.【答案】【解析】112222111224|24|2PF PF a PF PF aPF a PF ==+++,1PF c a ≥-,分2c a a -≤,2a c a ≥-两种情况讨论,要注意题目中隐含的条件b a >.【详解】由已知,11222111224|24|2PF PF a PF PF aPF a PF ==+++,因为1PF c a ≥-,当2c a a -≤时,21121444a a PF a PF ≤=++,当且仅当12PF a =时,1222PF PF 取最大值14a, 由2a c a ≥-,所以3e ≤;当2c a a ->时,1222PF PF 的最大值小于14a,所以不合题意.因为b a >,所以22211b e a=->,所以2e >,所以2 3.e <≤故答案为:(2,3] 【点睛】本题考查双曲线的离心率的取值范围问题,涉及到双曲线的概念与性质及基本不等式,考查学生的逻辑推理能力,是一道有一定难度的题.三、解答题17.某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.成绩分组 频数[)75,80 2 [)80,85 6[)85,90 16[)90,9514[)95,1002高二(1)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;(2)在抽取的学生中,从成绩为[]95,100的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率. 【答案】(1)0.85;(2)715【解析】(1)利用1减去[)75,80的概率即可得到答案;(2)高一年级成绩为[]95,100的有4人,记为1234, , , A A A A ,高二年级成绩为[]95,100的有2名,记为12,B B ,然后利用列举法即可.【详解】(1)高一年级知识竞赛的达标率为10.0350.85-⨯=.(2)高一年级成绩为[]95,100的有0.025404⨯⨯=(名),记为1234, , , A A A A , 高二年级成绩为[]95,100的有2名,记为12,B B .选取2名学生的所有可能为121314111223242122343132414212, , , , , , , , , , , , , , A A A A A A A B A B A A A A A B A B A A A B A B A B A B B B ,共15种;其中2名学生来自于同一年级的有12131423243412,,,,,,A A A A A A A A A A A A B B ,共7种. 所以这2名学生来自于同一年级的概率为715. 【点睛】本题考查统计与古典概率的计算,涉及到频率分布直方图和频数分布表,考查学生简单的数学运算,是一道容易题.18.在ABC V 中,角、、A B C 所对的边分别是a b c 、、,且2B A C =+,b =. (1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值【答案】(1)4;(2)【解析】(1)由已知,易得3B π=,由正弦定理可得34c a =,再由角B 的余弦定理即可得到答案;(2)正弦定理得sin sin sin a c b A C B ===,所以,a A c C ==,sin )a c A C +=+,再利用两角和的正弦公式以辅助角公式可得6a c A π⎛⎫+=+⎪⎝⎭,即可得到最大值.【详解】(1)因为2B A C =+, 又A B C π++=,得3B π=.又3sin 4sin C A =,由正弦定理得34c a =,即34a c =, 由余弦定理2222cosb ac ac B =+-,得22331132442c c c c ⎛⎫=+-⨯⨯⨯ ⎪⎝⎭,解得4c =或4c =-(舍).(2)由正弦定理得sin sin sin a c b A C B ===,,a A c C ∴==,sin )a c A C ∴+=+sin()]A A B =++1sin sin sin sin cos322A A A A A π⎡⎤⎤⎛⎫=++=++⎢⎥ ⎪⎥⎝⎭⎦⎣⎦6A π⎛⎫=+ ⎪⎝⎭,由203A π<<,得5666A πππ<+=,当62A ππ+=,即3A π=时,max ()a c +=.【点睛】本题考查正余弦定理解三角形,涉及到两角和的正弦公式及辅助角公式的应用,考查学生的数学运算求解能力,是一道容易题. 19.在菱形ABCD 中,,3ADC AB a π∠==,O 为线段CD 的中点(如图1).将AOD △沿AO 折起到'AOD △的位置,使得平面'AOD ⊥平面ABCO ,M 为线段'BD 的中点(如图2).(Ⅰ)求证:'OD BC ⊥; (Ⅱ)求证:CM ∥平面'AOD ; (Ⅲ)当四棱锥'D ABCO -的体积为32时,求a 的值. 【答案】(Ⅰ)见解析. (Ⅱ)见解析. (Ⅲ) 2a =.【解析】(Ⅰ)证明OD '⊥AO . 推出OD '⊥平面ABCO . 然后证明OD '⊥BC .(Ⅱ)取P 为线段AD '的中点,连接OP ,PM ;证明四边形OCMP 为平行四边形,然后证明CM ∥平面AOD ';(Ⅲ)说明OD '是四棱锥D '﹣ABCO 的高.通过体积公式求解即可. 【详解】(Ⅰ)证明:因为在菱形ABCD 中,3ADC π∠=,O 为线段CD 的中点,所以'OD AO ⊥. 因为平面'AOD ⊥平面ABCO 平面'AOD I 平面ABCO AO =,'OD ⊂平面'AOD ,所以'OD ⊥平面ABCO . 因为BC ⊂平面ABCO ,所以'OD BC ⊥. (Ⅱ)证明:如图,取P 为线段'AD 的中点,连接OP,PM ; 因为在'ABD ∆中,P ,M 分别是线段'AD ,'BD 的中点, 所以//PM AB ,12PM AB =. 因为O 是线段CD 的中点,菱形ABCD 中,AB DC a ==,//AB DC , 所以122a OC CD ==. 所以OC //AB ,12OC AB =. 所以//PM OC ,PM OC =.所以四边形OCMP 为平行四边形, 所以//CM OP ,因为CM ⊄平面'AOD ,OP ⊂平面'AOD ,所以//CM 平面'AOD ;(Ⅲ)由(Ⅰ)知'OD ⊥平面ABCO .所以'OD 是四棱锥'D ABCO -的高,又S=23332228a a a a ⎛⎫+ ⎪⎝⎭= ,'2a OD = 因为3133'3162a V S OD =⨯⨯==, 所以2a =. 【点睛】本题考查线面平行与垂直的判定定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力,是基础题20.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,过右焦点F 作与x 轴垂直的直线,与椭圆的交点到x 轴的距离为32. (1)求椭圆C 的方程;(2)设O 为坐标原点,过点F 的直线'l 与椭圆C 交于A B 、两点(A B 、不在x 轴上),若OE OA OB =+u u u r u u u r u u u r,求四边形AOBE 面积S 的最大值.【答案】(1)22143x y +=;(2)3. 【解析】(1)由12c a =,232b a =结合222a bc =+解方程组即可;(2)设':1l x ty =+,联立直线'l 与椭圆的方程得到根与系数的关系,因为OE OA OB =+u u u r u u u r u u u r,可得四边形AOBE为平行四边形,12122||2AOB S S OF y y =⨯-==△将根与系数的关系代入化简即可解决. 