黑龙江省大庆市铁人中学2020届高三考前模拟训练(一)+数学(理)答案

合集下载

大庆铁人中学2020届高三数学考前模拟训练试题文含解析

大庆铁人中学2020届高三数学考前模拟训练试题文含解析
∴点(x0,y0)到y=x的距离为 = (1-ln 2),
则|PQ|的最小值为 (1-ln 2)×2= (1-ln 2).
12。已知双曲线 的左、右焦点分别为 , ,过点 且垂直于x轴的直线与该双曲线的左支交于A,B两点,若 的周长为24,则当 取得最大值时,该双曲线的焦点到渐近线的距离为( )
A. 1B. C。 2D.
故选:D.
【点睛】本题考查了推理案例,考查了逻辑推理能力,有条理的逐一验证是解题关键,属于基础题。
8。已知函数 的值域为 ,函数 ,则 的图象的对称中心为( )
A. B.
C。 D。
【答案】B
【解析】
【分析】
由值域为 确定 的值,得 ,利用对称中心列方程求解即可
【详解】因为 ,又依题意知 的值域为 ,所以 得 , ,
16.已知三棱锥 中, , , , ,面 面ABC,则此三棱锥的外接球的表面积为____.
【答案】
【解析】
【分析】
作示意图,由勾股定理分析出 ,设 为 的中点,得到 面 ,
再由直角三角形斜边的中线等于斜边的一半,可得 ,从而得到外接球球心 在 上,再求出外接球半径,从而求出外接球的表面积.
【详解】作示意图如图所示:
所以 ,令 ,得 ,则 的图象的对称中心为 .
故选:B
【点睛】本题考查三角函数 的图像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为0
9.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上两人所得与下三人等.问各得几何?”其意思是:“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得之和与丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( )

2020届黑龙江省大庆市高三第三次高考模拟考试数学(理)试题参考答案

2020届黑龙江省大庆市高三第三次高考模拟考试数学(理)试题参考答案

2020大庆三模数学理科参考答案一、选择题 ABACC BDDCA CD 13.2 14.115. 16,1103217.解(Ⅰ)因为12n n S a +=-,①当2n ≥时,12n n S a -=-,② ...............................2分由①-②得1n n na a a +=-,即12n na a +=, ............................................4分当1n =时,2124a a =+=,21422a a ==,所以数列{}n a 为等比数列,其首项为12a =,公比为2,所以112n nn a a q -==; ..................................................................6分(Ⅰ)由(Ⅰ)得,22log 121n n b a n =+=+,所以()2n T n n =+, ........................................................8分所以()11111222k T k k k k ⎛⎫==- ⎪++⎝⎭, 11111111111...2324112nk k T n n n n =⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑........10分31114212n n ⎛⎫=-+ ⎪++⎝⎭因为02111>+++n n 所以4311<∑=nk kT ............................12分18.解(1)证明:连接AC,BD 交点为O ,Ⅰ四边形ABCD 为正方形,ⅠAC BD ⊥ ⅠPB PD =,OB OD =,ⅠBD OP ⊥,...........................................................2分 又ⅠOP AC O ⋂=,ⅠBD PAC ⊥面又BD PAC ⊂面,ⅠPAC ABCD ⊥面面...........................................................4分(2)方法1:ⅠPAC ABCD ⊥面面,过点P 做PE AC ⊥,垂足为EⅠABCD PE ⊥面ⅠPA 与底面ABCD 所成的角为030,Ⅰ030PAC ∠=,...............................................................6分又PA PC ⊥,设2PC =,则3,3,3,4,2AP PE AE AC AD =====过F 做FE 垂直于AB,垂足为F,则AF=223 如图所示,以A 为坐标原点,,AB AD u u u v u u u v为x,y 轴的正方向建立空间直角坐标系A xyz -()()()()32320,0,0,22,0,0,22,22,0,0,22,0,322A B C D P ⎛ ⎝..........8分 设面PBC 法向量为()1,,n x y z =u v ,()220,22,0,3BC CP ⎛== ⎝u u u v u u u v1100n BC n CP ⎧⋅=⎪⎨⋅=⎪⎩u v u u u v u v u u u v ,Ⅰ220223022x y z ⎧=+=⎩, 1,0,6z y x ===令则Ⅰ)16,0,1n =u v......................................................................9分同理PCD 面的法向量()26,1n =u u v, ....................................................................10分1212121cos ,7n n n n n n ⋅==u v u u vu v u u v u v u u v ....................................................................11分Ⅰ二面角B PC D --的正弦值734 ....................................................................12分 (2)方法2ⅠPAC ABCD ⊥面面,过点P 做PE AC ⊥,垂足为EⅠABCD PE ⊥面ⅠPA 与底面ABCD 所成的角为030,Ⅰ030PAC ∠=,.........................9分设AB=a,则,AB=BC=CD=DA=a,AC=a 2,由PA PC ⊥,030PAC ∠=得AP=a 26, PE=a 46,AE=a 423,过E 做EF 垂直AB ,垂足为F,则AF=a 43,如图所示,以A 为坐标原点,,AB AD u u u v u u u v为x,y 轴的正方向建立空间直角坐标系A xyz - 所以可得:A(0,0,0),B(a,0,0)C(a,a,0),D(0,a.0),P(a 43,a 43,a 46),....................................................................8分)46,4,4(a a a --=,=BC (0,a.0),DC =(a,0,0)设面PBC 法向量为()1,,n x y z =u v ,1100n BC n CP ⎧⋅=⎪⎨⋅=⎪⎩u v u u u v uv u u u v ,⎪⎩⎪⎨⎧=+--=046440z a y a x a ay , 令z=1.则⎪⎩⎪⎨⎧===106z y x ,即)1,0,6(1=n ,....................................................................9分设PCD 面的法向量),,(2222z y x n =,则⎩⎨⎧=•=•0022n DC n ,⎪⎩⎪⎨⎧=+--=0464402222z a y a x a ax ,令z=1.则⎪⎩⎪⎨⎧===160222z y x ,)1,6,0(2=n , ....................................................................10分(直接书写:同理可得)1,6,0(2=n ,本次考试不扣此步骤分)所以71==, ..................................................................11分 则二面角B PC D --的正弦值为734 .....................................................................12分 19.解(1)设零件经A ,B ,C 三道工序加工合格的事件分别记为A ,B ,C , 则()P A p =,()23P B =,()34P C =,()1P A p =-,()13P B =,()14P C =.设事件D 为“生产一个零件为二级品”,由已知A ,B ,C 是相互独立事件,则()()P D P ABC ABC ABC =++()()()P ABC P ABC P ABC=++()2313211343434p p p =-⨯⨯+⨯⨯+⨯⨯6111224p -==,.............................................2分所以12p =. .............................................4分(2)X 的可能取值为200,100,50-,...........................................5分()12312002344P X ==⨯⨯=,()1110024P X ==,()111714204542P X ===---,....................................................8分则X 的分布列为. .........................10分 所以1117325()20010050424244E X =⨯+⨯-⨯=. .. .....................12分 20.解:(1)当0m =时,()x f x xe =-,()(1)x x x f x e xe x e '=--=-+ ------------------------2分所以(1)2k f e '==-,因为(1)f e =-所以切线方程为2(1)y e e x +=--, 整理得:20ex y e +-= -----------------------4分 (2)()4x m x e x -<+,因为0x e >,所以4xx m x e +<+(0x >)恒成立 设4()x x h x x e+=+,则2(4)33()11x x x x x x e x e x e x h x e e e -+----'=+=+=---------6分 设()3,x s x e x =--则()1x s x e '=-0>(0x >).所以()s x 在(0,)+∞上单调递增,又05.44817.429)23(23<-≈-=e s ,03352945.5335)35(35>--≈--=e s ,所以存在)35,23(0∈x 使得0()0s x =, 当0(0,)x x ∈时,()0s x <,即0)(<'x h ;当0(,)x x ∈+∞时,()0s x >即0)(>'x h .所以()h x 在0(0,)x 上单调递减,0(,)x +∞上单调递增.所以00min 004()()x x h x h x x e +==+. ----------8分 因为00000()0,30, 3.x x s x e x e x =--=∴=+所以000min 000000441()()133x x x h x h x x x x x x e ++==+=+=++++,)35,23(0∈x ------------10分 设311)(+++=x x x g ,当)35,23(∈x 时,0)3(11)(2>+-='x x g ,所以)(x g 在)35,23(上单调递增.则)35()()23(g x g g <<,即342121)(18492<<<<x g .所以3)(20<<x h 因为m Z ∈,所以2m ≤,所以m 的最大值为2. ----------------------------------12分 21.方法一 解(1)由题有2a =,12c e a ==. Ⅰ1c =,.....................................................2分 Ⅰ2223b a c =-=.Ⅰ椭圆方程为22143x y += ...........................................................................4分(2)设l :1x my =+,将其与曲线C 的方程联立,得()2231412my y ++=.即()2234690m y my ++-=...........................................................................................6分 设()12,M x y ,()22,N x y ,则122634m y y m +=-+,122934y y m =-+2212(1)34m MN m +==+............................................8分 将直线FT :()1y m x =--与4x =联立,得()4,3T m -ⅠTF ==分Ⅰ2||11||44TFMN⎛⎫==⎝......................................................10分设t=.显然1t≥. 构造()()||1131||4TFf t t tMN t⎛⎫==+≥⎪⎝⎭.()211304f tt⎛⎫'=->⎪⎝⎭在[)1,t∈+∞上恒成立,所以()y f t=在[)1,+∞上单调递增.所以||1131||4FTtMN t⎛⎫=+≥⎪⎝⎭,当且仅当1t=,即0m=时取“=”所以||||TFMN的取值范围是[1,)+∞............................11分当||||TFMN取得最小值1时,0m=, 此时直线l的方程为1x=......................................12分(注:1.如果按函数1y xx=+的性质求最值可以不扣分;2.若直线方程按斜率是否存在讨论,则可以根据步骤相应给分.)21.方法二解(1)由题有2a=,12cea==. Ⅰ1c=,...................................................2分Ⅰ2223b a c=-=.Ⅰ椭圆方程为22143x y+=...........................................................................4分(2)方法1:设l:1x my=+,将其与曲线C的方程联立,得()2231412my y++=.即()2234690m y my++-=...........................................................................................6分设()12,M x y,()22,N x y,则122634my ym+=-+,122934y ym=-+2222226912(1)14343434m m MN mm m m --+⎛⎫=+-⨯= ⎪+++⎝⎭............................................8分 将直线FT :()1y m x =--与4x =联立,得()4,3T m -Ⅰ229931TF m m =+=+分Ⅰ2222||1131||4411TF m MN m m ⎛⎫==+ ++⎝......................................................10分 设21t m =+.显然1t ≥. 构造()()||1131||4TF f t t t MN t ⎛⎫==+≥ ⎪⎝⎭. ()211304f t t ⎛⎫'=-> ⎪⎝⎭在[)1,t ∈+∞上恒成立,所以()y f t =在[)1,+∞上单调递增.所以||1131||4FT t MN t ⎛⎫=+≥ ⎪⎝⎭,当且仅当1t =,即0m =时取“=”所以||||TF MN 的取值范围是[1,)+∞. 当||||TF MN 取得最小值1时,0m =, 此时直线l 的方程为 1x =......................................12分(注:1.如果按函数1y x x=+的性质求最值可以不扣分;2.若直线方程按斜率是否存在讨论,则可以根据步骤相应给分.)(2)方法2:当l 的斜率不存在时,易得1,322=∴==MNTF a b MN .......................6分当l 斜率存在时,可设)1(:-=x k y l 设()12,M x y ,()22,N x y由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)43(2222=-+-+k x k x k , ...........................8分2221222143124,438k k x x k k x x +-=+=+22212212221222122143)1(12)4))((1())(1()()(k k x x x x k x x k y y x x MN ++=-++=-+=-+-= ...........................9分依题意可知0≠k ,则有直线TF :)1(1--=x k y ,又x=4,则)3,4(kT - 所以k k TF 213+=, ...........................10分则得1)1(96411641)43(41144322422222>+++=++=++=k k k k k k k k MN TF ......................11分 综上可知,||||TF MN 最小值为1,此时直线l 的方程为 1x = ......................................12分 (2)方法3:当l 的斜率不存在时,易得1,322=∴==MNTF a b MN ...........................6分当l 斜率存在时,可设)1(:-=x k y l 设()12,M x y ,()22,N x y由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)43(2222=-+-+k x k x k ,...........................8分2221222143124,438k k x x k k x x +-=+=+22212212221222122143)1(12)4))((1())(1()()(k k x x x x k x x k y y x x MN ++=-++=-+=-+-=...........................9分依题意可知0≠k ,则有直线TF :)1(1--=x k y ,又x=4,则)3,4(kT - kk TF 213+=,...........................10分则得22242222211)43(41)43(411443k k k k k k k k MN TF ++=++=++=设1,112>=+t t k,则有61941++=t t MN TF , 设0)(,1,19)(,619)(2>'∴>-='++=t f t tt f t t t f Θ 当t=1时,f(t)=16,则t>1时,f(t)>16,则161941>++=tt MN TF ...........................11分 综上可知,||||TF MN 最小值为1,此时直线l 的方程为 1x =......................................12分 22.解(1)曲线C 的普通方程为622=+y x ...............................................2分因为2)3cos(=+πθρ ,所以04sin 3cos =--θρθρ所以直线l 的直角坐标方程为043=--y x ...................................4分 (2)点P 的坐标为(4,0)设直线m 的参数方程为⎩⎨⎧=+=θθsin cos 4t y t x (t 为参数,θ为倾斜角)..........6分联立直线m 与曲线C 的方程得:010cos 82=++θt t设A 、B 对应的参数分别为2,1t t ,则⎪⎩⎪⎨⎧>-=∆=-=+040cos 6410cos 822121θθt t t t 所以34cos 82121==+=+=+θt t t t PB PA ...................................................8分6560,23cos ππθ或的倾斜角为故直线且满足得m >∆±=.................................................................................10分 23.解:(1)当1a =-时,()2,1,112,11,2, 1.x f x x x x x x -≤-⎧⎪=+--=-<<⎨⎪≥⎩....................2分 由1)(-≥x f ,得21-≥x .故不等式1)(-≥x f 的解集为1,2⎡⎫-+∞⎪⎢⎣⎭.......................4分 (2)因为“x R ∀∈,()21f x a <+”为假命题,所以“x R ∃∈,12)(+≥a x f ”为真命题,..........................................................6分 因为1)()1(1)(-=+-+≤+-+=a a x x a x x x f 所以1)(max -=a x f ,..................................................................................................8分 则121+≥-a a ,所以22)12()1(+≥-a a ,即220a a +≤,解得02≤≤-a ,即a 的取值范围为[]2,0-......................................10分。

