函数值与定义域

合集下载

函数的定义域和值域

函数的定义域和值域

函数的定义域、值域一、知识回顾第一部分:函数的定义域1.函数的概念:设集合A 是一个非空的数集,对于A 中的任意一个数x ,按照确定的法则f ,都有唯一的确定的数y 与它对应,则这种关系叫做集合A 上的一个函数,记作()x f y =,(A x ∈)其中x 叫做自变量,自变量的取值范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作)(a f y =或ax y=,所有的函数值所构成的集合{}A x x f y y ∈=),(叫做这个函数的值域.2.定义域的理解:使得函数有意义的自变量取值范围,实际问题还需要结合实际意义在确定自变量的范围,注意:定义域是个集合,所以在解答时要 用集合来表示. 3.区间表示法:设a ,R b ∈,且b a <.满足b x a ≤≤的全体实数x 的集合,叫做闭区间,记作[]b a ,. 满足b x a <<的全体实数x 的集合,叫做开区间,记作()b a ,.满足b x a ≤<或b x a <≤的全体实数x 的集合,都叫做半开半闭区间,记作(][)b a b a ,,或.b a 与叫做区间的端点,在数轴上表示时,包括端点时,用实心的点,不包括时用空心点表示.4.基本思想:使函数解析式有意义的x 的所有条件化为不等式,或不等式组的解集.5.定义域的确定方法:保证函数有意义,或者符合规定,或满足实际意义. (1)分式的分母不为零. (2)偶次方根式的大于等于零. (3)对数数函数的真数大于零.(4)指数函数与对数函数的底大于零且不等于1. (5)正切函数的角的终边不能在y 轴上. (6)零次幂的底数不能为零.(7)分段函数:①分段函数是一个函数.②分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(8)复合函数定义域的求法:①已知)(x f y =的定义域是A ,求()[]x f y ϕ=的定义域的方法为解不等式:A x ∈)(ϕ,求出x 的取值范围.②已知()[]x f y ϕ=的定义域为A ,求)(x f y =的定义域的方法:A x ∈,求)(x ϕ的取值范围即可.第二部分:函数的值域函数值域的确定方法:(1)直接观察法对于一些比较简单的函数,其值域可通过观察得到. (2)分离常数法:分子、分母是一次函数得有理函数,形如,dcx bax y ++=,,,,,(d c b a 为常数,)0≠c 可用分离常数法,此类问题一般也可以利用反函数法.(3)换元法:运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常用此法求解. (4)配方法:适用于二次函数值域的求值域. (5)判别式法:适用于二次函数型值域判定.(6)单调性法:利用单调性,端点的函数值确定值域的边界.(7)函数的有界性:在直接求函数值域困难的时候,可以利用已学过函数的有界性,反过来确定函数的值域.(8)不等式法:利用不等式的性质确定上下边界.(9)数形结合法:函数解析式具有明显的某种几何意义,如两点间的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目.二、 精选例题第一部分:函数的定义域例1.函数x x y +-=1的定义域为( )A .{}1x x ≤B .{}0x x ≥ C.{}10x x x ≥≤或 D.{}01x x ≤≤【解析】由题意⎩⎨⎧≥≤⇒⎩⎨⎧≥≥-01001x x x x 即∈x {}10≤≤x x ,故选D. 例2.函数()()xx x x f -+=01的定义域是( )A .()0,+∞B .(),0-∞ C.()(),11,0-∞-- D.()()(),11,00,-∞--+∞【解析】由⎩⎨⎧≠-≠+001x x x 得,01⎩⎨⎧<-≠x x 故选C.例3.若函数()1+=x f y 的定义域是[],3,2-则()12-=x f y 的定义域是( )5.0,2A ⎡⎤⎢⎥⎣⎦[]4,1.-B []5,5.-C []7,3.-D 【解析】 ()1+=x f y 的定义域是[],3,2-,32≤≤-∴x[]4,11-∈+∴x ,即()x f 的定义域是[]4,1-.又由4121≤-≤-x 解得250≤≤x即()12-=x f y 的定义域是⎥⎦⎤⎢⎣⎡25,0故选.A例4.设函数()x f y =的定义域是()1,0,则()2x f y =的定义域是什么? 【解析】 函数()x f y =的定义域是()1,0.102<<∴x 即11<<-x故()2x f y =的定义域是()1,1-∈x 且0≠x .例5.已知函数(),11+=x x f 则函数()[]x f f 的定义域是( ) {}1.-≠x x A {}2.-≠x x B {}21.-≠-≠x x x C 且{}21.-≠-≠x x x D 或【解析】:()11+=x x f 的定义域是101-≠⇒≠+x x 则()[]x f f 的定义域是111-≠+x 即21012-≠-≠⇒≠++x x x x 且故选.C 例6.已知()x f21-求函数⎪⎭⎫⎝⎛-xx f 213的定义域是?【解析】由()x f21-可知021≥-x 即0213≥-x x ()2100312≤≤⇒≤-⇒x x x故函数⎪⎭⎫⎝⎛-x x f 213的定义域是⎥⎦⎤⎢⎣⎡∈21,0x例7.若函数y =的定义域是R ,求实数k 的取值范围.【解析】当0=k 时,86+-=x y ,当34>x 时,无意义,∴0≠k ; 当0<k 时,()268y kx x k =-++为开口向下的二次函数,图像向下延伸, 函数值总会出现小于零的情况,进而,0<k 不成立,当0>k 时,同时要求0≤∆,即解得1≥k .例8.已知函数x x x f -+=11lg )(,求函数)2(12)1()(xf x x f x F +++=的定义域. 【解析】由题意011>-+xx,即0)1)(1(<+-x x ,解得11<<-x 故函数xxx f -+=11lg )(的定义域为)1,1(-所以⎩⎨⎧≠+<+<-012111x x 解得02<<-x 且21-≠x .即12)1()(++=x x f x m 的定义域为)0,21()21,2(---又121<<-x,解得22<<-x ,即)2(x f 的定义域为)2,2(-)2(12)1()(xf x x f x F +++=的定义域即为)(x m 和)2(x f 的定义域的交集,即)0,21()21,2(--- )2,2(- =)0,21()21,2(---故函数)2(12)1()(xf x x f x F +++=的定义域为)0,21()21,2(--- .例9.已知函数()23x x f x a b =⋅+⋅,其中常数,a b 满足0ab ≠. (1)若0ab >,判断函数()f x 的单调性; (2)若0ab <,求(1)()f x f x +>时x 的取值范围. 