【详解】 (1)由已知得12c a =, Q 直线经过右焦点,2222231,||2c y b y a b a ∴+===, 又222a b c =+Q,2,1a b c ∴===,故所求椭圆C 的方程为22143x y +=.(2)Q 过()1,0F 的直线与椭圆C 交于A B 、两点(A B 、不在x 轴上), ∴设':1l x ty =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩,得22(34)690t y ty ++-=,设()()1122,,,A x y B x y ,则122122634934t y y t y y t -⎧+=⎪⎪+⎨-⎪=⎪+⎩,OE OA OB =+u u u r u u u r u u u rQ ,∴四边形AOBE 为平行四边形,122122||234AOBS OF y y t S =∴⨯-===+△1m =≥, 得2621313m S m m m==++,由对勾函数的单调性易得当1m =,即0t =时,max 32S =. 【点睛】本题考查直线与椭圆的位置关系,涉及到椭圆的方程、椭圆中面积的最值问题,考查学生的逻辑推理能力,是一道中档题.21.设函数()2a 2xf x x alnx (a 0)x -=-+>. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)记函数()f x 的最小值为()g a ,证明:()g a 1<.【答案】(I )()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增;(II )详见解析. 【解析】(I )对函数()f x 求导,解导函数所对应的不等式即可求出结果; (II )由(I )先得到()g a ,要证()1g a <,即证明1ln 1a a a a--<,即证明2111ln a a a--<, 构造函数()211ln 1h a a a a=++-,用导数的方法求函数()h a 的最小值即可. 【详解】(Ⅰ)显然()f x 的定义域为()0,+∞.()()()()222242332222221x x a x x a x a x x f x a x x x x x+----++=-⋅='-+=. ∵220x +>,0x >,∴若()0,x a ∈,0x a -<,此时()0f x '<,()f x 在()0,a 上单调递减; 若(),x a ∈+∞,0x a ->,此时()0f x '>,()f x 在(),a +∞上单调递增; 综上所述:()f x 在()0,a 上单调递减,在(),a +∞上单调递增. (Ⅱ)由(Ⅰ)知:()()min 1ln f x f a a a a a==--, 即:()1ln g a a a a a=--. 要证()1g a <,即证明1ln 1a a a a --<,即证明2111ln a a a--<, 令()211ln 1h a a a a =++-,则只需证明()211ln 10h a a a a=++->,∵()()()22333211122a a a a h a a a a a a'-+--=--==,且0a >, ∴当()0,2a ∈,20a -<,此时()0h a '<,()h a 在()0,2上单调递减; 当()2,a ∈+∞,20a ->,此时()0h a '>,()h a 在()2,+∞上单调递增, ∴()()min 1112ln21ln20244h a h ==++-=->.∴()211ln 10h a a a a=++->.∴()1g a <. 【点睛】本题主要考查导数在函数中的应用,通常需要对函数求导,用导数的方法研究函数的单调性,最值等,属于常考题型.22.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:cos 4sin (0)C a a ρθθ=>,直线的参数方程为21x ty t=-+⎧⎨=-+⎩,(t 为参数).直线l 与曲线C 交于M N ,两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程.(2)设()2,1P --,若||,||,||PM MN PN 成等比数列,求a 和的||MN 值.【答案】(1)22cos 4sin (0)a a ρθρθ=>,10x y -+=;(2)10.【解析】(1)利用直角坐标、极坐标、参数方程互化公式即可解决;(2)将直线参数方程标准化,联立抛物线方程得到根与系数的关系,再利用直线参数方程的几何意义即可解决. 【详解】(1)曲线2:cos 4sin (0)C a a ρθθ=>,两边同时乘以ρ,可得22cos 4sin (0)a a ρθρθ=>,化简得24(0)x ay a =>;直线l 的参数方程为21x ty t =-+⎧⎨=-+⎩(t 为参数),消去参数t ,可得1x y -=-,即10x y -+=.(2)直线l 的参数方程21x ty t=-+⎧⎨=-+⎩(t 为参数)化为标准式为21x y ⎧=-⎪⎪⎨='+'⎪-⎪⎩('t 为参数),代入24(0)x ay a =>并整理得'2'1)8(1)0t a t a -+++=, 设M N ,两点对应的参数为''12, t t ,由韦达定理可得''121)t t a +=+,''128(1)0t t a ⋅=+>, 由题意得2||||||MN PM PN =⋅,即2''''1212t t t t -=⋅, 可得()2''''''1212124t t t t t t +-⋅=⋅, 即232(1)40(1)a a +=+,0a >,解得1,4a =所以2''121||81104MN t t ⎛⎫=⋅=+= ⎪⎝⎭,||MN =【点睛】本题考查极坐标与参数方程的应用,涉及到极坐标方程、普通方程、参数方程的互化,以及直线参数方程的几何意义求距离的问题,是一道容易题. 23.已知函数()|||2|f x x a x =-++. (1)当1a =时,求不等式()3f x ≤的解集; (2)()00,50x f x ∃∈-≥R ,求实数a 的取值范围. 【答案】(1){|21}x x-#;(2)[7,3]-【解析】(1)当1a =时,()|1||2|f x x x =-++,分2x -≤,21x -<<,1x ≥三种情况讨论即可;(2)()00,50x f x ∃∈-≥R ,则()min 5f x ≥,只需找到()f x 的最小值解不等式即可. 【详解】(1)当1a =时,()|1||2|f x x x =-++,①当2x -≤时,()21f x x =-- ,令()3f x ≤,即213x --≤,解得2x ≥-,所以2x =-, ②当21x -<<时,()3f x =,显然()3f x ≤成立,21x ∴-<<,③当1x ≥时,()21f x x =+,令()3f x ≤,即213x +≤,解得1x ≤,所以1x =. 综上所述,不等式的解集为{|21}x x-#.(2)0()|||2||()(2)||2|,f x x a x x a x a x =-++--+=+∃∈R Q …,有()050f x -…成立,∴要使()05f x ≥有解,只需|2|5a +≤,解得73a ≤≤-, ∴实数a 的取值范围为[7,3]-.【点睛】本题考查解绝对值不等式以及不等式能成立问题,考查学生的基本计算能力,是一道容易题.。