黑龙江省大庆市铁人中学2020届高三数学考前模拟训练试题(一)理(PDF)

黑龙江省大庆市铁人中学2020届高三数学考前模拟训练试题(一)理(PDF)
恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此沙堆的侧面积为( )
A. 4 5
B. 8 5
C. 3 17 D. 4 17
10. 在平行四边形 ABCD 中, AB 2AD 2 3 , E 是 BC 的中点, F 点在边CD 上,且
CF 2FD ,若 AE BF 17 ,则DAB 2
A. 30
注:在① m ( cos A ,sin A), n (cos A ,sin A) ,且 m n 1 ,
22
22
2
② cos A(2b c) a cosC ,③ f (x) cos x cos(x ) 1 , f ( A) 1
34
4
这三个条件中任选一个,补充在上面问题中并对其进行求解. 如果选择多个条件分别做答,按第一个解答积分。
18.(本小题满分 12 分)
如图,在三棱柱 ABC A1B1C1 中,ACB C1CB 90 °,A1AC 60 °, D , E 分 别为 A1A 和 B1C1 的中点,且 AA1 AC BC . (Ⅰ)求证: A1E //平面 BC1D ; (Ⅱ)求平面 BC1D 与平面 ABC 所成锐二面角的余弦值.
A.
+)
.B.
C.
-)
D.
+) -)
x O
P(x,y)
4.双曲线
的渐近线方程是: = 2 ,则双曲线的焦距为:A.3B.6 NhomakorabeaC.
D.
5.已知 m, n 是两条不重合的直线,, 是两个不重合的平面,则下列命题中,错误的是
A.若 m n,m ,则 n //
B.若 m// n,m//,n ,则n //
A. -1
B.0
C.1
D.±1

2020年黑龙江省大庆一中高考数学三模试卷(理科) (解析版)

2020年黑龙江省大庆一中高考数学三模试卷(理科) (解析版)