【解析】(1)当0,0a b >>时,任意1212,,x x R x x ∈<,则121212()()(22)(33)x x x xf x f x a b -=-+-∵121222,0(22)0x x x x a a <>⇒-<,121233,0(33)0x x x xb b <>⇒-<,∴12()()0f x f x -<,函数()f x 在R 上是增函数. 当0,0a b <<时,同理,函数()f x 在R 上是减函数. (2)(1)()2230x x f x f x a b +-=⋅+⋅>当0,0a b <>时,3()22x a b >-,则 1.5log ()2ax b >-;当0,0a b ><时,3()22x a b <-,则 1.5log ()2ax b<-.第二部分:函数的值域1.观察法:例1.求函数x y 1=的值域. 【解析】0≠x 01≠∴x0≠∴y ,即值域为:()()+∞∞-,00,2.分离常数法:分子、分母是一次函数得有理函数,形如)0,,,(,≠++=c d c b a dcx bax y 为常数,,可用分离常数法,此类问题一般也可以利用反函数法.通式解析:)(,)(cad b d cx c ad b c a d cx b c ad d cx c a d cx b ax y ≠+-+=++-+=++=故值域为⎭⎬⎫⎩⎨⎧≠c a y y 例2.求函数125xy x -=+的值域. 【解析】因为177(25)112222525225x x y x x x -++-===-++++, 所以72025x ≠+,所以12y ≠-,所以函数125x y x -=+的值域为1{|}2y y ≠-.3.换元法:运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常用此法求解.例3.(A 类)求函数2y x =.【解析】令x t 21-=(0t ≥),则212t x -=,所以22151()24y t t t =-++=--+因为当12t =,即38x =时,max 54y =,无最小值所以函数2y x =5(,]4-∞.4.三角换元:例4.求函数2)1(12+-++=x x y 的值域.【解析】0)1(12≥+-x 1)1(2≤+∴x ,令[]πββ,0,cos 1∈=+x1)4sin(21cos sin cos 11cos 2++=++=-++=∴πβββββy ,,0πβ≤≤ 4544ππβπ≤+≤,1)4sin(22≤+≤-πβ, 121)4sin(20+≤++≤πβ故值域为:[]12,0+ 5.配方法:例5.求函数242y x x =-++([1,1]x ∈-)的值域.【解析】2242(2)6y x x x =-++=--+, 因为[1,1]x ∈-,所以2[3,1]x -∈--,所以21(2)9x ≤-≤,所以23(2)65x -≤--+≤,即35y -≤≤, 所以函数242y x x =-++在([1,1]x ∈-)的值域为[3,5]-.6.判别式法:例6.求函数2211xx x y +++=的值域. 【解析】原函数化为关于x 的一元二次方程,0)1()1(2=-+--y x x y (1)当1≠y 时,R x ∈,0)1(4)1(22≥---=∆y .解得2321≤≤y , 当1=y 时,0=x ,而⎥⎦⎤⎢⎣⎡∈23,211,故函数的值域为⎥⎦⎤⎢⎣⎡23,21.7.单调性法:例7.求函数x x x f 4221)(-+-=的值域. 【解析】由042≥-x ,解得21≤x , 令x x g 21)(-=,x x m 42)(-=,在21≤x 上)(),(x m x g 均为单调递减函数, 所以x x x m x g 4221)()(-+-=+在21≤x 上也是单调递减函数.故0)21()(min ==f x f ,值域为),0[+∞.8.有界性例8.求函数11+-=x x e e y 的值域.【解析】函数变形为11-+=y y e x,0>x e 011>-+∴y y ,解得11<<-y , 所以函数的值域为()1,1-.9.不等式法: 例9.求函数xx y 4+=的值域; 【解析】当0>x 时,4424=⋅≥+=xx x x y (当x =2时取等号); 所以当0>x 时,函数值域为),4[+∞. 当0<x 时,442)4(-=⋅-≤+-=xx x x y (当2-=x 时取等号); 所以当0<x 时,函数值域为]4,(--∞. 综上,函数的值域为),4[]4,(+∞--∞10.数形结合法函数解析式具有明显的某种几何意义,如两点间的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目. 例10. (1)求函数82++-=x x y 的值域.(2)求函数5413622++++-=x x x x y 的值域. (3)求函数5413622++-+-=x x x x y 的值域.【解析】(1)函数可以看成数轴上点P (x )到定点A (2),)8(-B 间的距离之和.由上图可知,当点P 在线段AB 上时,10min ==AB y 当点P 在线段AB 的延长线或反向延长线上时,10>=AB y 故所求函数的值域为:),10[+∞ 此题也可以画函数图象来解.(2)原函数可变形为:2222)10()2x ()20()3x (y ++++-+-=可看成x 轴上的点)0,(x P 到两定点)1,2(),2,3(--的距离之和, 由图可知当点P 为线段与x 轴的交点时,如图34)12()23(22min =+++==AB y ,故所求函数的值域为),34[+∞.(3)将函数变形为:2222)10()2()20()3(-++--+-=x x y可看成定点A ()3,2到点P )0,(x 的距离与定点B ()2,1-到点P )0,(x 的距离之差. 如图BP AP y -=由图可知:①当点P 在x 轴上且与A ,B 两点不供线时,如点'P ,则构成'ABP ∆,()23()1,2--ABPxy••BPA根据三角形两边之差小于第三边,有26)12()23(22=-++=<'-'AB P B P A所以2626<'-'<-P B P A即2626<<-y②当点P 恰好为直线AB 与x 轴的交点时,有26=='-'AB P B P A .综上所述,函数的值域为:]26,26(-.三、 课堂训练第一部分:函数定义域1.函数()x x x y +-=1的定义域为( ){}0.≥x x A{}1.≥x x B{}{}01. ≥x x C{}10.≤≤x x D解析:由题意得()⎩⎨⎧≥≥-001x x x ⎩⎨⎧≥≤≥⇒001x x x 或即[){}0,1 +∞∈x ,故选.C 2.()xx f 11211++=的定义域为 .