2020年普通高等学校招生全国统一考试模拟卷(1)(文科数学含答案详解)

2020年普通高等学校招生全国统一考试模拟卷(1)(文科数学含答案详解)

2020 年普通高等学校招生全国统一考试模拟卷(1)文科数学本试题卷共 6 页, 23 题(含选考题)。

全卷满分150 分。

考试用时120 分钟。

第Ⅰ 卷一、选择题:本大题共12小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M x, y x y 2 , N x, y x y2,则集合M N()A.0,2 B .2,0C.0, 2D.2,0【答案】 D【解析】解方程组x y2x2N2,0 .选D.x y2,得.故 My02.设复数z12i( i 是虚数单位),则在复平面内,复数z2对应的点的坐标为()A. 3,4B. 5,4C.3,2D. 3,4【答案】 A【解析】 z12i z2121 44i 3 4i ,所以复数z2对应的点为3,4 ,2i故选 A.3.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x 0,则一开始输入的x 的值为()371531A .B .C. D .481632【答案】 C【解析】 i1,( 1)x2x1,i2,( 2)x22x114x3,i3,( 3)x24x318x7,i4,( 4)x28x7116x15,i 5 ,所以输出16x150,得 x15,故选 C.164.已知cos22cos,则 tan4(A .4B.41C.D3【答案】 C【解析】因为 cos22cos,所以sin2co所以 tan41tan1,故选 C.1tan35.已知双曲线x2y21a0,b0的一个焦点为 F2,0a2b2则该双曲线的方程为()A. x2y21 B .x2y21C. y2x21D333【答案】 B【解析】令x2y20 ,解得ybx ,故双曲线的渐近线方程a2b2ab3a2a1由题意得c2,解得,∴该双曲线的方程为b23c22b2a6.某家具厂的原材料费支出x 与销售量y(单位:万元)之间有y x8?的全部数据,用最小二乘法得出与的线性回归方程为y?bxx245y253560A .5B. 15C.12D【答案】 C【解析】由题意可得:x245685 , y25355第1页,共6页回归方程过样本中心点,则:5285??.本题选择 C 选项.b , b 127.已知f x2018x20172017x20162x1,下列程序框图设计的是求 f x0的值,在“ ”中应填的执行语句是()开始输入 x0i=1,n=2018S=2018i=i+1i≤ 2017?否S=S+n是输出 SS=Sx0结束A .n2018iB .n2017 i C.n2018i D .n2017i 【答案】 A【解析】不妨设x0 1 ,要计算 f12018 2017 20162 1 ,首先S201812018,下一个应该加,再接着是加,故应填n2018 i.201720168.设π2)0x,则“x”是“cosx< x ”的(cosx2A .充分而不必要条件B .必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】 A【解析】作图 y cos x ,y x2,y x ,x0,,2可得 cosx x2解集为m,, cosx x 解集为 n,,因为22m,n,,因此选 A .229.如图为正方体ABCD A1B1C1 D1,动点M从 B1点出发,在正方体表面上沿逆时针方向1M11x与运动一周后,再回到 B 的运动过程中,点与平面 ADC 的距离保持不变,运动的路程l MA1MC1 MD 之间满足函数关系l f x ,则此函数图象大致是()A.B.C.D.【答案】 C【解析】取线段B1 A 中点为N,计算得:l N NA1NC1ND623l B l A.同221AC 或CB1的中点时,计算得l N NA1 NC1 ND622 3 l B,符合C项的图象特征.故选C.2110.已知双曲线E:x2y21( a 0, b 0)的右顶点为A,右焦点为Fa2b2第二象限上的一点, B 关于坐标原点O 的对称点为 C ,直线 CA 与直线 BF 的交点BF 的中点,则双曲线的离心率为()11C. 2 D . 3A .B .25【答案】 D【解析】不妨设B c, b2,由此可得 A a,0, C c,b2, F c,0,a ab2b2于 A,C, M 三点共线,故2aaac,化简得 c3a ,故离心率 e 3 .a11.已知点A 4,3和点B 1,2,点 O 为坐标原点,则OA tOB t R的最A.5 2 B . 5C. 3 D .5【答案】 D【解析】由题意可得:OA4,3, OB1,2,则:OA tOB4,3t 1,24t,32t232t25t24 t结合二次函数的性质可得,当t2时, OA tOB54202min本题选择 D 选项.第2页,共6页x2y2x2y212.已知椭圆C1 :a12b121 a1>b1>0与双曲线C2:a22b22 1 a2>0,b2>0有相同的焦点 F1, F2,若点P是 C1与 C2在第一象限内的交点,且F1F2 2 PF2,设 C1与 C2的离心率分别为 e1, e2,则 e2e1的取值范围是()A .1,1C.1D .1 3B .,,,322【答案】 D【解析】设F1F22c,令 PF1t ,由题意可得:t c2a2, t c 2a1,据此可得: a1 a2c11e2,,则: 1 ,e11e1e2e2则: e2e1e2e2e221,由 e21可得: 01e21e2 12 1 ,11e2e2e2211结合二次函数的性质可得:e20,1 ,e2则:e2e11,即 e e 的取值范围是1,.本题选择 D 选项.2212第Ⅱ卷本卷包括必考题和选考题两部分。

2020年高考文科数学模拟试卷及答案(共五套)

2020年高考文科数学模拟试卷及答案(共五套)