2020年黑龙江省大庆一中高考数学三模试卷(理科)一、选择题(共12小题).1.设集合A={x|﹣2<x<2},B={x|x2﹣x+m<0},若A∪B={x|﹣2<x<3},则实数m=()A.﹣6B.6C.5D.22.已知(2+i)(a+i)=5+5i,则实数a=()A.0B.1C.2D.33.已知双曲线与椭圆的焦点相同,则该双曲线的离心率为()A.B.C.D.34.设f(x)是定义在R上的奇函数,且在区间(﹣∞,0]上单调递增,则()A.f(log23)<f(log32)<f(log2)B.f(log2)<f(log23)<f(log32)C.f(log2)<f(log32)<f(log23)D.f(log32)<f(log2)<f(log23)5.为庆祝中华人民共和国成立70周年,2019年10月1日晚,金水桥南,百里长街成为舞台,3290名联欢群众演员跟着音乐的旋律,用手中不时变幻色彩的光影屏,流动着拼组出五星红旗、祖国万岁、长城等各式图案和文字.光影潋滟间,以《红旗颂》《我们走在大路上》《在希望的田野上》《领航新时代》四个章节,展现出中华民族从站起来、富起来到强起来的伟大飞跃.在每名演员的手中都有一块光影屏,每块屏有1024颗灯珠,若每个灯珠的开、关各表示一个信息,则每块屏可以表示出不同图案的个数为()A.2048B.21024C.10242D.102410246.已知等差数列{a n}中,a2=2,前5项的和S5满足15<S5<25,则公差d取值范围为()A.B.(1,4)C.(1,3)D.7.“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD中,△ABC满足“勾3股4弦5”,且AB=3,E为AD上一点,BE⊥AC.若=λ+μ,则λ+μ的值为()A.B.C.D.18.执行如图所示的程序框图,则输出S的值为()A.0B.C.D.9.在长方体ABCD﹣A1B1C1D1中,E,F,G分别为棱AA1,C1D1,DD1的中点,AB=AA1=2AD,则异面直线EF与BG所成角的大小为()A.30°B.60°C.90°D.120°10.将函数的图象向左平移个单位长度,然后再将所得图象上所有点的横坐标扩大为原来的2倍(纵坐标不变),所得图象对应的函数解析式为()A.B.C.D.11.已知,则a4=()A.21B.42C.﹣35D.﹣21012.已知函数f(x)=,若方程f(x)=mx+m﹣恰有四个不相等的实数根,则实数m的取值范围是()A.B.C.D.二、填空题(共4小题).13.已知实数x,y满足约束条件,则的取值范围为.14.已知函数f(x)=2sin2x+a sin2x的最大值为3,则实数a的值为.15.记数列{a n}的前n项和为S n满足S n+1=4S n+2.且a1=2,b n=log2a n,则数列{b n}的前n 项和T n=.16.已知圆C:x2+y2+2(a﹣1)x﹣12y+2a2=0.当C的面积最大时,实数a的值为;若此时圆C关于直线:l2:mx+ny﹣6=0(m>0,n>0)对称,则的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.在平面四边形ABCD中,∠BAD=60°,∠BCD=120°,AB=3,AD=2.(1)若CD=1,求BC;(2)求四边形ABCD面积的最大值.18.如图,在四棱锥P﹣ABCD中,△ABD与△PBD都是边长为2的等边三角形,△BCD 为等腰直角三角形,∠BCD=90°,.(1)证明:BD⊥PA;(2)若M为PA的中点,求平面BMD与平面PBC所成锐二面角的余弦值.19.已知抛物线C:x2=4y,过点D(0,2)的直线l交C于A,B两点,过点A,B分别作C的切线,两切线相交于点P.(1)记直线PA,PB的斜率分别为k1,k2,证明k1,k2为定值;(2)记△PAB的面积为S△PAB,求S△PAB的最小值.20.甲、乙、丙三人参加竞答游戏,一轮三个题目,每人回答一题为体现公平,制定如下规则:①第一轮回答顺序为甲、乙、丙;第二轮回答顺序为乙、丙、甲;第三轮回答顺序为丙,甲、乙;第四轮回答顺序为甲、乙、丙;…,后面按此规律依次向下进行;②当一人回答不正确时,竞答结束,最后一个回答正确的人胜出.已知,每次甲回答正确的概率为,乙回答正确的概率为,丙回答正确的概率为,三个人回答每个问题相互独立.(1)求一轮中三人全回答正确的概率;(2)分别求甲在第一轮、第二轮、第三轮胜出的概率;(3)记P n为甲在第n轮胜出的概率,Q n为乙在第n轮胜出的概率,求P n与Q n,并比较P n与Q n的大小.21.已知函数f(x)=ae x(a∈R).(1)当a=1时,求函数f(x)的图象在点x=0处的切线方程;(2)若g(x)=ln(x+b),当a≥1,b≤2时,证明:f(x)>g(x).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsinθtanθ=2.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)若C1与C2交于M,N两点,点P的极坐标为,求|PM|2+|PN|2的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|﹣2|x+1|.(1)求不等式f(x)≤2的解集;(2)若关于x的不等式f(x)>|a+2|的解集不是空集,求实数a的取值范围.参考答案一、选择题(共12小题).1.设集合A={x|﹣2<x<2},B={x|x2﹣x+m<0},若A∪B={x|﹣2<x<3},则实数m=()A.﹣6B.6C.5D.2【分析】推导出3是方程x2﹣x+m=0的一个根,从而32﹣3+m=0,由此能求出结果.解:∵集合A={x|﹣2<x<2},B={x|x2﹣x+m<8},A∪B={x|﹣2<x<3},所以32﹣3+m=0,解得m=﹣6,故选:A.2.已知(2+i)(a+i)=5+5i,则实数a=()A.0B.1C.2D.3【分析】利用复数代数形式的乘除运算化简等式左边,再由复数相等的条件列式求得a 值.解:∵(2+i)(a+i)=2a﹣1+(a+2)i=5+4i,∴,解得a=3,故选:D.3.已知双曲线与椭圆的焦点相同,则该双曲线的离心率为()A.B.C.D.3【分析】求出椭圆的焦点坐标,得到双曲线的焦点坐标,然后求解a,即可求解双曲线的离心率.解:椭圆的焦点坐标为(2,4),(﹣2,0),所以4=a+a﹣2,解得a=5,离心率,故选:A.4.设f(x)是定义在R上的奇函数,且在区间(﹣∞,0]上单调递增,则()A.f(log23)<f(log32)<f(log2)B.f(log2)<f(log23)<f(log32)C.f(log2)<f(log32)<f(log23)D.f(log32)<f(log2)<f(log23)【分析】先判断括号内的大小关系,再借助于单调性即可得到结论.解:由题意知,函数f(x)在定义域R上单调递增,由可得,故选:C.5.为庆祝中华人民共和国成立70周年,2019年10月1日晚,金水桥南,百里长街成为舞台,3290名联欢群众演员跟着音乐的旋律,用手中不时变幻色彩的光影屏,流动着拼组出五星红旗、祖国万岁、长城等各式图案和文字.光影潋滟间,以《红旗颂》《我们走在大路上》《在希望的田野上》《领航新时代》四个章节,展现出中华民族从站起来、富起来到强起来的伟大飞跃.在每名演员的手中都有一块光影屏,每块屏有1024颗灯珠,若每个灯珠的开、关各表示一个信息,则每块屏可以表示出不同图案的个数为()A.2048B.21024C.10242D.10241024【分析】根据乘法原理解题.解:每块屏有1024颗灯珠,若每个灯珠的开、关各表示一个信息,根据乘法原理可得表示出不同图案的个数为2×2×…×2=21024,故选:B.6.已知等差数列{a n}中,a2=2,前5项的和S5满足15<S5<25,则公差d取值范围为()A.B.(1,4)C.(1,3)D.【分析】利用等差数列的求和公式、不等式的解法即可得出.解:∵S5=5a2+d=5a1+10d=2(2﹣d)+10d=10+5d,∴15<5d+10<25,解得1<d<3.故选:C.7.“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD中,△ABC满足“勾3股4弦5”,且AB=3,E为AD上一点,BE⊥AC.若=λ+μ,则λ+μ的值为()A.B.C.D.1【分析】建立平面直角坐标系,进而利用向量的坐标表示,设,由可得,再由,利用坐标表示建立方程组求解即可.解:由题意建立如图所示直角坐标系,,设,所以,解得.所以解得故选:B.8.执行如图所示的程序框图,则输出S的值为()A.0B.C.D.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:由程序框图可知,n=1,;n=7;;n=5,,n=7,S=0;n=9,;所以周期为8,又2020=8×252+4,故选:D.9.在长方体ABCD﹣A1B1C1D1中,E,F,G分别为棱AA1,C1D1,DD1的中点,AB=AA1=2AD,则异面直线EF与BG所成角的大小为()A.30°B.60°C.90°D.120°【分析】建立平面直角坐标系,根据题意写出各点坐标,得出的坐标,代入数量积公式运算,可得两个向量互相垂直,进一步确定异面直线EF与BG所成角的大小.解:如图,以D为坐标原点,分别以,,的方向为x轴、y轴、z轴的正方向建立空间直角坐标系D﹣xyz,设AD=1,则E(1,0,1),F(0,2,2),G(0,0,1),B(1,4,0),,所以,故选:C.10.将函数的图象向左平移个单位长度,然后再将所得图象上所有点的横坐标扩大为原来的2倍(纵坐标不变),所得图象对应的函数解析式为()A.B.C.D.【分析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.解:将的图象向左平移个单位长度,得到的图象,然后横坐标扩大为原来的2倍(纵坐标不变),得到的图象,故选:D.11.已知,则a4=()A.21B.42C.﹣35D.﹣210【分析】先把原式化简,再根据二项式的特点,求解即可.解:因为,a4即为(x﹣1)7展开式中x4的系数,故选:C.12.已知函数f(x)=,若方程f(x)=mx+m﹣恰有四个不相等的实数根,则实数m的取值范围是()A.B.C.D.【分析】由题意,方程方程f(x)=mx+m﹣恰有四个不相等的实数根,等价于y=f (x)与y=mx+m﹣恰有4个交点,求出直线y=mx+m﹣与y=lnx相切时m的值及过原点时m的值,即可求出m的取值范围.解:画出函数f(x)的图象如图中实线部分所示,方程恰有四个不相等的实数根,而是斜率为m,过定点的直线,设切点坐标为(a,ln(a+1)),=,又点在切线上,代入可解得a=﹣2,当直线过原点,即图中l2,所以当时,两函数的图象有4个不同的交点.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.已知实数x,y满足约束条件,则的取值范围为.【分析】画出约束条件的可行域,利用目标函数的几何意义,转化求解即可.解:作出不等式组表示的可行域如图所示,表示可行域内的点与原点连线的斜率,,k OB=3,点B不在可行域内,故的取值范围为.故答案为:.14.已知函数f(x)=2sin2x+a sin2x的最大值为3,则实数a的值为±1.【分析】由已知利用二倍角的三角函数公式,两角和的正弦函数公式,正弦函数的性质即可求解.解:因为,其中,所以f(x)的最大值为,解得a=±1.故答案为:±1.15.记数列{a n}的前n项和为S n满足S n+1=4S n+2.且a1=2,b n=log2a n,则数列{b n}的前n 项和T n=n2.【分析】由S n+1=4S n+2,可得,当n≥2时,S n=4S n﹣1+2,两式相减可得a n+1=4a n(n ≥2).利用等比数列的通项公式可得a n,进而得出b n,利用等差数列的求和公式即可得出T n.解:由S n+1=4S n+2①可得,当n≥2时,S n=4S n﹣1+2②,①﹣②得S n+1﹣S n=4•(S n﹣S n﹣1),即a n+3=4a n(n≥2).又a1=5,所以a2=3S3+2=3a1+2=8,则a5=4a1,所以,b n=log3a n=2n﹣1,故答案为:n2.16.已知圆C:x2+y2+2(a﹣1)x﹣12y+2a2=0.当C的面积最大时,实数a的值为﹣1;若此时圆C关于直线:l2:mx+ny﹣6=0(m>0,n>0)对称,则的最大值为.【分析】化圆的方程为标准方程,求得圆的半径,利用二次函数求最值可得圆的半径的最大值,即可得到圆面积最大时的a值;再由圆心在直线上可得关于m与n的等式,然后利用基本不等式求最值.解:圆C:x2+y2+2(a﹣1)x﹣12y+8a2=0的方程可化为[x+(a﹣1)]2+(y﹣6)2=﹣a8﹣2a+37,当a=﹣1时,﹣a2﹣2a+37取得最大值38,此时圆C的半径最大,面积也最大;∵圆C关于直线l:mx+ny﹣6=0(m>0,n>8)对称,又m>0,n>0,当且仅当时,即时取等号,即的最大值为.故答案为:﹣1;.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.在平面四边形ABCD中,∠BAD=60°,∠BCD=120°,AB=3,AD=2.(1)若CD=1,求BC;(2)求四边形ABCD面积的最大值.【分析】(1)在△ABD中,由余弦定理可求BD的值,再根据余弦定理即可求出BC,(2)设∠CBD=θ,则∠CDB=60°﹣θ.在△BCD中,由正弦定理可求BC,利用三角形面积公式,三角函数恒等变换的应用可求S△BCD=sin(2θ+30°)﹣,结合范围0°<θ<60°,利用正弦函数的性质可求S△BCD的最大值,即可求出四边形ABCD 面积的最大值.解:(1)在△ABD中,因为AB=3,AD=2,∠BAD=60°,则:BD8=AB2+AD2﹣2AB•AD•cos∠BAD=9+7﹣2×3×2×=2在△BCD中,因为BD=,CD=1,∠BCD=120°,即7=BC8+1+BC,(2)设∠CBD=θ,则∠CDB=60°﹣θ.所以S△BCD=BD•BC•sin∠CBD=sin(60°﹣θ)sinθ=(cosθ﹣sinθ)sinθ=(sin2θ+cos2θ﹣)=sin(7θ+30°)﹣,∴S△BCD≤,∴四边形ABCD面积的最大值为+=.18.如图,在四棱锥P﹣ABCD中,△ABD与△PBD都是边长为2的等边三角形,△BCD 为等腰直角三角形,∠BCD=90°,.(1)证明:BD⊥PA;(2)若M为PA的中点,求平面BMD与平面PBC所成锐二面角的余弦值.【分析】(1)取BD中点O,证明BD⊥平面POA,从而可得BD⊥PA;(2)建立空间坐标系,求出两半平面的法向量,计算法向量的夹角得出二面角的大小.【解答】(1)证明:设BD的中点为O,连接OP,OA.因为△ABD,△PBD为等边三角形,所以BD⊥AO,且BD⊥PO.所以BD⊥平面PAO,又PA⊂平面PAO,(2)解:因为△ABD,△PBD的边长为2,所以,又因为PO⊥BD,AO⊥BD,故OA,OB,OP两两垂直,则,,B(0,1,0),D(0,﹣1,8),C(﹣1,0,0),,设平面BMD的一个法向量为=(x1,y1,z1),则,设平面BMD的一个法向量为=(x2,y2,z2),则,∴cos<>===,所以平面BMD与平面PBC所成锐二面角的余弦值为.19.已知抛物线C:x2=4y,过点D(0,2)的直线l交C于A,B两点,过点A,B分别作C的切线,两切线相交于点P.(1)记直线PA,PB的斜率分别为k1,k2,证明k1,k2为定值;(2)记△PAB的面积为S△PAB,求S△PAB的最小值.【分析】(1)设A,B的坐标分别为,.利用抛物线方程求解函数的导数,设出直线方程与抛物线联立,利用韦达定理转化证明即可.(2)设P点坐标为(x,y),求出切线PA的方程,切线PB的方程,求出|AB|,点P 到直线AB的距表示三角形的面积,求解S△PAB的最小值.(1)证明:因为A,B两点在曲线x2=4y上,故设A,B的坐标分别为,【解答】.因为,所以,则,.所以,所以k1k2为定值.由(1)知切线PA的方程为①①﹣②得;①×x2﹣﹣②×x1得.由(1)知x=2k,y=﹣2,所以P点坐标为(2k,﹣2),因为点P到直线AB的距离.因为k2+3≥2,所以当k=0时,S△PAB的最小值为.20.甲、乙、丙三人参加竞答游戏,一轮三个题目,每人回答一题为体现公平,制定如下规则:①第一轮回答顺序为甲、乙、丙;第二轮回答顺序为乙、丙、甲;第三轮回答顺序为丙,甲、乙;第四轮回答顺序为甲、乙、丙;…,后面按此规律依次向下进行;②当一人回答不正确时,竞答结束,最后一个回答正确的人胜出.已知,每次甲回答正确的概率为,乙回答正确的概率为,丙回答正确的概率为,三个人回答每个问题相互独立.(1)求一轮中三人全回答正确的概率;(2)分别求甲在第一轮、第二轮、第三轮胜出的概率;(3)记P n为甲在第n轮胜出的概率,Q n为乙在第n轮胜出的概率,求P n与Q n,并比较P n与Q n的大小.【分析】(1)由题意,利用相互独立事件的概率乘法公式,计算求得结果.(2)由题意,利用相互独立事件的概率乘法公式,计算求得结果.(3)先求出前7种情况,总结规律,得出结论.解:(1)设一轮中三人全回答正确为事件M,则.(2)甲在第一轮胜出的概率为;故甲在第二轮胜出的概率为×(××)×==;(3)由(2)知;=;P3=×=.….当n=3k+1(k∈N*)时,;同理可得,当n=3k(k∈N*)时,;当n=3k+2(k∈N*)时,.当n=3k+2(k∈N*)时,P n<Q n.21.已知函数f(x)=ae x(a∈R).(1)当a=1时,求函数f(x)的图象在点x=0处的切线方程;(2)若g(x)=ln(x+b),当a≥1,b≤2时,证明:f(x)>g(x).【分析】(1)代入a的值,求出f(0),f′(0),求出切线方程即可;(2)结合a,b的范围,问题转化为可证e x>ln(x+2)成立,设h(x)=e x﹣ln(x+2),根据函数的单调性证明即可.【解答】(1)解:当a=1时,f(x)=e x.因为f'(x)=e x,所以f'(0)=1,f(2)=1.即x﹣y+1=0.当b≤2时,ln(x+b)≤ln(x+2),设h(x)=e x﹣ln(x+2),则,又因为,,即.当x∈(x0,+∞)时,h'(x)>0.又因为,ln(x0+2)=﹣x0,所以当x∈(﹣2,+∞)时h(x)>0,即e x>ln(x+7).所以当a≥1,b≤2时,f(x)>g(x).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsinθtanθ=2.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)若C1与C2交于M,N两点,点P的极坐标为,求|PM|2+|PN|2的值.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用一元二次方程根和系数的关系式的应用求出结果.解:(1)由曲线C1的参数方程消去参数t可得,曲线C1的普通方程为4x﹣3y﹣8=0.由x=ρcosθ,y=ρsinθ可得,曲线C2的直角坐标方程为y2=2x(x≠0).所以点P在曲线C1上.将曲线C6的参数方程(t为参数)代入y2=2x,设点M,N对应的参数分别为t1,t2,则,.所以.一、选择题23.已知函数f(x)=|x﹣1|﹣2|x+1|.(1)求不等式f(x)≤2的解集;(2)若关于x的不等式f(x)>|a+2|的解集不是空集,求实数a的取值范围.【分析】(1)根据f(x)≤2,利用零点分段法,求出不等式的解集即可;(2)问题转化为f(x)max>|a+2|,得到关于a的不等式,解出即可.解:(1)由题意得|x﹣1|﹣2|x+2|≤2.①当x≥1时,不等式|x﹣2|﹣2|x+1|≤2可化为x﹣1﹣2x﹣4≤2,解得x≥﹣5,所以x≥1.②当﹣1≤x<1时,不等式|x﹣1|﹣5|x+1|≤2可化为1﹣x﹣2x﹣2≤7,解得x≥﹣1,所以﹣1≤x<1.③当x<﹣1时,不等式|x﹣1|﹣2|x+3|≤2可化为1﹣x+2x+2≤2,解得x≤﹣2,所以x<﹣1.(2)由(1)知,对于任意x∈R,f(x)≤2,且当x=﹣1时取等号,关于x的不等式f(x)>|a+7|的解集不是空集,所以实数a的取值范围为(﹣4,0).。