【解析】由分式函数分母不为0得:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≠≠+≠++001101121x x x解得⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-≠≠-≠-≠010311x x x x x 或或()1,-∞-∈⇒x ⎪⎭⎫ ⎝⎛-31,1 ⎪⎭⎫ ⎝⎛0,31 ()+∞,03.已知函数()x f 的定义域为[].2,2- ①求函数()x f 2的定义域;②求函数⎪⎭⎫⎝⎛-141x f 的定义域. 【解析】① 函数()x f 的定义域为[]2,2-222≤≤-∴x 即11≤≤-x故函数()x f 2的定义域为[]1,1-∈x . ② 函数()x f 的定义域为[]2,2-21412≤-≤-∴x 即124≤≤-x 故函数⎪⎭⎫⎝⎛-141x f 的定义域为[]12,4-. 4.已知函数()42-x f的定义域[]5,3∈x ,则函数()x f 的定义域是?【解析】 函数()42-x f 的定义域[]5,3∈x 21452≤-≤∴x即函数()x f 的定义域是[]21,5∈x5.如果函数()()()x x x f -+=11的图像在x 轴上方,则()x f 的定义域为( ).{}1.<x x A {}1.>x x B {}11.-≠<x x x C 且 {}11.≠->x x x D 且【解析】对于()(),011>-+x x 当0≥x 时,有()()011<-+x x 11<<-⇒x 得;10<≤x当0<x 时,有()012>+x 1-≠⇒x 得.10-≠<x x 且 综上,,11-≠<x x 且故选.C6.(1)已知1,,,,≠∈+a R z y x a ,设,,log 11log 11zya a ay ax --==用x a ,表示z .(2)设ABC ∆的三边分别为c b a ,,,且方程01lg 2)lg(2222=+--+-a b c x x 有等根,判断ABC ∆的形状. 【解析】(1),,log 11log 11zya a ay ax --==则,log 11log log ,log log log 11log 11zay ax a za a ya a a a -===--y ax a ya a a log 11log log log 11-==-zza a log 11log 1111-=--=所以xz a a log 11log -=,故xa a z log 11-=.(2)原方程可以转化为0)(10lg22222=-+-a b c x x 又因为方程有等根,则0)(10lg 4)2(2222=---=∆ab c , 必然有1)(10lg 222=-a b c ,所以10)(10222=-ab c ,即222a b c +=. 故ABC ∆为直角三角形.第二部分:函数的值域例1.求函数111++=x y 的值域.【解析】.111,01≥++∴≥+x x ∴11110≤++<x ,∴函数的值域为(]1,0.例2.求函数[]2,1,522-∈+-=x x x y 的值域.【解析】将函数配方得:()412+-=x y []2,1-∈x由二次函数的性质可知:当1=x 时,,4min =y 当1-=x 时,8max =y故函数的值域是[]8,4例3.求函数1-+=x x y 的值域.【解析】令()01≥=-t t x ,则12+=t x 故.4321122+⎪⎭⎫ ⎝⎛+=++=t t t y又,0≥t 由二次函数性质知,当0=t 时,;1min =y 当t 不断增大时,y 值趋于∞+, 故函数的值域为[)+∞,1.例4.求函数2332+-+-=x x x y 的值域.【解析】定义域满足⎩⎨⎧≥+-≥-023032x x x 3≥⇒x . 令,31-=x y 任取,321≥>x x 由,03333212121>-+--=---x x x x x x1y ∴在[)+∞,3上单调递增.令,2322+-=x x y由,232+-=x x u 对称轴,23=x 开口向上,知2y 在[)+∞,3上也单调递增. 从而知()=x f 2332+-+-x x x 在定义域[)+∞,3上是单调递增.()∴=≥∴.23f y 值域为[)+∞,2.例5.求函数21+-=x x y 的值域 【解析】由1231232≠+-=+-+=x x x y ,可得值域{}1≠y y例6.求13+--=x x y 的值域【解析】可化为 ⎪⎩⎪⎨⎧>-≤≤---<=3,431,221,4x x x x y 如图:观察得值域{}44≤≤-y y .例7.求函数x y -=3的值域.【解析】0≥x 33,0≤-≤-∴x x 故函数的值域是:[]3,∞- 例8.求函数51042+++=x x y 的值域.【解析】配方,得().5622+++=x y ().65,6622+≥∴≥++y x∴函数的值域为).,65(+∞+例9.求函数1122+++-=x x x x y 的值域.【解析】 1122+++-=x x x x y ,R x ∈,去分母整理得()()01112=-+++-y x y x y.当1=y 时,,0=x 故y 可取1; ①当1≠y 时,方程①在R 内有解,则()()(),011412≥---+=∆y y y,031032≤+-∴y y 解得.331≤≤y ∴函数的值域为.3,31⎥⎦⎤⎢⎣⎡例10.求函数11--+=x x y 的值域.【解析】原函数可化为:112-++=x x y令,1,121-=+=x y x y 显然21,y y 在[)+∞,1上为无上界的增函数所以21,y y y =在[)+∞,1上也为无上界的增函数所以当1=x 时,21y y y +=有最小值2,原函数有最大值222= 显然,0>y 故原函数的值域为(]2,0.例11.求函数133+=x xy 的值域【解析】设t x=+13 ,则()111131113113>-=+-=+-+=t ty xx x 101101<<∴<<∴>y tt ,()01原函数的值域为∴.例12.求函数53-++=x x y 的值域.【解析】53-++=x x y ⎪⎩⎪⎨⎧≥-<<--≤+-=)5(22)53(8)3(22x x x x x由图像可知函数53-++=x x y 的值域为[)+∞,8.四、 课后作业【训练题A 类】1.函数()f x = ).A . 1[,)2+∞B . 1(,)2+∞ C. 1(,]2-∞ D. 1(,)2-∞2.函数265x x y ---=的值域是( )525.≤≤y A5.≤y B 50.≤≤y C 5.≥y D 3.函数31---=x x y 在其定义域内有( ).A 最大值2,最小值2- .B 最大值3,最小值1- .C 最大值4,最小值0 .D 最大值1,最小值3-4.已知函数31++-=x x y 的最大值为M ,最小值为m ,则Mm的值为( ) 41.A 21.B 22.C 23.D 5.函数()=x f 962+-x 的值域是 ( )A 、(-∞,6)B 、]3,(-∞C 、 (0,6)D 、 (0,3) 6.