2020年高考文科数学模拟试卷及答案(共五套)2020年高考文科数学模拟试卷及答案(一)一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目的要求)1、设集合{}1 2 3 4U =,,,,集合{}2540A x x x =∈-+<N ,则U C A 等于( )A .{}1 2,B .{}1 4,C .{}2 4,D .{}1 3 4,,2、记复数z 的共轭复数为z ,若()1i 2i z -=(i 为虚数单位),则复数z 的模z =()A .2B .1C .22D .23、命题p:∃x ∈N,x 3<x 2;命题q:∀a ∈(0,1)∪(1,+∞),函数f(x)=log a (x-1)的图象过点(2,0),则( )A. p 假q 真B. p 真q 假C. p 假q 假D. p 真q 真4、《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?()A .18B .20C .21D .255、已知 ,且,则A.B.C.D.6、已知 , , ,若 ,则A. B.—8 C. D. —27、执行如右图所示的程序框图,则输出 的值为A. B.C. D.8、等轴双曲线 的中心在原点,焦点在 轴上, 与抛物线 的准线交于 两点, ,则 的实轴长为 ( )A. B. C. D.9、已知 的内角 , , 的对边分别为 , , ,若 , ,则的外接圆面积为 A. B. 6π C. 7πD.10、一块边长为6cm 的正方形铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形(如图(3)),则该容器的体积为( )A .3126cmB .346cmC.3272cm D .392cm11、已知,曲线 在点 ))1f(,1( 处的切线经过点,则有A. 最小值B. 最大值C. 最小值D. 最大值12、对实数 和 ,定义运算“ ”:.设函数 ,.若函数 的图象与 轴恰有两个公共点,则实数 的取值范围是 ( ) A. B. C. D.二、填空题(共4小题;共20分)13、 设变量 , 满足约束条件则目标函数 的最大值为 .14、已知等比数列{a n }的各项均为正数,且满足:a 1a 7=4,则数列{log 2a n }的前7项之和为15、已知圆 ,则圆 被动直线 所截得的弦长是 .16、如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则侧面11ABB A 的面积为.三、解答题:(解答应写出文字说明、证明过程或演算步骤。

2020最新高考模拟数学考试(文科)含答案

2020最新高考模拟数学考试(文科)含答案

65C . -33D . - 63,第Ⅰ卷(选择题,共 60 分)一、选择题:本大题共 l2 小题,每小题 5 分.共 60 分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.设集合 A = {x || x - 2 |≤ 2, x ∈ R }, B = { y || y = - x 2,-1 ≤ x ≤ 2}, 则等于()A .RB . {x | x ∈ R 且x ≠ 0}C .{0}D . ∅R(A∩B )2 . 已 知 cos(α - β ) =3 ,sin β = - 5 , 且α ∈ (0, π ), β ∈ (- π ,0), 则 s in α =51322()A . 3365B . 63653.对于平面α 和共面的直线m ,n 下列命题中真命题是()A .若 m ⊥ α , m ⊥ n , 则n // αC .若 m ⊂ α,n // α,则m // nB .若 m // α,n // α,则m // nD .若 m ,n 与α所成的角相等,则m // n4.数列{a }中,若 a = 1 , a =n12n1 1 - an -1(n ≥ 2, n ∈ N ) 则 a2007的值为A -1B1 C 1D225.如果 f '(x) 是二次函数, 且 f '(x) 的图象开口向上,顶点坐标为(1,-那么曲线 y=f(x)上任一点的切线的倾斜角α的取值范围是()3),A. (0, 2π 3 ]B. [0, π 2π π 2π )∪[ , π)C. [0, ]∪[ 2 3 2 3, π) D.π 2π[ , ] 2 3a 2b 2| A .(1,2 + 3 ⎤B (1, 3 ⎤⎡2+ 3, +∞)D ⎡2 - 3,2 + 3 ⎤11.如图, 直线 MN 与双曲线 C: x 2线相交于 P 点, F 为右焦点,若|FM|=2|FN|, 又NP= λPM (λ∈R), 则6.两直线 3x +y -2=0 和 y +a=0 的夹角为()A. 30°B. 60°C. 120°D. 150°7.已知函数 y = f ( x )( x ∈ R)满足f ( x + 2) = f ( x ) 且当 x ∈ [-1,1]时f ( x ) = x 2 ,则y = f ( x )与y = log x 的图像的交点个数为()7A .3B .4C .5D .68.若关于 x 的方程 4cos x - cos 2 x + m - 3 = 0 恒有实数解,则实数 m 的取值范围是A. [ -1,+∞)B. [-1,8]C [0,8]D [0,5]9.如图,在杨辉三角中,斜线的上方从 1 开始按箭 头所示的数组成一个锯齿形数列 1,3,3,4,6,5,10,……,记此数列为{a } ,则 a 等于n21A .55B .65C .78D .6610.已知点 F 、F 为双曲线 x 2 - y 2 = 1 (a > 0, b > 0) 的左、右焦点, P 为右1 2支上一点,点 P 到右准线的距离为 d ,若 | PF | 、PF| 、d 依次成等差数列,12则此双曲线离心率的取值范围是()⎦⎦C⎣ ⎣ ⎦a 2 - y 2b 2 = 1的左右两支分别交于 M 、N 两点, 与双曲线 C 的右准→ →实数λ的取值为 ( )11A. B.1 C.2 D.2312.△ABC的AB边在平面α内,C在平面α外,AC和BC分别与面α成30°和45°的角,且面ABC与α成60°的二面角,那么sin∠ACB的值为()1221A.1B.C.D.1或333第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.x2113.二项式(-)9展开式中的系数为________2x x14.一个五位数由数字0,1,1,2,3构成,这样的五位数的个数为_________15.过定点P(1,4)作直线交抛物线C:y=2x2于A、B两点,过A、B 分别作抛物线C的切线交于点M,则点M的轨迹方程为_________ 16.定义在R上的函数f(x)满足f(x+5)+f(x)=0,且函数f(x+5)为奇函24数,给出下列结论:①函数f(x)的最小正周期是5;②函数f(x)的2图像关于点(5,0)对称;③函数f(x)的图像关于直线x=5对称;④42函数f(x)的最大值为f(5).2其中正确结论的序号是__________(写出所有你认为正确的结论的序号)三、解答题:本大题共6小题,共74分。

2020届全国100所名校高三模拟金典卷文科数学(一)试题(word无答案)

2020届全国100所名校高三模拟金典卷文科数学(一)试题(word无答案)