大庆铁人中学高三模拟考试数学(理)试题

大庆铁人中学高三模拟考试数学(理)试题

大庆铁人中学高三模拟考试数学试题(理)姓名: 班级:第I 卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分.) 1.已知集合{}21,A a =,{}1,0,1B =-,若A B B ⋃=,则A 中元素的和为( )A .1B .0C .2D .1-2.已知i 为虚数单位,若复数()12=+∈-az i a R i的实部与虚部互为相反数,则a =( ) A .-5B .-1C .-13D .-533.如图所示是2018年11月份至2019年10月份的居民消费价格指数(()%CPI )与工业品出厂价格指数(()%PPI )的曲线图,从图中得出下面四种说法:①()%CPI 指数比相应时期的()%PPI 指数值要大; ②2019年10月份()%CPI 与()%PPI 之差最大;③2018年11月至2019年10月()%CPI 的方差大于()%PPI 的方差﹔ ④2018年11月份到2019年10月份的()%PPI 的中位数大于0. 则说法正确的个数为( ) A .1B .2C .3D .44.函数()(33)lg xxf x x -=+⨯的图象大致为( )A .B .C .D .5.马拉松是一项历史悠久的长跑运动,全程约42千米.跑马拉松对运动员的身体素质和耐力是极大的考验,专业的马拉松运动员经过长期的训练,跑步时的步幅(一步的距离)一般略低于自身的身高,若某运动员跑完一次全程马拉松用了2.5小时,则他平均每分钟的步数可能为( ) A .60B .120C .180D .2406.给出下列命题,其中真命题为( ) ①用数学归纳法证明不等式()1111122,23422n n n n N --+++⋅⋅⋅+>≥∈时,当()12,n k k k N =+≥∈时,不等式左边应在()2,n k k k N =≥∈的基础上加上12k; ②若命题p :0x R ∃∈,200220x x -+<,则p ⌝:x R ∀∈,2220x x -+≥; ③若0a >,0b >,4a b +=,则112ab ≥; ④随机变量()2~,X N μσ,若()()20P X P X >=<,则1μ=.A .①②④B .①④C .②④D .②③7.已知O 是ABC ∆的外心,6AB =,10AC =,若AO x AB y AC =+,且2105(0)x y x +=≠,则ABC ∆的面积为( )A .2B .202C .24D .188.执行如图所示的程序框图,则输出的i =( )A .7B .6C .8D .99.已知双曲线2222:1x y C a b-=,(0,0)a b >>过C 的右焦点F 作垂直于渐近线的直线l 交两渐近线于A 、B 两点A 、B 两点分别在一、四象限,若12AF BF =,则双曲线C 的离心率为( ) A 5B .2C 3D .3310.已知α、β是函数()1sin cos 3f x x x =+-在[)0,2π上的两个零点,则()cos αβ-=( ) A .89-B .1-C .22-D .011.在边长为2的菱形ABCD 中,23BD =ABCD 沿对角线AC 折起,使二面角B AC D --的大小为60,则所得三棱锥A BCD -的外接球表面积为( )A .529π B .4πC .6πD .203π 12.已知A 、B 分别为椭圆C :2214x y +=的左、右顶点,P 为椭圆C 上一动点,PA ,PB与直线3x =交于M ,N 两点,PMN ∆与PAB △的外接圆的周长分别为1L ,2L ,则12L L 的最小值为( ) A.4B.4C.4D .14第II 卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分.)13.已知实数x ,y 满足2202401x y x y y x +-≥⎧⎪+-≤⎨⎪≤+⎩,且y x z 32+=,则实数z 的最大值为 .14.甲和乙等5名志愿者参加进博会A B C D 、、、四个不同的岗位服务,每人一个岗位,每个岗位至少1人,且甲和乙不在同一个岗位服务,则共有___________种不同的参加方法(结果用数值表示).15.已知24()(1)a x x x ++-的展开式中含3x 项的系数为-14,则=______.16.对于函数()y f x =与()y g x =,若存在0x ,使()()00f x g x =-,则称()()00,M x f x ,()()00,N x g x --是函数()f x 与()g x 图象的一对“隐对称点”.已知函数()()2f x m x =+,()()ln 11x g x x -=-,函数()f x 与()g x 的图象恰好存在两对“隐对称点”,则实数m 的取值范围为 .三、解答题(本大题共6小题,共70分)17.(本小题10分)在直角坐标xOy 中,直线l 的方程是6y =,圆C 的参数方程是cos ,1sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)分别求直线l 与圆C 的极坐标方程; (2)射线:(0)2OM πθαα=<<与圆C 的交点为O ,P 两点,与直线l 交于点M ,射线:2ON πθα=+与圆C 交于O ,Q 两点,与直线l 交于点N ,求||||OP OM ·||||OQ ON 的最大值. 18.(本小题12分)已知在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若7cos 8A =,2a =,3sin 4sin C B =.(1)等差数列{}n a 中1a a =,2a b =,求数列{}n a 的通项公式; (2)数列{}n b 满足()1nn n b a =-⋅,求数列{}n b 的前n 项和n T .19.(本小题12分)受新冠肺炎疫情影响,上学期网课时间长达三个多月,电脑与手机屏幕代替了黑板,对同学们的视力造成了非常大的损害.我市某中学为了了解同学们现阶段的视力情况,现对高三年级2000名学生的视力情况进行了调查,从中随机抽取了100名学生的体检表,绘制了频率分布直方图如图所示:前50名 后50名 近视 40 32 不近视 1018(1)求a 的值.(2)为了进一步了解视力与学生成绩是否有关,对本年级名次在前50名与后50名的学生进行了调查,得到的数据如列联表,根据表中数据,能否有95%把握认为视力与学习成绩有关?(3)自从“十八大”以来,国家郑重提出了人才强军战略,充分体现了国家对军事人才培养的高度重视.近年来我市空军飞行员录取情况喜人,继2019年我市有6人被空军航空大学录取之后,今年又有3位同学顺利拿到了空军航空大学通知书,彰显了我市爱国主义教育,落实立德树人根本任务已初见成效.2020年某空军航空大学对考生视力的要求是不低于5.0,若以该样本数据来估计全市高三学生的视力,现从全市视力在4.8以上的同学中随机抽取3名同学,这3名同学中有资格报考该空军航空大学的人数为X ,求X 的分布列及数学期望.附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k ≥0.10 0.05 0.025 0.010 0.005k2.7063.841 5.024 6.635 7.87920.(本小题12分)三棱柱111ABC A B C -中,平面11⊥AA B B 平面ABC ,114AB AA A B ===,2BC =,23AC =,点F 为棱AB 的中点,点E 为线段11AC 上的动点.(1)求证:EF BC ⊥;(2)若直线BC 与平面BEF 251,求二面角11E BB A --的余弦值. 21.(本小题12分)在平面直角坐标系xoy 中,已知定点()1,0F ,点P 在y 轴上运动,点M 在x 轴上运动,点N 为坐标平面内的动点,且满足0PM PF ⋅=,0PM PN +=.(1)求动点N 的轨迹C 的方程;(2)过曲线C 第一象限上一点()00,R x y (其中01x >)作切线交直线1x =-于点1S ,连结RF 并延长交直线1x =-于点2S ,求当12RS S ∆面积取最小值时切点R 的横坐标. 22.(本小题12分)已知函数1()(2)ln 2f x a x ax x=-++, (1)当2a =时,求函数()f x 的极值;(2)若对a ∀∈(-3,-2),12,x x ∈[1,3] ,不等式12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围.。