()421-=x x f 的定义域为_____ 7.函数x x y 21-+=的值域是 . 8.求()4313512-++-=x x x x f 的定义域9.求2045222+-++-=x x x x y 的值域.10.求函数12-+=x x y 的值域.11.已知()x f 的值域为,94,83⎥⎦⎤⎢⎣⎡试求()()x f x f y 21-+=的值域.【参考答案】1.【答案】C【解析】由根式知21021≤⇒≥-x x 故选.C 2.【答案】A【解析】425425216022≤+⎪⎭⎫ ⎝⎛+-=--≤x x x , 25602≤--≤∴x x ,即525≤≤y3.【答案】A【解析】由题意得()()()⎪⎩⎪⎨⎧>≤<-≤-=3,231,421,2x x x x y []2,2-∈⇒y ,故选A4.【答案】C【解析】两边平方,即()()312312+-+++-=x x x x y ()41242++-+=x844max 2=+=y ,4min 2=y ,2284max min ==y y 故选C . 5.【答案】B【解析】∴≥+392x 3962≤+-x 故选.B6.【答案】()+∞,8 【解析】80421≥⇒≥-x x ,即()+∞,8 7.【答案】(],1-∞【解析】令x t 21-=则()0212≥-=t t x 即()()021212≥++-=t t t t f ()11212+--=t故1=t 时,取得最大值.即().1≤x f8.【解析】1212210431012>⇒⎪⎩⎪⎨⎧>≥⇒⎪⎩⎪⎨⎧>-≥-x x x x x ,即()+∞,129.【解析】()()1624122+-++-=x x y ()()()()2222402201-+-+++-=x x即可看成三点:()()()4,2,2,1,0,B A x P -,PB PA y +=在PAB ∆中AB PB PA >+知点()2,1-A 点()4,2B 在数轴异侧时AB 最大.PB PA y +==AB 故()()37422122=--+-=≥AB y10.【解析】显然,函数的定义域为21≥x . 当21≥x 时,函数12,21-==x y x y 都是递增的 所以在21=x 时,取得最小值.即⎪⎭⎫⎢⎣⎡+∞∈,21y .11.【解析】()(),412191,9483≤-≤∴≤≤x f x f即有(),212131≤-≤x f令(),21,31,21⎥⎦⎤⎢⎣⎡∈-=t x f t ()(),1212t t x f +-=()()t t t g y +-==∴2121()11212+--=t⎥⎦⎤⎢⎣⎡∉21,311 ,∴函数()t g y =在区间⎥⎦⎤⎢⎣⎡21,31上单调递增,,9731min =⎪⎭⎫ ⎝⎛=∴g y ∴=⎪⎭⎫ ⎝⎛=.8721max g y 函数的值域为⎥⎦⎤⎢⎣⎡87,97.【训练题B 类】1.求()52+=x x f 的值域2.求函数xy --=111的值域3.求函数12--=x x y 的值域.4.已知()x f 43-的定义域为[],2,1-∈x 则函数()x f 的定义域是?5.求下列函数的值域:(1);1342++=x x y (2)5438222+-+-=x x x x y6.对于每个函数x ,设()x f 是2,14+=+=x y x y 和42+-=x y 三个函数中的最小者,则()x f 的最大值是什么?7.已知⎪⎭⎫⎝⎛-x f 213的定义域为[]5,1∈x ,则函数()32+x f 的定义域是?8.求下列函数的值域: (1)[);5,1,642∈+-=x x x y(1)245x x y -+=.9.求函数13+--=x x y 的值域.10.函数232+-=kx x y 的值域为⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,3232, ,求k 的值.11.(1)已知函数⎩⎨⎧≥<=0,0,)(2x x x x x f ,求))((x f f .(2)求函数12)(2--+=x x x f 的最小值.12.若函数432--=x x y 的定义域为[],,0m 值域为,4,425⎥⎦⎤⎢⎣⎡--求m 的取值范围.【参考答案】1.【解析】25052-≥⇒≥+x x ,即⎪⎭⎫⎝⎛+∞-,25 2.【解析】原式化为,11=--x y y ,011≥-=-∴yy x 即01<≥y y 或. 故()[)+∞∞-∈,10, y .3.【解析】函数的定义域是{}.,1R x x x ∈≥令()0,1≥=-t t x 则 ,12+=t x8154122222+⎪⎭⎫ ⎝⎛-=+-=∴t t t y ,又o t ≥,∴结合二次函数的图像知()815≥t y .故原函数的值域为⎭⎬⎫⎩⎨⎧≥815y y . 4.【解析】 ()x f 43-的定义域为[]2,1-∈x 7435≤-≤-∴x()x f ∴的定义域为[]7,5-∈x .5.【解析】(1)由1342++=x x y 可得,0342=-+-y x yx 当0=y 时,;43-=x 当0≠y 时,,R x ∈故()(),03442≥---=∆y y解得,41≤≤-y 且0≠y .当2-=x 时,;1-=y 当21=x 时,.4=y∴所求函数的值域为[].4,1-(2)由5438222+-+-=x x x x y 可得()()0352422=-+---y x y x y ,当02≠-y 时,由,R x ∈得()()()035242162≥----=∆y y y ,25≤≤-∴y .25<≤-∴y .经检验2=x 时,5-=y ,而2≠y .∴原函数的值域为[]2,5-.6.【解析】在同一直角坐标系中作出三个函数的图像,由图像可知,()x f 的最大值是2+=x y 和42+-=x y 交点的纵坐标,易得()38max =x f . 7.【解析】 ⎪⎭⎫⎝⎛-x f 213的定义域为[]5,1∈x 2521321≤-≤∴x 即253221≤+≤x4145-≤≤-∴x 故函数()32+x f 的定义域是⎥⎦⎤⎢⎣⎡--∈41,45x 8.【解析】(1)配方,得().222+-=x y [),5,1∈x ∴函数的值域为{}.112<≤y y(2)对根号里配方得:()30922≤≤⇒+--=y x y 即[]3,0∈∴y .9.【解析】原式可变为()[)[)⎪⎩⎪⎨⎧+∞∈--∈+--∞-∈=,3,43,1,221,,4x x x x y 44≤≤-⇒y 即[]4,4-∈y10.【解析】232+-=kx x y 的反函数为kx x y -+=232,其定义域为⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,22,k k ,故.3322-=⇒-=k k 11.