2020届全国100所名校高三模拟金典卷文科数学(一)试题一、单选题(★) 1 . 已知集合,则()A.B.C.D.(★) 2 . 已知是实数,是纯虚数,则复数的模等于()A.B.C.D.(★) 3 . 某产品的宣传费用(万元)与销售额(万元)的统计数据如下表所示:宣传费用(万4235元)销售额(万元)252450根据上表可得回归方程,则宣传费用为3万元时销售额为()A.36.5B.30C.33D.27(★) 4 . 已知在等差数列中,,则()A.B.C.D.(★) 5 . 已知抛物线的准线与圆相切,则实数的值为()A.8B.7C.6D.5(★) 6 . 已知平面向量,满足,,,则()A.B.C.D.(★★) 7 . 已知定义在上的函数,对于任意的,总有成立,则函数的图象()A.关于点对称B.关于点对称C.关于点对称D.关于点对称(★★) 8 . 某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生D.815号学生(★) 9 . 函数的图象可能是()A.B.C.D.(★★) 10 . 某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C.D.(★★) 11 . 已知函数的图象上存在两点,的最小值为,再将函数的图象向左平移个单位长度,所得图象对应的函数为,则()A.B.C.D.(★★★★) 12 . 如图所示,在棱锥中,底面是正方形,边长为,.在这个四棱锥中放入一个球,则球的最大半径为()A.B.C.D.二、填空题(★) 13 . 设实数,满足约束条件,则的最大值是__________.(★) 14 . 曲线在点处的切线方程为__________.(★★) 15 . 已知数列满足:,,则数列的前项和__________.(★★★★) 16 . 已知双曲线()的左、右焦点分别是 、 , 为双曲线左支上任意一点,当最大值为时,该双曲线的离心率的取值范围是__________.三、解答题(★) 17 . 某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.成绩分组频数高二(1)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率; (2)在抽取的学生中,从成绩为 的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率.(★) 18 . 在 中,角 所对的边分别是 ,且 , .(1)若,求的值;(2)求的最大值(★★) 19 . 在菱形中,,为线段的中点(如图1).将沿折起到的位置,使得平面平面,为线段的中点(如图2).(Ⅰ)求证:;(Ⅱ)求证:平面;(Ⅲ)当四棱锥的体积为时,求的值.(★★)20 . 已知椭圆的离心率为,过右焦点作与轴垂直的直线,与椭圆的交点到轴的距离为.(1)求椭圆的方程;(2)设为坐标原点,过点的直线与椭圆交于两点(不在轴上),若,求四边形面积的最大值.(★★) 21 . 设函数.Ⅰ 求函数的单调区间;Ⅱ 记函数的最小值为,证明:.(★) 22 . 在平面直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系,已知曲线,直线的参数方程为,(为参数).直线与曲线交于两点.(1)写出曲线的直角坐标方程和直线的普通方程.(2)设,若成等比数列,求和的值.(★) 23 . 已知函数.(1)当时,求不等式的解集;(2),求实数的取值范围.。