2020学年黑龙江省大庆市高考一模数学理及答案解析

2020学年黑龙江省大庆市高考一模数学理及答案解析

2020年黑龙江省大庆市高考一模数学理一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={-1,0,1,2,3},B={x||x|≤2},则A∩B的值为( )A.{-1,0,1,2}B.{-2,-1,0,1,2}C.{0,1,2}D.{1,2}解析:分别求出集合A,B,由此能求出A∩B.∵集合A={-1,0,1,2,3},B={x||x|≤2}={x|-2≤x≤2},∴A∩B={-1,0,1,2}.答案:A2.若复数21-=+izi,则z在复平面内所对应的点位于的( )A.第一象限B.第二象限C.第三象限D.第四象限解析:利用复数代数形式的乘除运算化简求得z所对应点的坐标得答案.∵()()()()1322121311122----====-++-i ii iz ii i i,∴复数z在复平面内所对应的点的坐标为(12,32-),位于第四象限.答案:D3.若x,y满足111≤⎧⎪+≥⎨⎪≥-⎩yx yy x,则2x+y的最大值为( )A.2B.5C.6D.7解析:作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.作出x,y满足111≤⎧⎪+≥⎨⎪≥-⎩yx yy x对应的平面区域如图:(阴影部分).由z=2x+y得y=-2x+z,平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,此时z最大.由11=⎧⎨=-⎩yy x,解得A(2,1),代入目标函数z=2x+y得z=2×2+1=5.即目标函数z=2x+y的最大值为5.答案:B4.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.2B.4C.8D.12解析:由几何体的三视图得到该几何体是四棱锥S-ABCD ,其中,四边形ABCD 是边长为2的正方形,PC ⊥平面ABCD ,PC=3,由此能求出几何体的体积. 由几何体的三视图得到该几何体是四棱锥S-ABCD ,其中,四边形ABCD 是边长为2的正方形, PC ⊥平面ABCD ,PC=3, ∴几何体的体积:22341133=⨯⨯=⨯⨯⨯=正方形ABCD V S PC .答案:B5.执行如图所示的程序语句,则输出的S 的值为( )A.22B.1C.2+1解析:模拟程序框图的运行过程,得出该程序运行后输出的是2350sinsinsin sin 4444ππππ=+++⋯+S 的值,2350sinsinsin sin44442384950sin sin sin sin sin sin 4444444950sin sin44sin sin4122ππππππππππππππ=+++⋯+⎛⎫=+++⋯++⋯++ ⎪⎝⎭=+=+=+S答案:C6.已知命题p :直线l 1:ax+y+1=0与l 2:x+ay+1=0平行;命题q :直线l :x+y+a=0与圆x 2+y 2=1,则命题p 是q( )A.充分不必要条件B.必要不充分条件C.充要条件D.既充分也不必要条件 解析:根据直线平行的等价条件以及直线和圆相交的弦长公式分别进行计算,结合充分条件和必要条件的定义进行判断即可.当a=0时,两直线方程分别为y+1=0,x+1=0,两直线不平行,当a ≠0时,若两直线平行,则满足1111=≠a a ,由11=a a 得a 2=1,得a=±1,由111≠a ,得a ≠1,即a=-1, 即p :a=-1,圆心到直线的距离=d ,半径r=1,∵直线l :x+y+a=0与圆x2+y2=1,∴r 2=d 2+(2)2,即21122=+a ,得a 2=1,得a=±1, 则命题p 是q 充分不必要条件. 答案:A7.数列{a n }为正项递增等比数列,满足a 2+a 4=10,a 32=16,则1012++⋯+a a a 等于( )A.-45B.45C.-90D.90解析:运用等比数列的通项公式和性质,求出q.再结合对数运算公式,求出结果即可. ∵{a n}为正项递增等比数列,∴a n >a n-1>0,公比q >1.a 2+a 4=10①,且a 32=16=a 3·a 3=a 2·a 4②,由①②解得a 2=2,a 4=8.又因为a 4=a 2·q 2,得q=2或q=-2(舍).则得a 5=16,a 6=32,5121012160++⋯+=⋯=a a a a a a a a953229224590⨯⨯⨯=====.答案:D 8.若1e ,2e 是夹角为60°的两个单位向量,则向量12=+a e e ,122=-+b e e 的夹角为( )A.30°B.60°C.90°D.120°解析:根据题意,设a 、b 的夹角为θ, 又由1e ,2e 是夹角为60°的两个单位向量,且12=+a e e ,122=-+b e e ,则()()22121212122232=+-+=-++=a b e e e e e e e e ,又由12=+a e e,则11=++=a , 由122=-+b e e ,则14=+-=b则有1os 2c θ==a b a b,则θ=60°. 答案:B9.已知双曲线22221-=x y a b (a >0,b >0)的一条渐近线过点(1),且双曲线的一个焦点在抛物线y 2=16x 的准线上,则双曲线的方程为( )A.221412-=x y B.221124-=x y C.221420-=x y D.221204-=x y解析:双曲线22221-=x y a b (a >0,b >0)的渐近线方程为y=±ba x , 由一条渐近线过点(1,可得=ba双曲线的一个焦点(-c ,0)在抛物线y 2=16x 的准线x=-4上,可得c=4,即有a 2+b 2=16, 解得a=2,则双曲线的方程为221412-=x y .答案:A10.已知f(x)是定义在R 上的奇函数,当x ∈[0,+∞)时,f ′(x)<0.若12ln ⎛⎫ ⎪⎝=-⎭a f ,211ln ⎛⎫⎛⎫ ⎪ ⎪⎝⎭-⎭=⎝b f e e ,c=f(e 0.1),则a ,b ,c 的大小关系为( )A.b <a <cB.b <c <aC.c <a <bD.a <c <b解析:根据条件先判断函数的单调性,结合对数的运算性质进行化简即可. ∵当x ∈[0,+∞)时,f ′(x)<0,∴当x ∈[0,+∞)时,函数f(x)单调递减,∵f(x)是定义在R 上的奇函数,∴函数在(-∞,+∞)上单调递减,()()1222ln ln ln ⎛⎫⎪⎝=-=-⎭-=a f f f , 2111ln ln 1⎛⎫ ⎪⎝=-⎭->e e e ,又211ln 0⎛⎫- ⎪⎝⎭<e e ,则2111ln 0-⎛⎫⎝⎭-⎪<<e e ,e 0.1>1,0<ln2<1, 则0.12111ln ln 2⎛⎫⎪⎝⎭--<<<e e e ,则()()0.12112ln ln ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝-⎭>>f f f e e e ,即c <a <b. 答案:C11.函数f(x)=2sin(ωx+φ)(ω>0)的图象过点(9π,2),相邻两个对称中心的距离是3π,则下列说法不正确的是( )A.f(x)的最小正周期为23πB.f(x)的一条对称轴为x=49πC.f(x)的图象向左平移9π个单位所得图象关于y 轴对称D.f(x)在[9π-,9π]上是减函数解析:求出函数f(x)的解析式,再判断选项中的命题是否正确即可.函数f(x)=2sin(ωx+φ)图象相邻两个对称中心的距离是3π,∴23π=T ,∴223ππω==T ,解得ω=3; 又f(x)的图象过点(9π,2), ∴2sin(9πω+φ)=2,∴292ππωϕπ+=+k ,k ∈Z ;解得φ=6π+2k π,k ∈Z ; 令k=0,得φ=6π,∴f(x)=2sin(3x+6π);∴f(x)的最小正周期为T=23π,A 正确; 442sin 32996πππ⎛⎫⎛⎫=⨯+=- ⎪ ⎪⎝⎭⎝⎭f 为最小值,∴f(x)的一条对称轴为x=49π,B 正确;f(x)的图象向左平移9π个单位,得函数2sin 32sin 32cos3962πππ⎡⎤⎢⎥⎣⎦⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭y x x x,其图象关于y 轴对称,C 正确;x ∈[9π-,9π]时,3x ∈[3π-,3π],∴3x+6π∈[6π-,2π]时,∴f(x)=2sin(3x+6π)在[9π-,9π]上是增函数,D 错误.答案:D12.已知函数()21211415⎧+-≤≤⎪=⎨+-≤⎪⎩,,<x x f x x x x ,若关于x 的方程f(x)-ax=0有两个解,则实数a 的取值范围是( )A.(0,625]∪[52-,-2) B.(0,625)∪[52-,-2]C.(-∞,52-)∪[625,+∞)∪{0,-2}D.(-∞,52-)∪[625,+∞)解析:分别作出函数y=f(x)和y=ax 的图象,利用方程有两个解,利用数形结合即可得到结论.设函数y=f(x)和y=ax , 作出函数f(x)的图象如图:要使方程f(x)-ax=0有2两个解,即函数y=f(x)和y=ax 有2个不同的交点,∵f(-2)=5,f(5)=|5+15-4|=65, 当y=ax经过点(5,65)时,此时a=625, 当过点(-2,5)时,此时a=52-,当直线y=ax 与y=x 2+1相切时,∵y ′=2x ,设切点为(x 0,y 0),-2≤x 0≤0,∴200012+=x x x ,解得x 0=-1,当x 0=-1,此时a=-2,结合图象,综上所述a 的取值范围为[52-,-2)∪(0,625].答案:A二、填空题(本题有4标题,每小题5分,满分20分,将答案填在答题纸上)13.()3021-=⎰x dx .解析:根据定积分的运算,即可求得答案.()()3230036219=-=-=-⎰x x x x d .答案:614.一个圆柱的轴截面是正方形,在圆柱内有一个球O ,该球与圆柱的上、下底面及母线均相切.记球O 的体积为V 1,圆柱内除了球之外的几何体体积记为V 2,则12V V 的值为 .解析:设圆柱的底面半径为r ,则圆柱的高为2r ,球O 的半径为r ,∴球O 的体积V 1=43πr 3,圆柱内除了球之外的几何体体积:V 2=πr 2×2r -43πr 3=23πr 3,∴313243322ππ==r V V r .答案:215.若f(x)=e xl na+e -xlnb 为奇函数,则12+a b 的最小值为 . 解析:由奇函数的性质可得f(0)=0,即有对数的运算性质可得ab=1,再由基本不等式,即可得到所求最小值.f(x)=e xl na+e -xlnb 为奇函数, 可得f(0)=0,即有e 0lna+e 0lnb=0, 即有ln(ab)=0,可得ab=1,(a >0,b >0),则12≥=+a b ,当且仅当时,等号成立,则12+a b 的最小值为. 答案:16.已知抛物线C :y 2=4x ,过其焦点F 作一条斜率大于0的直线l ,l 与抛物线交于M ,N 两点,且|MF|=3|NF|,则直线l 的斜率为 .解析:方法一:由抛物线的定义:|NF|=|DH|=x ,|MF|=|CM|=3x ,根据相似三角形的性质,即可求得直线MN 的倾斜角为60°,即可求得直线l 的斜率. 抛物线C :y2=4x ,焦点F(1,0),准线为x=-1, 分别过M 和N 作准线的垂线,垂足分别为C 和D ,过NH ⊥CM ,垂足为H , 设|NF|=x ,则|MF|=3x ,由抛物线的定义可知:|NF|=|DN|=x ,|MF|=|CM|=3x , ∴|HM|=2x ,由|MN|=4x ,∴∠HMF=60°,则直线MN 的倾斜角为60°, 则直线l 的斜率k=tan60°3.方法二:设直线MN 的方程y=k(x-1),代入抛物线方程,利用韦达定理及向量的坐标运算,即可求得k 的值.抛物线C :y 2=4x ,焦点F(1,0), 准线为x=-1,设直线MN 的斜率为k ,则直线MN 的方程y=k(x-1),设M(x 1,y 1),N(x 2,y 2),()241⎧=⎪⎨=-⎪⎩y x y k x , 整理得:k 2x 2-2(k 2+2)x+k 2=0,则()212222++=k x x k ,x 1x 2=1,由|MF|=3|NF|,3=M FN F ,即(1-x 1,-y 1)=3(x 2-1,y 2),x 1+3x 2=4,整理得:3x 2-4x 2+1=0,解得:x 2=13,或x 2=1(舍去),则x 1=3,解得:k=3, 由k >0,则3.方法三:设直线MN 的方程x=mx+1,代入抛物线方程,利用韦达定理及向量的坐标运算即可求得m 的值,则直线l 的斜率为1m .