【解析】(1)当0≥x 时,0)(2≥=x x f ,则42)())((x x f x f f ==;当0<x 时,,0)(<=x x f 则x x f x f f ==)())(( 所以⎩⎨⎧≥<=0,0,))((2x x x x x f f(2)⎪⎩⎪⎨⎧<++-≥-+=2,12,3)(22x x x x x x x f由)(x f 在),2[+∞上的最小值为3)2(=f , 在)2,(-∞上的最小值为43)21(=f 故函数)(x f 在R 上的最小值为43. 12.【解析】,425232-⎪⎭⎫ ⎝⎛-=x y 因为,4,425⎥⎦⎤⎢⎣⎡--∈y 又,4)0(-=f ,42523-=⎪⎭⎫ ⎝⎛f ()43-=f ,故⎥⎦⎤⎢⎣⎡∈⇒≤≤3,23323m m . 【训练题C 类】1.函数()()R x x x f ∈+=211的值域是( ) []1,0.A [)1,0.B (]1,0.C ()1,0.D2.函数()155+=x xx f 的值域是( ) ()()+∞-∞-,51,. A ()5,1.B()()+∞∞-,11,. C ⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,5151,. D3.下列函数中,值域是()+∞,0的是( )12.2+-=x x y A ()()+∞∈++=,012.x x x y B ()Nx x x y C ∈++=121.211.+=x y D 4.求函数x x y 431-+-=的值域.5.求x x y ++-=12的值域.6.函数()112->++=x x x y 的值域是.7.已知函数()x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有()()()x f x x xf +=+11,则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛25f f 的值是多少?8.求函数)2(x x x y -+=的值域.9.已知函数⎪⎩⎪⎨⎧+∞∈+-∞∈-=),0[,1)0,(,11)(2x x x x x f ,求)1(+x f .10.已知函数()x f 的定义域为()b a ,且,2>-a b 则()()()1313+--=x f x f x F 的定义域为()13,13.-+b a A ⎪⎭⎫ ⎝⎛-+31,31.b a B ⎪⎭⎫ ⎝⎛--31,31.b a C ⎪⎭⎫⎝⎛++31,31.b a D11.若函数()x f y =的定义域为[],1,1-求函数⎪⎭⎫⎝⎛-•⎪⎭⎫ ⎝⎛+=4141x f x f y 的定义域.【参考答案】1.【答案】C【解析】.1110,11,0,222≤+<∴≥+∴≥∴∈x x x R x∴函数()()R x xx f ∈+=211的值域为(].1,0 2.【答案】C 【解析】15115155+-+=+=x x x x y 1511+-=x 11511015≠+-∴≠+x x 即1≠y 知()()+∞∞-∈,11, y 故选.C3.【答案】D 【解析】A 中()012≥-x [)+∞∈∴,0yB 中11112++=++x x x ()+∞∈,0x 21<<∴y 即()2,1∈y C 中()2211121+=++=x x x y N x ∈ ()1,0∈∴y D 中由题意知01>+x ()+∞∈+∴,011x 故选D 4.【解析】令()01≥=-t t x 则()012≥+=t t x则142-+-=t t y ()o t t ≥⎪⎭⎫⎝⎛--=2214则0≤y .5.【解析】两边平方:6649212322≤⇒≤+⎪⎭⎫ ⎝⎛--+=y x y6.【解析】()12111211111112->=+⋅+≥+++=+++=++=x x x x x x x x x y当且仅当111+=+x x 即0=x 时成立,故2≥y 7.【解析】由()()()x f x x xf +=+11可得:23=x 时,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛23252523f f , 21=x 时,⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛21232321f f , 21-=x 时,⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-21212121f f .又.025,023021=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛f f f又()()()(),111111--=+--f f ()().0100=-=-∴f f()().0025,00==⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∴=∴f f f f8.【解析】由0)2(≥-x x 解得定义域为20≤≤x两边平方整理得:0)1(2222=++-y x y x (1)因为0)1(2222=++-y x y x 一定有根,所以08)1(42≥-+=∆y y解得:2121+≤≤-y由0≥∆仅保证关于x 的方程:0)1(2222=++-y x y x 在实数集R 有实根, 而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根, 也就是说0≥∆求出的范围可能比y 的实际范围大, 故需要进一步确定此函数的值域. 采取如下方法进一步确定函数的值域. ∵20≤≤x 0)2(≥-+=∴x x x y ,把0min =y ,21+=y 带入方程(1)解得:]2,0[2222241∈-+=x即当时,2222241-+=x 时原函数的值域为:]21,0[+9.【解析】由复合函数的定义域知)1(+x f 的定义为),1[)1`,(+∞-⋃--∞当)1`,(--∞∈x 时 11)2(+=-x x f ,当),1[+∞-∈x 时22)1(2++=+x x x f 所以⎪⎩⎪⎨⎧+∞-∈++--∞∈+=+),1[,22)1,(,11)1(2x x x x x x f10.【答案】B【解析】由题意得⎩⎨⎧<+<<-<b x a b x a 1313,即⎪⎪⎩⎪⎪⎨⎧-<<-+<<+31313131b x a b x a 显然,3131->+b b ,3131->+a a 又,2>-a b 从而.3131+>-a b()x F ∴的定义域为⎪⎭⎫⎝⎛-+31,31b a ,故选.B11.【解析】 函数()x f y =的定义域为[]1,1-∴有⎪⎪⎩⎪⎪⎨⎧≤-≤-≤+≤-14111411x x 即⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-45434345x x 得4343≤≤-x 故函数⎪⎭⎫ ⎝⎛-•⎪⎭⎫ ⎝⎛+=4141x f x f y 的定义域是⎥⎦⎤⎢⎣⎡-∈43,43x .。