2020届高三模拟卷文科数学附答案

2020届高三模拟卷文科数学附答案

2020届模拟06 文科数学测试范围:学科内综合.共150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合{}3813x A x =>,{}212110B x x x =∈-+<N ,则A B =I ( ) A .{}2,3,4 B .{}2,3,4,5C .{}5,6,7,8,9,10D .{}6,7,8,9,102.已知实数,a b 满足()()i 2i 35i a b ++=-(其中i 为虚数单位),则复数i z b a =-的共轭复数为 ( )A .131i 55-+B .131i 55-- C .131i 55+ D .131i 55-3.已知命题0:0,2p x π⎛⎫∃∈ ⎪⎝⎭,0023sin 0x x -<,则命题p 的真假以及命题p 的否定分别为 ( )A .真,:p ⌝0,2x π⎛⎫∀∈ ⎪⎝⎭,23sin 0x x ->B .真,:p ⌝0,2x π⎛⎫∀∈ ⎪⎝⎭,23sin 0x x -≥C .假,:p ⌝00,2x π⎛⎫∃∈ ⎪⎝⎭,0023sin 0x x ->D .假,:p ⌝00,2x π⎛⎫∃∈ ⎪⎝⎭,0023sin 0x x -≥4.已知向量()2,m =-a ,()1,n =b ,若()-//a b b ,且2=b ,则实数m 的值为 ( ) A .2 B .4 C .2-或2 D .4-或4 5.运行如下程序框图,若输出的k 的值为6,则判断框中可以填 ( )6.()tan751cos240sin30sin 60sin1201tan75︒-︒︒--︒︒+=+︒( )A .1323+B .1323-C .1323-+D .1323--7.已知函数()321ln333xf x x x x x-=++++,则下列说法正确的是 ( ) A .函数()f x 的图象关于1x =-对称B .函数()f x 的图象关于1y =-对称C .函数()f x 的图象关于()1,0-中心对称D .函数()f x 的图象关于()1,1--中心对称8.将函数()()sin 03f x x πωω⎛⎫=-> ⎪⎝⎭的图象向右平移4π个单位后,得到的函数图象关于2x π=对称,则当ω取到最小值时,函数()f x 的单调增区间为( ) A .()33,2010410k k k ππππ⎡⎤-∈⎢⎥⎣⎦++Z B .()3113,4102010k k k ππππ⎡⎤∈⎢⎥⎣⎦++Z C .()33,20545k k k ππππ⎡⎤-∈⎢⎥⎣⎦++Z D .()3113,45205k k k ππππ⎡⎤∈⎢⎥⎣⎦++Z 9.已知实数,x y 满足343125510x y x yx +⎧⎪⎪⎪+⎨⎪-⎪⎪⎩≥≤≥,若3z mx y =--,且0z ≥恒成立,则实数m 的取值不可能为 ( ) A .7 B .8 C .9 D .1010.已知某几何体的三视图如下所示,若网格纸上小正方形的边长为1,则该几何体的最短棱长为 ( )A .1B .2C .3D .211.已知椭圆222:19x y C b+=的离心率为223,且,M N 是椭圆C 上相异的两点,若点()2,0P 满足PM PN ⊥,则PM MN ⋅uuu r uuu r的取值范围为 ( )A .125,2⎡⎤--⎢⎥⎣⎦B .15,2⎡⎤--⎢⎥⎣⎦C .[]25,1--D .[]5,1--12.已知关于x 的不等式212ln x x mx +≤在[)1,+∞上恒成立,则m 的最小值为 ( ) A .1 B .2 C .3 D .4第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.杨辉,字谦光,南宋时期杭州人.在他1261年所著的《详解九章算法》一书中,辑录了如图所示的三角形数表,称之为“开方作法本源”图,并说明此表引自11世纪中叶(约公元1050年)贾宪的《释锁算术》,并绘画了“古法七乘方图”.故此,杨辉三角又被称为“贾宪三角”.杨辉三角是一个由数字排列成的三角形数表,一般形式如下:基于上述规律,可以推测,当23n =时,从左往右第22个数为 .14.已知双曲线()2222:10,0x yC a b a b-=>>的右焦点到渐近线的距离为3.现有如下条件:①双曲线C 的离心率为54; ②双曲线C 与椭圆22:13611x y C '+=共焦点; ③双曲线右支上的一点P 到12,F F 的距离之差是虚轴长的43倍.请从上述3个条件中任选一个,得到双曲线C 的方程为 . (注:以上三个条件得到的双曲线C 的方程一致)15.已知四棱锥P ABCD -中,底面四边形ABCD 为等腰梯形,且AB CD //,12AB CD =,PA PB AD ==,43PA AD CD +==,若平面PAB ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为 .第15题图 第16题图16.如图所示,四边形MNQP 被线段NP 切割成两个三角形分别为MNP △和QNP △,若MN MP ⊥,2sin 24MPN π⎛⎫∠+= ⎪⎝⎭,22QN QP ==,则四边形MNQP 面积的最大值为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知正项数列{}n a 的前n 项和为n S ,若数列13log n a ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是公差为1-的等差数列,且22a +是13,a a 的等差中项.(1)证明数列{}n a 是等比数列,并求数列{}n a 的通项公式;(2)若n T 是数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和,若n T M <恒成立,求实数M 的取值范围.18.(12分)某大学棋艺协会定期举办“以棋会友”的竞赛活动,分别包括“中国象棋”、“围棋”、“五子棋”、“国际象棋”四种比赛,每位协会会员必须参加其中的两种棋类比赛,且各队员之间参加比赛相互独立;已知甲同学必选“中国象棋”,不选“国际象棋”,乙同学从四种比赛中任选两种参与.(1)求甲参加围棋比赛的概率;(2)求甲、乙两人参与的两种比赛都不同的概率.19.(12分)已知四棱锥E ABCD -中,底面ABCD 是直角梯形,90ABC ∠=︒,且AD BC //,222BC AD AB ===,F 为,AC BD 的交点,点E 在平面ABCD 内的投影为点F . (1)AF ED ⊥;(2)若AF EF =,求三棱锥D ABE -的体积.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,上、下顶点分别为,A B ,若12AF =,点3(,1)2-关于直线y x =的对称点在椭圆C 上.(1)求椭圆C 的方程与离心率;(2)过点()0,2做直线l 与椭圆M 相交于两个不同的点,M N ; 若OM ON λ⋅<uuu r uuu r恒成立,求实数λ的取值范围.21.(12分)已知函数()2ln 2p f x x x =-. (1)当0p >时,求函数()f x 的极值点; (2)若1p >时,证明:()()33e 121p p x f x p ---<-.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号. 22.(10分)选修4—4坐标系与参数方程在平面直角坐标系xOy 中曲线C 的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),以O 为极点,x 轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为cos 1004πρθ⎛⎫++= ⎪⎝⎭.(1)求曲线C 的普通方程以及直线l 的直角坐标方程;(2)将曲线C 向左平移2个单位,再将曲线C 上的所有点的横坐标缩短为原来的12,得到曲线1C ,求曲线1C 上的点到直线l 的距离的最小值.23.(10分)选修4—5不等式选讲 已知函数()f x x m =-. (1)当2m =时,求不等式()23f x x >-的解集;(2)若不等式()1122f x x ++≥恒成立,求实数m 的取值范围.2020届模拟06文科数学答案与解析1.【答案】C 【解析】依题意,集合{}9293813332xx A x x x x ⎧⎫⎧⎫⎪⎪=>=>=>⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭,{}{}{}2121101112,3,4,5,6,7,8,9,10B x x x x x =∈-+<∈<<N =N =,故{}5,6,7,8,9,10A B =I ,故选C.2.【答案】A 【解析】依题意,()()()()35i 2i 35i 113ii 2i 2i 2i 5a b ----+===++-,故113,55a b ==-,故131i i 55z b a =-=--,故复数z 的共轭复数为131i 55z =-+,故选A.3.