抛物线C :y 2=4x ,焦点F(1,0),准线为x=-1,设直线MN 的方程x=mx+1,设M(x 1,y 1),N(x 2,y 2),214=+⎧⎨=⎩x my y x ,整理得:y 2-4my-4=0,则y 1+y 2=4m ,y 1y 2=-4,由|MF|=3|NF|,3=M FN F ,即(1-x 1,-y 1)=3(x 2-1,y 2),-y 1=3y 2,即y 1=-3y 2,解得:y 2=,y 1∴4m=,则m=,∴直线l.三、解答题(本大题共6小题,共70分,第17~21题为必考题,每小题12分,第22、23题为选考题,有10分.解答应写出文字说明、证明过程或演算步骤.)17.设函数y=f(x)的图象由y=2sin2x+1的图象向左平移12π个单位得到.(1)求f(x)的最小正周期及单调递增区间.解析:(1)通过函数的图象的变换,求出函数的解析式,然后求解函数的周期以及函数的单调区间.答案:(1)y=2sin2x+1的图象向左平移12π个单位得到y=2sin(2x+6π)+1的图象, 即f(x)=2sin(2x+6π)+1.函数最小正周期T=π.令222262πππππ-+≤+≤+k x k (k ∈Z),则222233ππππ-+≤≤+k x k (k ∈Z),解得36ππππ-+≤≤+k x k (k ∈Z),所以y=f(x)的单调增区间是[3ππ-+k ,6ππ+k ](k ∈Z).(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f(A)=2,b=1,S △ABCa 的值. 解析:(2)利用已知条件求出A ,然后利用图象定理,以及三角形的面积求解a 即可.答案:(2)由题意得:f(A)=2sin(2A+6π)+1=2,则有sin(2A+6π)=12.因为0<A <π,所以5266ππ+=A ,A=3π.由1sin 2==ABCbc A Sb=1得,c=4.根据余弦定理,a 2=b 2+c 2-2bccosA=1+16-2×1×4×12=13,所以18.已知数列{a n }的前n 项和为S n ,点(n ,S n )在曲线25122=+y x x 上,数列{b n }满足b n +b n+2=2b n+1,b 4=11,{b n }的前5项和为45.(1)求{a n },{b n }的通项公式.解析:(1)利用已知条件求出{a n }的通项公式,判断数列是等差数列求解{b n }的通项公式.答案:(1)由已知得:21252=+n S n n ,当n=1时,1115232==+=a S ,当n ≥2时,()()22151125112222-=-=+----=+n n n a S S n n n n n ,当n=1时,符合上式.所以a n =n+2.因为数列{b n }满足b n +b n+2=2b n+1,所以{b n }为等差数列.设其公差为d.则()413131155245=+=⎧⎪⎨=+=⎪⎩b b db b d,解得152=⎧⎨=⎩bd,所以b n=2n+3.(2)设()()12328=--nn nca b,数列{c n}的前n项和为T n,求使不等式T n>54k恒成立的最大正整数k的值.解析:(2)化简数列的通项公式,利用裂项相消法求解数列的和即可.答案:(2)由(1)得,()()()()()()11111 2328214222141212121 ====---+-+--⎛⎫⎝⎭+⎪nn nca b n n n n n n,111111521212111143341⎛⎫⎛⎫-⎪ ⎪⎝=-++⋯+-=-⎝+⎭-+⎭nTn n n,因为()()111121232212431+⎛⎫-=-=++⎪⎭++⎝>n nT Tn n n n,所以{T n}是递增数列.所以T n≥T1=16,故T n>54k恒成立只要11654=>Tk恒成立.所以k<9,最大正整数k的值为8.19.已知四棱锥P-ABCD的底面ABCD为正方形,PA⊥底面ABCD且PA=AB=2.E为PA的中点.(1)求证:PC∥面BDE.解析:(1)连接CA交BD于O,连接OE,证明OE∥PC,即可推出PC∥面BDE.答案:(1)连接CA交BD于O,连接OE,因为ABCD为正方形且AC,BD为对角线,所以O为CA的中点,又E为PA的中点,故OE为△PAC的中位线,所以OE∥PC,而OE⊂面BDE,PC⊂面BDE,故PC∥面BDE.(2)求直线DE与平面PBC所成角的余弦值.解析:(2)以A为原点,AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系A-xyz.求出平面PBC的法向量n=(x,y,z),设直线DE与平面PBC所成角为θ,利用向量的数量积求解即可.答案:(2)以A为原点,AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系A-xyz. 则B(2,0,0),D(0,2,0),C(2,2,0),E(0,0,1),P(0,0,2),所以DE=(0,-2,1),BP=(-2,0,2),BC=(0,2,0),设平面PBC的法向量n=(x,y,z),则⎧=⎪⎨=⎪⎩n BPn BC,即-=⎧⎨=⎩x zy,令z=1,则法向量n=(1,0,1),设直线DE与平面PBC所成角为θ,则10 sin cos10θ===,n DEn DEn DE,故直线DE与平面PBC所成角的余弦值310.20.已知椭圆C:22221+=x ya b(a>b>0),其焦距为2,离心率为22.(1)求椭圆C 的方程.解析:(1)由2c=2,可得c=1,由2=c a,可得,从而b 2=a 2-c 2=1,即可求出椭圆方程.答案:(1)因为椭圆焦距为2,即2c=2,所以c=1,2=c a,所以, 从而b 2=a 2-c 2=1,所以,椭圆的方程为2212+=x y .(2)设椭圆的右焦点为F ,K 为x 轴上一点,满足2=O OF K ,过点K 作斜率不为0的直线l 交椭圆于P ,Q 两点,求△FPQ 面积S 的最大值.解析:(2)设直线MN 的方程为y=k(x-2)(k ≠0).代入椭圆方程得(1+2k 2)x 2-8k 2x+8k 2-2=0.设M(x 1,y 1),N(x 2,y 2),由判别式△>0解得k 范围.利用弦长公式、三角形面积计算公式、二次函数的单调性即可得出.答案:(2)椭圆右焦点F(1,0),由2=O OF K 可知K(2,0), 直线l 过点K(2,0),设直线l 的方程为y=k(x-2),k ≠0, 将直线方程与椭圆方程联立得(1+2k2)x2-8k2x+8k2-2=0.设P(x 1,y 1),Q(x 2,y 2),则2122812+=+k x x k ,21228212-=+k x x k , 由判别式△=(-8k 2)2-4(2k 2+1)(8k 2-2)>0解得k 2<12.点F(1,0)到直线l 的距离为h,则==h()42212222226482111242211121-==-=+-⨯++++kk k k S PQ h x x k k k k k ))22221221122-==+k k k k令t=1+2k 2,则1<t <2,则2232+==-t t S t当134=t时,S取得最大值.此时k2=16,k=±,S取得最大值4.21.已知函数f(x)=1-ax+lnx(1)若不等式f(x)≤0恒成立,则实数a的取值范围.解析:(1)分离参数,构造函数,利用导数求出函数的最值即可求出参数的取值范围.答案:(1)由题意知,1-ax+lnx≤0恒成立.变形得:ln1+≥xax.设()ln1+=xh xx,则a≥h(x)max.由()2ln'=-xh xx可知,h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,h(x)在x=1处取得最大值,且h(x)max=h(1)=1. 所以a≥h(x)max=1,实数a的取值范围是[1,+∞).(2)在(1)中,a取最小值时,设函数g(x)=x(1-f(x))-k(x+2)+2.若函数g(x)在区间[12,8]上恰有两个零点,求实数k的取值范围.解析:(2)问题转化为即关于x的方程x2-xlnx-k(x+2)+2=0在区间[12,8]上恰有两个实数根,再分离参数,构造函数,利用导数求出函数的最值即可求出参数的取值范围. 答案:(2)由(1)可知,a≥1,当a=1时,f(x)=1-x+lnx,g(x)=x(x-lnx)-k(x+2)+2=x2-xlnx-k(x+2)+2,g(x)在区间[12,8]上恰有两个零点,即关于x的方程x2-xlnx-k(x+2)+2=0在区间[12,8]上恰有两个实数根.整理方程得,2ln 22-+=+x x x k x ,令()2ln 22-+=+x x x s x x ,x ∈[12,8],()()2232ln 42+--'=+x x x s x x .令φ(x)=x 2+3x-2lnx-4,x ∈[12,8],则()()()212ϕ-+'=x x x x,x ∈[12,8],于是φ′(x)≥0,φ(x)在[12,8]上单调递增.因为φ(1)=0,当x ∈[12,1)时,φ(x)<0,从而s ′(x)<0,s(x)单调递减,当x ∈(1,8]时,φ(x)>0,从而s ′(x)>0,s(x)单调递增,()()9ln 23312ln 2118105251⎛⎫ ⎪=⎭-+==⎝,,s s s , 因为()5726ln 2801102--=⎛⎫ ⎪⎝⎭>s s ,所以实数k 的取值范围是(1,9ln 2105+].(3)证明不等式:2ln(2×3×4×…×n)>221-+n n n (n ∈N*且n ≥2).解析:(3)由(1)可得x-1≥lnx ,当且仅当x=1时取等号,令x=21k ,则有22111ln -≥kk ,其中k ∈N*,k ≥2,利用放缩裂项,累加求和即可证明.答案:(3)证明:由(1)可知,当a=1时,有x-1≥lnx , 当且仅当x=1时取等号.令x=21k ,则有22111ln -≥kk ,其中k ∈N*,k ≥2.整理得:()2111112ln 111111≥-=--=-+-->k k k k k k k k ,当k=2,3,…,n 时,12ln 212112-+->,12ln 313113-+->,…,112ln 11-+->n n n ,上面n-1个式子累加得:2ln(2×3×…×n)>n-1-1+1n .n ∈N*且n ≥2,即2ln(2×3×…×n)>221-+n n n .命题得证.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. [选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以原点O 为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系,已知曲线C 1:x 2+y 2=1,直线l :ρ(cos θ-sin θ)=4.(1)将曲线C 1上所有点的横坐标、纵坐标分别伸长为原来的2倍后得到曲线C 2,请写出直线l ,和曲线C 2的直角坐标方程.解析:(1)直接把参数方程和极坐标方程与直角坐标方程进行转化.答案:(1)因为l :ρ(cos θ-sin θ)=4,转化为直角坐标方程为:x-y=4; 设曲线C 2上任一点坐标为(x ′,y ′),则2'=⎧⎪⎨'=⎪⎩x x y , 所以2'⎧=⎪⎪⎨⎪=⎪⎩x x y , 代入C 1方程得:22123''+⎛⎫⎛⎫⎪ ⎝=⎪⎝⎭⎭x y , 所以C 2的方程为22143''+=x y .(2)若直线l 1经过点P(1,2)且l 1∥l ,l 1与曲线C 2交于点M ,N ,求|PM|·|PN|的值. 解析:(2)利用直线哈曲线建立方程组,利用一元二次方程根和系数的关系求出结果.答案:(2)直线l :x-y=4倾斜角为4π,由题意可知,直线l 1的参数方程为2122⎧=+⎪⎪⎨⎪=+⎪⎩x t y (t 为参数), 联立直线l 1和曲线C 2的方程得,27702++=t . 设方程的两根为t 1,t 2,则t 1t 2=2.由直线参数t 的几何意义可知,|PM|·|PN|=|t 1t 2|=2.[选修4-5:不等式选讲]23.已知a ,b 是任意非零实数.(1)求3232++-a b a b a 的最小值.解析:(1)根据绝对值三角不等式得出结论.答案:(1)因为|3a+2b|+|3a-2b|≥|3a+2b+3a-2b|=6|a|,当且仅当(3a+2b)(3a-2b)≥0时取等号,3232++-a b a ba 的最小值为6.(2)若不等式|3a+2b|+|3a-2b|≥|a|(|2+x|+|2-x|)恒成立,求实数x 取值范围. 解析:(2)根据(1)的结论可得:|2+x|+|2-x|≤6,再讨论x 的符号解出x 的范围.答案:(2)由题意得:323222++-++-≤a b a b x x a 恒成立, 结合(1)得:|2+x|+|2-x|≤6.当x ≤-2时,-x-2+2-x ≤6,解得-3≤x ≤-2;当-2<x ≤2时,x+2+2-x ≤6成立,所以-2<x ≤2;当x >2时,x+2+x-2≤6,解得2<x ≤3.综上,实数x 的取值范围是[-3,3].。