函数的定义域与值域

函数的定义域与值域

函数的定义域与值域一、函数的定义域自变量x 的取值范围叫做函数的定义域(即使得函数的解析式有意义的x 的取值范围)。

二、常见函数的定义域的求法:1、如果f(x)为二次根式,那么函数的定义域是使根号内的式子大于等于零的实数x 的集合;2、如果f(x)是分式,那么函数的定义域是使分母不等于零的实数x 的集合;3、当函数y=f(x)中含有x 的式子在对数真数位置时,需使真数大于零,进而求出x 的取值范围;当含有x 的式子在对数的底数位置时,要通过底数大于零且不等于1的x 的取值范围;4、如果f(x)是由几个函数组合而成的,那么函数的定义域是使各个函数同时有意义的实数x 的集合(即各个函数定义域的公共部分构成f(x)的定义域)。

注意:①当通过解不等式或不等式组求定义域时,常常借助数轴求交集,同时考虑端点是否可取;②在解决函数问题时首先考虑定义域,“定义域优先原则”;③定义域的最终结果一定要写成集合或者区间的形式;④实际问题的自变量范围应根据实际情况确定。

典例分析:23x 4x f=x--+1、函数的定义域为()A 、[-4,1] B[-4,0] C 、(0,1] D 、[]4- ,0)(0,12f(x)=x x x +、函数(-1)的定义域()A 、(][)01-∞+∞ ,, B 、[)∞1,+ C 、{0} D 、{}[)01+∞ ,3、若函数y=f (x )的定义域[0,2],则函数()(2)g x 1f x x =-的定义域是()A 、[0,1]B 、[0,1)C 、[0,1)U(1,4]D 、(0,1) 4、若函数f (2x-1)的定义域为[0,1) ,则f (1-3x )的定义域是() A 、(-2,4] B 、12,2⎛⎫-- ⎪⎝⎭ C 、10,6⎛⎤ ⎥⎝⎦ D 、20,3⎛⎤ ⎥⎝⎦三、函数的值域:1、函数值域的概念:所有函数值的集合叫做函数的值域。

2、求函数值域的常用方法(1)配方法:若函数类型为一元二次函数,则采用此法求其值域。

值域和定义域的区别

值域和定义域的区别

值域和定义域的区别值域和定义域的区别:定义域是函数的自变量的取值范围,值域是函数值的取值范围。

1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;4、分段函数的定义域是各个区间的并集;5、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;6、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域。

1.观察法用于简单的解析式。

y=1-√x≤1,值域-∞,1]y=1+x/1-x=2/1-x-1≠-1,值域-∞,-1∪-1,+∞.2.配方法多用于二次型函数。

y=x^2-4x+3=x-2^2-1≥-1,值域[-1,+∞)y=e^2x-4e^x-3=e^x-2^2-7≥-7,值域[-7,+∞)3.换元法多用于复合型函数。