【答案】B 【解析】不妨取04x π=,此时003223sin 022x x π-=-<,故命题p 为真;特称命题的否定为全称命题,故:p ⌝0,2x π⎛⎫∀∈ ⎪⎝⎭,23sin 0x x -≥,故选B.4.【答案】C 【解析】依题意,向量()()3,-=--a b m n ;因为()-//a b b ,故3m n n -=-,故20m n +=;又2=b ,即1n =-或1,故2m =或-2,故选C. 5.【答案】B 【解析】运行该程序,第一次,2,2S k ==;第二次,6,3S k ==;第三次,14,4S k ==;第四次,30,5S k ==;第五次;62,6S k ==;第六次,126,7S k ==;观察可知,判断框中可以填“62S <”,故选B. 6.【答案】A 【解析】依题意,()cos240sin30sin 60sin120︒︒--︒︒sin30cos120cos30sin120=︒︒+︒︒1sin1502=︒=; 00tan 751tan 75tan 453tan 301tan 751tan 75tan 453-︒-︒==︒=++︒︒;故原式的值为1323+,故选A. 7.【答案】D 【解析】依题意,()()()()321ln 1121x f x x x -+=++-++,将函数()f x 的图象向右平移一个单位,再向上平移一个单位后,得到函数32ln2xy x x-=++的图象,这是一个奇函数,图象关于()0,0中心对称,故函数()321ln333xf x x x x x-=++++的对称中心为()1,1--,故选D.8.【答案】C 【解析】依题意,将函数()sin 3f x x πω⎛⎫=- ⎪⎝⎭的图象向右平移4π个单位后,得到sin 43y x ωππω⎛⎫=-- ⎪⎝⎭的图象,此时()2432k k ωπωππππ--=+∈Z , 解得()546k k ωπππ=+∈Z ,故()1043k k ω=+∈Z ,故ω的最小值为103 故()10sin 33f x x π⎛⎫=- ⎪⎝⎭;令()10222332k x k k πππππ--∈++Z ≤≤,解得()10522636k x k k ππππ-∈++Z ≤≤,即()3320545k x k k ππππ-∈++Z ≤≤,故选C.9.【答案】A 【解析】依题意,作出不等式组所表示的平面区域如下图阴影部分所示,可以求出()()221,1,1,,5,25A B C ⎛⎫⎪⎝⎭;要使0z ≥恒成立,需且仅需130223055230m m m --⎧⎪⎪--⎨⎪⎪--⎩≥≥≥解得375m ≥;故m 的取值不可能为7,故选A. 10.【答案】B 【解析】作出该几何体的直观图如下图所示,观察可知,该几何体的最短棱长为AC 或BD ,均为2,故选B.11.【答案】A 【解析】依题意,()22PM MN PM PN PM PM PN PM PM ⋅=⋅-=⋅-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ;因为222193b e =-=,故21b =;设(),M x y ,则()2,PM x y =--uuu r , 故()2222222282444414599x x PM x y x x y x x x =-+=-++=-++-=-+uuu r ,[]3,3x ∈-,可知,当3x =-时,2PM uuu r 有最大值25,当94x =时,2PM uuu r 有小值12;故PM MN ⋅u u u r u u u r 的取值范围为125,2⎡⎤--⎢⎥⎣⎦,故选A.12.【答案】A 【解析】依题意,222ln 112ln x x x mx m x x+⇔+≤≥,令()22ln 1x g x x x =+,故()()32ln 1'x x x g x x --=;令()ln 1h x x x x =--,则()'ln h x x =-,故当[)1,x ∈+∞时,()'ln 0h x x =-≤;故()22ln 1x g x x x=+在[)1,+∞上单调递减,故()()max 11m g x g ⎡⎤==⎣⎦≥,故m 的最小值为1,故选A. 13.【答案】253【解析】当23n =时,共有24个数,从左往右第22个数即为这一行的倒数第3个数,观察可知,其规律为1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210,231,253,故所求数字为253.14.【答案】221169x y -=【解析】依题意,双曲线()2222:10,0x y C a b a b -=>>的渐近线方程为by x a =±,即0bx ay ±=,故223bc a b =+,即3b =;①双曲线C 的离心率为54,故54c a =;又3b =,且222a b c +=,故4,5a c ==,故双曲线C 的方程为221169x y -=; ②椭圆22':13611x y C +=的焦点坐标为()()5,0,5,0-,故5c =;又222a b c +=,故4a =,故双曲线C 的方程为221169x y -=; ③依题意,设双曲线C 的左、右焦点分别为12,F F ,故12423PF PF b -=⋅,故4a =,故双曲线C 的方程为221169x y -=. 15.【答案】52π【解析】因为四边形ABCD 为等腰梯形,AB CD //,故AD BC =;因为PA PB =,12AB CD =,PA PB AD ==,43PA AD CD +==,=23PA PB AB AD BC ====,故3ADC π∠=; 取CD 的中点E ,则E 是等腰梯形ABCD 外接圆圆心;F 是PAB △外心,作OE ⊥平面ABCD ,OF ⊥平面PAB ,则O 是四棱锥P ABCD -的外接球的球心,且3,2OF GE PF ===;设四棱锥P ABCD -的外接球半径R ,则22213R PF OF =+=,所以四棱锥P ABCD -外接球的表面积是52π.16.【答案】524+【解析】因为2sin 24MPN π⎛⎫∠+= ⎪⎝⎭,故42MPN ππ∠+=,故4MPN π∠=,故MNP △是等腰直角三角形;在QNP △中,2,1QN QP ==,由余弦定理,254cos NP Q =-;2211os 42c 45MNP S MN NP Q =-==△;又1sin 2sin QNP S NQ P Q Q Q =⋅⋅=△,55cos sin 2sin()444MNQP S Q Q Q π=-+=+-;3π5(1)依题意,11133log log 1n n a a +-=-,故113log 1n na a +=-,故13n n a a +=;故数列{}n a 是公比为3的等比数列,因为()21322a a a +=+,故()1112329a a a +=+, 解得11a =;故数列{}n a 的通项公式为13n n a -=;(6分) (2)依题意,1113n n a -=,故数列1n a ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是以1为首项,13为公比的等比数列,故1231111n nT a a a a =++++L 111113133=1113323213nn n -⎛⎫- ⎪⎛⎫⎝⎭+++==-< ⎪⎝⎭-L , 故32M ≥,即实数M 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭.(12分)18.【解析】(1)依题意,甲同学必选“中国象棋”,不选“国际象棋”,故甲参加围棋比赛的概率为12;(4分)(2)记“中国象棋”、“围棋”、“五子棋”、“国际象棋”分别为1,2,3,4, 则所有的可能为(1,2,1,2),(1,2,1,3),(1,2,1,4),(1,2,2,3),(1,2,2,4),(1,2,3,4),(1,3,1,2),(1,3,1,3),(1,3,1,4),(1,3,2,3),(1,3,2,4),(1,3,3,4),其中满足条件的有(1,2,3,4),(1,3,2,4)两种,故所求概率21126P ==.(12分) 19.【解析】(1)依题意,AFD CBF △△∽,12AF DF AD CF BF BC ===, 又Q 1,2AB BC ==,∴2,32AD AC ==,(2分) 在Rt BDA △中,2262BD AB AD =+=,∴1333AF AC ==,(3分)在ABF △中,2222236()()133AF BF AB +=+==,∴90AFB ∠=︒,即AC BD ⊥;Q EF ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC EF ⊥;(6分)又Q BD EF F =I ,BD ⊂平面BDE ,EF ⊂平面BDE ,∴AC ⊥平面BDE , 因为ED ⊂平面BDE ,故AC ED ⊥,即AF ED ⊥;(8分)(2)依题意,11123613322336D ABE E ABD ABD S EF V V --⋅=⨯⨯⨯⨯===△.(12分)20.