黑龙江省大庆市铁人中学2020届高三理综考前模拟训练试题(一)

黑龙江省大庆市铁人中学2020届高三理综考前模拟训练试题(一)

黑龙江省大庆市铁人中学2020届高三理综考前模拟训练试题(一)(考试时间:150分钟试卷满分:300分)可能用到的相对原子质量:H-1 C-12 O-16 S-32 Cl-35.5 Fe-56 Zn-65第Ⅰ卷选择题部分一、选择题:本题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列关于细胞结构和功能的叙述,正确的是A.有高尔基体的细胞一定是分泌细胞B.蛔虫细胞内无线粒体,只能进行无氧呼吸C.衰老细胞内染色体固缩不影响DNA的复制D.性激素是由内质网上的核糖体合成的2.光合作用和呼吸作用都能产生ATP和[H]。

下列有关叙述中正确的是A.ATP中的腺苷含有N元素和2个高能磷酸键B.ATP可以作为复制DNA分子的原料C.ATP和[H]都是光合作用和呼吸作用的最终产物D.[H]是还原型辅酶Ⅰ和还原型辅酶Ⅱ的简化表示方式3.人的某些细胞膜上的CFTR蛋白与Na+和Cl-的跨膜运输有关。

当CFTR蛋白结构异常时,会导致患者支气管中黏液增多,肺部感染,引发囊性纤维病。

下图为一个人体细胞内外不同离子的相对浓度示意图,则下列说法正确的是A.囊性纤维病说明基因通过控制酶的合成来控制代谢过程B.由图可知,Na+排出细胞与K+进入细胞都属于主动运输C.如果大量Cl-进入神经细胞,将有利于神经元动作电位的形成D.CFTR蛋白与两种离子的跨膜运输有关,说明载体蛋白不具特异性4.科研人员分别使用不同浓度的IAA合成抑制剂处理豌豆茎切段得到茎的伸长量如下图所示。