通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。

特别注意中间变量(新量)的变化范围。

4.不等式法用不等式的基本性质,也是求值域的常用方法。

5.最值法如果函数fx存在最大值M和最小值m,那么值域为[m,M]。

因此,求值域的方法与求最值的方法是相通的。

6.反函数法(又叫反解法)函数和它的反函数的定义域与值域互换。

如果一个函数的值域不易求,而它的反函数的定义域易求,那么我们可以通过求后者得出前者。

7.单调性法若fx在定义域[a,b]上是增函数,则值域为[fa,fb];若是减函数,则值域为[fb,fa]。

函数的定义域和值域

函数的定义域和值域

)
基 础 知 识 梳 理 聚 焦 考 向 透 析 感 悟 经 典 考 题 课 时 规 范 训 练
1 D. y 0<y≤2

1 1 解析:∵x2+2≥2,∴0< 2 ≤ . x +2 2 答案:D
1 3 . (2011· 高考广东卷 ) 函数 f(x) = + lg(1 + x) 的定义域是 1-x ( ) A.(-∞,-1) C.(-1,1)∪(1,+∞) B.(1,+∞) D.(-∞,+∞) 解得 x>-1 且 x≠1.
基 础 知 识 梳 理 聚 焦 考 向 透 析 感 悟 经 典 考 题 课 时 规 范 训 练
2.函数的值域 (1)函数的值域的定义:在函数 y=f(x)中与自变量 x 的值对应的 y 的值叫作函数值,所有函数值的集合,叫作函数的值域. (2)确定函数值域的原则:a.当函数 y=f(x)用表格给出时,函数 的值域是指表格中所有 y 值组成的集合.b.当函数 y=f(x)用图像给 出时,函数的值域是指图像上每一个点的纵坐标组成的集合.c.当函 数 y=f(x)用解析式给出时,函数的值域由定义域和解析式确定. (3)求函数值域的方法有:直接法、换元法、配方法、判别式法、 几何法、不等式法、单调性法等.
方法求解,(1)用分离常数法;(2)用配方法;(3)用换元法或单调性法.
【解】
x-3 x+1-4 4 (1)(分离常数法)f(x)= = =1- . x+1 x+1 x+1
4 4 因为 ≠0,所以 1- ≠1, x+1 x+1 即函数的值域是{y|y∈R,y≠1}. (2)(配方法)由于 2+x-x
基 础 知 识 梳 理 聚 焦 考 向 透 析 感 悟 经 典 考 题 课 时 规 范 训 练

函数的值域与定义域

函数的值域与定义域

函数的值域与定义域在数学的世界里,函数就像是一座桥梁,连接着不同的数集。

而函数的值域和定义域,则是这座桥梁的两个重要基石。

我们先来聊聊什么是函数的定义域。

简单来说,定义域就是函数中自变量可以取值的范围。

比如说,对于函数 f(x) =√x ,因为在实数范围内,根号下的数不能是负数,所以 x 就必须大于等于 0 ,那么这个函数的定义域就是 0, +∞)。

再比如,f(x) = 1 /(x 1) ,由于分母不能为 0 ,所以 x 不能等于 1 ,它的定义域就是x ≠ 1 ,用区间表示就是(∞, 1) ∪(1, +∞)。

定义域的确定往往需要考虑多种因素。

有时候要考虑数学上的限制,比如分母不能为 0 ,根号下的数非负。

还有的时候要结合实际问题的背景。

比如一个描述物体运动时间的函数,时间就不能是负数。

那函数的值域又是什么呢?值域就是函数在其定义域上所有可能的输出值的集合。

比如说,对于函数 f(x) = x²,因为 x²总是大于等于 0 的,所以它的值域就是 0, +∞)。

再看函数 f(x) = 2x + 1 ,由于 x 可以取任意实数,那么 2x + 1 也可以取任意实数,它的值域就是(∞,+∞)。

理解函数的值域和定义域的关系非常重要。

定义域决定了函数的输入范围,而值域则是在这个输入范围内函数能够产生的输出结果的范围。

它们相互制约,共同描绘了函数的特性。

举个例子,假设有一个函数 f(x) = 3x ,定义域是 1, 5 。

那么当 x取 1 时,f(1) = 3 ;当 x 取 5 时,f(5) = 15 。

所以这个函数在给定定义域内的值域就是 3, 15 。

再比如函数 f(x) = x²+ 4 ,定义域是(∞,+∞)。

因为 x²总是大于等于 0 ,所以 x²总是小于等于 0 ,那么 x²+ 4 就总是小于等于 4 。

所以这个函数的值域是(∞, 4 。

确定函数的值域有时候并不是一件容易的事情。

1、函数定义域、值域求法总结

1、函数定义域、值域求法总结

1、函数定义域、值域求法总结函数定义域、值域求法总结1、函数的定义域是指自变量“x ”的取值集合。

2、在同一对应法则作用下,括号内整体的取值范围相同。

一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。

因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。

一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。

定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。

()的定义域求的定义域已知练习)2(],9,3[log :313-x f x f():f (x),f[g(x)]题型一已知的定义域求的定义域()():f g x ,f (x)⎡⎤⎣⎦题型二已知的定义域求的定义域()[]():f g x ,f h(x)⎡⎤⎣⎦题型三已知的定义域求的定义域()[]()[])x (h f x f x g f →→一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

2.2函数的定义域与值域

2.2函数的定义域与值域

2.2函数的定义域与值域一:函数的定义域:1.定义域的概念与表示:2.确定函数定义域的原则:(1)当函数f(x)用列表法给出时,函数的定义域是表格中实数x的集合。

(2)当函数f(x)用图像法给出时,函数的定义域是x轴上投影所需覆盖的实数集合。

(3)当函数f(x)用解析式给出时,函数的定义域是使解析式有意义的实数的集合。

3.确定函数定义域的依据:(1).若f(x)是整式,则x R∈。

(2)若f(x)是分式,则分母不为0.(3)当f(x)是偶次根式,则被开方式x≥0,例:y=x,x≥0,(4)当f(x)是非正数指数幂时,定义域是使幂的底不为0的x取值的集合⇒f(x)>0(5)当f(x)为对数函数时,例y=)flog x(a⇒当对数式或指数式函数的底数中含变量时,底数须大于0且不等于1(6)若f(x)是有限个基本初等函数四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集。

(7)若f[])(xa,时的值域a,,则f(x)的定义域为g(x)在x∈[]bg的定义域为[]b(8)若f(x)的定义域为[]bg的定义域由不等式a≤g(x)≤ba,,其复合函数f[])(x解出(9)对于含字母参数的函数,求其定义域。