【解析】(1)依题意,点3(,1)2-关于直线y x =的对称点为3(1,)2-, 因为12AF =,故222b c a +==,故椭圆222:14x yC b+=;将3(1,)2-代入椭圆222:14x y C b +=中,解得1b =;所以椭圆C 的方程为2214xy +=故离心率32c e a ==;(4分)(2)当直线l 的斜率不存在时,(0,1),(0,1)M N -,所以1OM ON ⋅=-u u u u r u u u r. 当直线l 的斜率存在时,设直线l 的方程为11222,(,),(,)y kx M x y N x y =+, 联立22214y kx x y =+⎧⎪⎨+=⎪⎩,消去y 整理得22(14)16120k x kx +++=, 由0∆>,可得243k >,且1212221612,1414k x x x x k k +=-=++, 所以1212OM ON x x y y ⋅=+uuu u r uuu r 21212217(1)2()4114k x x k x x k =++++=-++,所以1314OM ON -<⋅<uuu u r uuu r ,故134λ≥,综上实数λ的取值范围为13,4⎡⎫+∞⎪⎢⎣⎭.(12分)(1)依题意,()2ln 2p f x x x =-,故()()()21111'px px px f x px x x x+--=-==; 可知,当0,p x p ⎛⎫∈ ⎪ ⎪⎝⎭时,()'0f x <;,p x p ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()'0f x >; 故函数()f x 的极小值点为px p=,无极大值点;(4分)(2)Q 1p >,令()()()()211ln 2pg x p x f x p x x x =--=--+,故()()()11'px x g x x +-=-,可得函数()g x 的单调递增区间为(0,1),单调递减区间为(1,)+∞, ∴()g x 在1x =时取得极大值,并且也是最大值,即()max 112g x p =-. 又210p ->,∴()21(21)1ln (21)(1)22p p p x x x p p ⎡⎤---+--⎢⎥⎣⎦≤.设31(21)(1)2()e p p p h p ---=,则233(297)(1)(27)()2e 2e p p p p p p h p ---+--'=-=-,所以()h p 的单调递增区间为7(1,)2,单调递减区间为7(+)2∞,,所以1236794()()22e e h p h ⨯==≤,Q 2e 3>,∴99332e<=,∴()3h p <,又3e 0p ->Q , ∴()23(21)1ln 3e 2p p p p x x x -⎡⎤---+<⎢⎥⎣⎦,即()()33e 121p p x f x p ---<-.(12分)22.【解析】(1)曲线:()22:24C x y -+=;直线::250l x y -+=;(4分) (2)依题意,曲线221:14y C x +=;又曲线1C 的参数方程为cos (2sin x y θθθ=⎧⎨=⎩为参数), 设曲线1C 上任一点()cos ,2sin P θθ,则()cos 2sin 25255sin 10222P l d θθθϕ→-+-+==≥(其中1tan 2ϕ=-),所以点P 到直线l 的距离的最小值为102.(10分) 23.【解析】(1)显然3x >;故()()()()22322343f x f x x x x x x >⇒>-⇒->-⇒<-,故不等式()23f x x >-的解集为()3,4;(5分)(2)依题意,当2m -≥,()31,21111,22231,22x m x m f x x x m x m x m x ⎧+-⎪⎪⎪++=-++-⎨⎪⎪-+--⎪⎩≥≤≤≤,故()min 111222mf x x ⎡⎤++=+⎢⎥⎣⎦≥,解得2m ≥;当2m -≤时,()31,221111,22231,2x m x f x x x m m x x m x m ⎧+->-⎪⎪⎪++=--<-⎨⎪⎪-+-⎪⎩≤≤,故()min111222mf x x ⎡⎤++=--⎢⎥⎣⎦≥,解得6m -≤;综上所述,实数m 的值为(,6][2,)-∞-+∞U .(10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届全国100所名校最新高考模拟示范卷高三文科数学模拟测试
试题(一)
一、单选题
(★) 1 . 已知全集,集合与的关系的韦恩图如图所示,则阴影部分所表示的集合的元素共有().
A.2个B.3个C.4个D.5个
(★) 2 . 若复数,则实数().
A.B.2C.D.1
(★) 3 . 下列是函数的对称中心的是().
A.B.C.D.
(★) 4 . 下图统计了截止到2019年年底中国电动汽车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法正确的是()
A.私人类电动汽车充电桩保有量增长率最高的年份是2018年
B.公共类电动汽车充电桩保有量的中位数是25.7万台
C.公共类电动汽车充电桩保有量的平均数为23.12万台
D.从2017年开始,我国私人类电动汽车充电桩占比均超过50%
(★★) 5 . 科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“ 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是().(取,)
A.16B.17C.24D.25
(★) 6 . 执行如图所示的程序框图,若输入的的值为4,则输出的的值为().
A.6B.7C.8D.9
(★) 7 . 已知直线将圆平分,则圆中以点为中点的弦的弦长为().
A.2B.C.D.4
(★★) 8 . 关于函数,,有下列三个结论:① 为偶函数;② 有3个零点;③ 在上单调递增.其中所有正确结论的编号是().
A.①②B.①③C.②③D.①②③
(★★) 9 . 已知圆锥的高是底面半径的3倍,且圆锥的底面直径、体积分别与圆柱的底面半径、体积相等,则圆锥与圆柱的侧面积之比为().
A.B.C.D.
(★★) 10 . 对于集合,定义:为集
合相对于的“余弦方差”,则集合相对于的“余弦方差”为()A.B.C.D.
(★★) 11 . 已知,则满足的实数的取值范围是().
A.B.
C.D.
(★★) 12 . 在直四棱柱中,底面是边长为4的正方形,,垂直
于的截面分别与面对角线,,,相交于四个不同的点,,,,则四棱锥体积的最大值为().
A.B.C.D.
二、填空题
(★) 13 . 曲线在处的切线斜率为__________.
(★) 14 . 如图,在平行四边形中,为的中点,为的中点,若
,则 __________ .
(★) 15 . 已知双曲线的左、右顶点分别为、,点在双曲线上,且
直线与直线的斜率之积为1,则双曲线的焦距为__________.
(★★) 16 . 已知的内角、、的对边分别为、、,,平分
交于点,若,,则的面积为__________.
三、解答题
(★★) 17 . 2019年10月1日,庆祝中华人民共和国成立70周年大会、阅兵式、群众游行在北京隆重举行,这次阅兵编59个方(梯)队和联合军乐团,总规模约1.5万人,各型飞机160余架、装备580余套,是近几次阅兵中规模最大的一次.某机构统计了观看此次阅兵的年龄在30岁至80岁之间的100个观众,按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)求的值及这100个人的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)用分层抽样的方法在年龄为、的人中抽取5人,再从抽取的5人中随机抽取2人接受采访,求接受采访的2人中年龄在的恰有1人的概率.
(★★) 18 . 已知数列的前项和为,,.
(1)求证:是等比数列;
(2)若,求数列的前项和.
(★★) 19 . 在四棱锥中,底面是直角梯形,平面,
.
(1)证明:平面;
(2)若是的中点,,求到平面的距离.
(★★) 20 . 已知直线与椭圆交于不同的两点,.
(1)若线段的中点为,求直线的方程;
(2)若的斜率为,且过椭圆的左焦点,的垂直平分线与轴交于点,求证:为定值.
(★★) 21 . 已知函数,其中为常数.
(1)讨论函数的单调性;
(2)当(为自然对数的底数),时,若方程有两个不等实数根,求实数的取值范围.
(★★) 22 . 在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原
点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为. (1)求曲线的普通方程与直线的直角坐标方程;
(2)射线与曲线交于点(异于原点)、与直线交于点,求的值.
(★★) 23 . 已知函数,.
(1)当时,求不等式的解集;
(2)若关于的不等式的解集包含,求的取值集合.。

相关文档
最新文档