根据问题具体情况须对字母参数进行分类讨论(10)由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义二:函数的值域:1.值域的概念与表示:2.求函数值域的常用方法:(1)配方法(2)换元法(3)不等式法(4)逆求法(即利用反函数)(5)单调性法(6)观察法(7)分离常数法(8)数形结合法(9)判别式法(10)中间变量值域法基础自测:1.设a ∈()1,0,则函数y=)1(log -x a 的定义域为( ) A . .(]2,1 B. ()+∞,1 C . [)+∞,2 D .(]2,+∞- 2.下列四个函数:①.Y=3X ②.⎩⎨⎧<≥)0(,2)0(,3x x x x ③. y=-4x+5 (x ∈z) ④ y=2x -6x+7 其中值域相同的是( )A .①② B. ①③ C.②③ D. ②④3.若函数f(x)=3442++-mx mx x 的定义域为R ,则实数m 的取值范围是() A.()+∞∞-, B .⎪⎭⎫⎝⎛43,0 C.⎪⎭⎫ ⎝⎛+∞,43D.⎪⎭⎫⎢⎣⎡43,04.定义域为R 的函数y=f(x)的值域为[]b a ,,则函数y=f(x+a)的值域是() A.[]b a a +,2 B.[]a b -,0 C.[]b a , D.[]b a a +-,5.函数y=x e -31的值域为---------------。

数学复习函数的定义域与值域的确定

数学复习函数的定义域与值域的确定

数学复习函数的定义域与值域的确定数学复习:函数的定义域与值域的确定导语:函数是数学中重要的概念,它描述了变量之间的关系。

在函数的研究中,定义域和值域是两个重要的概念。

本文将详细介绍函数的定义域和值域的确定方法和注意事项。

一、函数的定义函数是两个集合之间的一种对应关系。

对于任意一个自变量,函数都能给出唯一的因变量。

在数学中,函数通常表示为f(x),其中x为自变量,f(x)为因变量。

二、定义域的确定1. 定义域的概念定义域是指自变量的取值范围,也就是能够使函数有意义的值的集合。

根据不同的函数类型,定义域的确定方法有所不同。

2. 常数函数的定义域对于常数函数来说,定义域为全体实数,因为常数函数对于任意实数输入,输出都为同一个常数。

例如:f(x) = k,其中k为常数。

3. 线性函数的定义域线性函数通常表示为 f(x) = ax + b,其中a和b都是实数系数。

对于线性函数而言,定义域为全体实数。

4. 平方函数的定义域平方函数通常表示为 f(x) = x^2。

由于平方函数对于所有实数都有定义,所以定义域为全体实数。

5. 分式函数的定义域分式函数通常表示为 f(x) = p(x) / q(x),其中 p(x) 和 q(x) 都是多项式函数。

在确定分式函数的定义域时,需要注意分母不能为零,即q(x) ≠ 0。

6. 开方函数的定义域开方函数通常表示为f(x) = √x 或f(x) = √(ax + b),其中 a 和 b 为实数系数。

在确定开方函数的定义域时,需要满足根号内的值大于等于0。

三、值域的确定1. 值域的概念值域是函数所有可能输出的值组成的集合。

确定值域是为了了解函数输出的范围。

2. 常数函数的值域常数函数的值域只包含一个数值,即为常数本身。

3. 线性函数的值域线性函数的值域为全体实数,因为线性函数能够表示实数上的直线。

4. 平方函数的值域平方函数的值域为非负实数集合[0,+∞)。

因为对于所有的x值,平方函数的输出都为非负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的概念
教学目标:理解函数的概念;了解构成函数的要素(定义域、值域、对应法则),会求一些简单函数的定义域;了解映射的概念;理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数;了解简单的分段函数,能写出简单情境中的分段函数,并能求出给定自变量所对应的函数值,会画函数的图象(不要求根据函数值求自变量的范围)。

知识点回顾:
1.对于两个非空的数集A 、B ,集合A 每一个x ,对应着B 中唯一的y ,函数值域应为B 的一个子集。

2.初等函数的定义域(使函数解析式有意义)

1分式的分母不为0;○2偶次根式被开方数大于或等于0(奇次根式定义域为R );○3对数函数的真数大于0,底数大于0且不等于1;○4零指数幂底数y=x 0=1(x 不等于0);○5正切函数2π
π+≠k x ;○6实际问题有意义;○7若f(x)定义域为[a,b],复合函数f[g(x)]定义域由a ≤g(x)≤b 解出;○8若f[g(x)]定义域为[a,b],则f(x)定义域相当于x ∈[a,b]时g(x)值域;
基础训练:
1.函数)13lg(13)(2++-=
x x x x f 的定义域是____________
2.函数x x x f 11)(+
+=的定义域为____________
3.函数23)(x x x f -=的定义域为____________
4.若函数)(x f y =的定义域为⎥⎦
⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为__________;
5.若函数2(1)f x +的定义域为[2,1)-,则函数()f x 的定义域为________
典型例题: 函数862++-=k x kx y 的定义域为R ,则k 的取值范围是___________
已知函数y=f(x)定义域为[1,3],则函数y=f(x+3)定义域为_________ 已知函数y=f(x+3)定义域为[1,3],则函数y=f(x)定义域为_________ 已知函数y=f(x-3)定义域为[1,3],则函数y=f(x+3)定义域为_________
课堂检测:
1.已知1)(2++=x x x f ,则)]2([f f =
2.已知⎩
⎨⎧>-<+=0,40,4)(x x x x x f ,则)]3([-f f 的值为
3.若函数()lg(42)x f x k =-⋅在(],2-∞上有意义,则实数k 的取值范围是 .
4.若函数()1222-=--a ax x
x f 的定义域为R ,则实数a 的取值范围 __
5. 不等式()2log 231a x x -+≤-在R 上恒成立,则a 的取值范围是___________
3. 函数43)1ln(2+--+=x x x y 的定义域为_______________。

相关文档
最新文档