下列相关叙述错误的是A.未添加抑制剂前,茎切段中内源IAA的浓度大于最适浓度B.20mg·L-1的IAA合成抑制剂能直接促进茎切段生长C.40mg·L-1的IAA合成抑制剂对茎切段的伸长生长无明显的作用D.160mg·L-1的IAA合成抑制剂作用下,茎切段中IAA浓度低于最适浓度5.1936年,人们将环颈雉引入美国的一个岛屿,其后五年期间环颈雉种群数量变化如图所示,下列叙述错误的是A.在这五年期间,种群的出生率大于死亡率,该种群的年龄组成属于增长型B.在这五年期间,环颈雉适应当地环境且缺乏天敌,种群的λ值均大于1C.自引入到该岛屿开始,环颈雉种群内部就出现了种内斗争现象D.引入环颈雉可使该岛屿的生物多样性增加,提高了生态系统的稳定性6.家蚕性别决定方式为ZW型,其幼虫结茧方式受一对等位基因L(结茧)Lm(不结茧)控制。

黑龙江省大庆中学2020届高三上学期入学考试数学(理)试题 Word版含答案

黑龙江省大庆中学2020届高三上学期入学考试数学(理)试题 Word版含答案

大庆中学2019-2020学年度上学期开学验收考试高三年级数学试题(理科)说明:1、本试题满分 150 分,答题时间 120 分钟。

2、请将答案填写在答题卡上,考试结束后只交答题卡。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求。

已知集合,,则( ).1{|(4)0}A x N x x =∈-≤{|22}B x x =-≤≤A B = .A {|02}x x ≤≤.B {|02}x x <<.C {012},,.D {12},设复数,在复平面内对应的点位于().212z i =+z 第一象限 第二象限 第三象限 第四象限.A .B .C .D 命题 “”的否定( ).3()0000,,ln 1x x x ∃∈+∞=- .A ()0,,ln 1x x x ∀∈+∞≠-.B ()0,,ln 1x x x ∀∉+∞=- .C ()0000,,ln 1x x x ∃∈+∞≠-.D ()0000,,ln 1x x x ∃∉+∞=-已知,,,则的大小关系为( ) .4 1.22a =8.02=b 52log 2c =,,a b c .A c a b <<.B b a c <<.C c b a <<.D b c a<<某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得.522⨯,参照下表: 得到正确结论是()27.218K ≈20()P K k ≥0.010.050.0250.0100.0050.001k 2.706 3.841 5.024 6.6357.87910.828有99%以上的把握认为“学生性别与中学生追星无关”.A 有99%以上的把握认为“学生性别与中学生追星有关”.B 在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”.C在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”.D 下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产量(吨)与相应的生产能耗.6A x (吨)的几组对应数据,根据表中提供的数据,求出关于的线性回归方程为y y x,则下列结论错误的是( )35.07.0+=x y x3456y2.5t44.5产品的生产能耗与产量呈正相关回归直线一定过 .A .B ()5.3,5.4产品每多生产吨,则相应的生产能耗约增加吨的值是.C A 17.0.D t 15.3为了提高某次考试的真实性,命题组指派4名教师对数学卷的选择题,填空题和解答题这3种题.7型进行改编,并且每人只能参与一种题型,则每种题型至少指派一名教师的不同分派方法种数为( ).A 12.B 24.C 36.D 72设,则二项式展开式的所有项系数和为( ).80sin a xdx π=⎰421()ax x+.A 0.B 1.C 16.D 81甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、.9教育咨询、交通宣传这四个项目,每人限报其中一项,记事件为“四名同学所报项目各不相A 同”,事件为“只有甲同学一人报关怀老人项目”,则( )B (|)P A B = .A 14.B 34.C 29.D 59一个几何体的三视图如图所示,其中正(主)视图是一个正三角形,则这个.10几何体的外接球的表面积为().A 163π.B 83π.C .D 若直线被圆截得弦长为,则的.11220(0,0)ax by a b -+=>>222410x y x y ++-+=441a b+最小值是( ).A 9.B 4.C 12.D 14已知椭圆的右焦点为,短轴的一个端点为,直线12.2222:1(0)x y C a b a b +=>>F P :430l x y -=与椭圆相交于、两点.若,点到直线的距离不小于,则椭圆离心率A B ||||6AF BF +=P l 65的取值范围为( ).A 9(0,]5.B .C .D 1(3二、填空题:本大题共4小题,每小题5分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

企业利润 X (元)的分布列为
X
260000
300000
P
0.7
0.3
所以 EX 2600000.7 3000000.3 272000(元);…………9 分
(ii)若产品单价为 70 元,记企业利润为 Y (元), 订单为 10 千件时,每件产品的成本为 10 100 30 50 元, 10 企业的利润为 (70 50)10000 200000(元),
B
6
3
,
2 3
l
ABC
62
3, 6
3 . ........12 分
18.(本小题满分 12 分)
解析:(Ⅰ)如图 1,取线段 BC1 的中点 F ,连接 EF 、 DF .
因为
E

B1C1 的中点,所以
EF
//
BB1 ,且
EF
1 2
BB1 .

D

A1 A
的中点,所以
A1D
//
BB1
,且
yˆ 10 100 ; ……………… …………………4 分 x
y 与 u 的相关系数为:
6
r2
ui yi 6uy
i 1
6
ui2
6u
2
6
yi2
6y2
48.34
48.34 0.96 ,……6 分
0.4834 5252.44 50.39
i1
i1
(2)法一:(i)若产品单价为 80 元,记企业利润为 X (元),
A1D
1 2
BB1
,所以
EF
//
A1D

且 EF = A1D ,
所以四边形 A1DFE 是平行四边形,所以 A1E // DF .
又 DF 平面 BC1D , A1E 平面 BC1D ,所以 A1E //平面 BC1D . …………6 分
(Ⅱ)作 A1O AC 于点O ,因为 A1AC 60 °,所以AA1O 30°,所以
锐角
ABC且A=
3
B
6
, 2
............11

B 6
3
,
2 3
l
ABC
62
3, 6
3 .............12 分
(1)②∵cos A(2b-c)=acos C
2b cos A a cos C c cos A2b cos A b...........3分 cos A 1 ........5分
令 AA1 AC BC 2a ,则 A(a ,0,0) , B(a ,2a ,0) , A1(0,0, 3a) ,
C1(2a
,0

3a)

D
1 2
a
,0
,3 2
a
,所以
BD
3 2
a,2a,
3 2
a

C1D
5 2
a,0,
3 2
a
.
设平面
BC1D
一个法向量为
m
(
x,
y,
z
)
,则
(
x
,y
2
A
0,
2
A
3
.
.........6

(2)
a sin A
4,l
ABC
4
sin
2 3
B
4
sin
B2
3
.........8 分
l ABC 4
3
sin
B
6
2
3
........10 分
锐角
ABC且A=
3
B
6
, 2
.........11 分
B
6
3
,
2 3
l
ABC
62
3, 6
AO
1 2
A1 A
1 2
AC
,即 O

AC
的中点.
因为 ACB C1CB 90 °,所以 BC 平面 A1ACC1 ,所以 BC A1O ,所以 A1O 平面 ABC .故可以点O 为原点,射线OA 、OA1 分别为 x 轴和 z 轴的正半轴,以平行于 BC 的直线为 y 轴,建立空间直角坐标系,如图 2.
订单为 9 千件时,每件产品的成本为 10 100 30 40 100 元,
9
9
企业的利润为[80 (40 100)]9000 260000 (元),………7 分 9
订单为 10 千件时,每件产品的成本为10 100 30 50 元, 10
企业的利润为(80 50)10000 300000 (元),…………………8 分
所以bˆ
ui yi 6uy
i 1
6
ui2 6u 2
173.8 6 0.4151 1.492 6 0.1681
48.34 0.4834
100 ,…………2 分
i 1
则 aˆ y bˆu 51100 0.41 10 ,…………………………3 分
所以 yˆ 10 100u ,因此 y 关于 x 的回归方程为
22
2
2
6
f
A
1 4
sin
2
A
6
1 2
.........5 分
A
0,
2
A
3
.
.........6

(2)
a sin A
4,l
ABC
4
sin
2 3
B
4
sin
B2
3
.........8 分
l ABC 4
3
sin
B
6
2
3
........10 分
锐角
ABC且A=
3
B
6
, 2
.........11 分
,z)
3 2
a

2a
,3 2
a
0


( x
,y
,z)
5 2
a
,0

3 2
a
0

3 2 5 2
x x
2y 3z 2
3z 2 0
0

.取
x
3,y 2
3 , z 5 ,所以m (
3,2 3,5) .
又平面 ABC 的一个法向量为OA1 (0,0, 3a) ,设平面 BC1D 与平面 ABC 所成锐二面
角为 ,则cos m OA1 5 3a 10 .
m OA1
40 3a 4
所以平面 BC1D 与平面 ABC 所成锐二面角的余弦值为
10 . 4
…………12 分
u
19.【解析】(1)令
1 x
y
,则
a
b x
可转化为
y
a bu,
因为 y 306 51, …………………………………1 分 6
6
3 . .........12 分
(1)③ f (x) cos x(1 cos x 3 sin x) 1
2
2
4
1
3
1
=2cos2x+ 2 cos xsin x-4
1 1+cos 2x 3 sin 2x 1 =2× 2 + 2 × 2 -4
= 1 (1 cos 2x 3 sin 2x)= 1 sin(2x ) ........3 分
22
22
2
cos2 A sin2 A 1 ,........3分
2
22
cos A 1 .........5分 2
A
0,
2
A
3
..........6分
(2)
a sin A
4,l
ABC
4
sin
2 3
B
4
sin
B
2
3
.........8 分
l ABC 4
3
sin
B
6
2
3 .............10 分
大庆铁人中学 2017 级高三学年考前模拟训练
理科数学试题答案
一.选择题:AABB ADCA DCDD
二.填空题: 22;
2835 ;
10; e 的负 e 分之一次方
三.解答题:
17.(1)若选①,∵ m ( cos A ,sin A), n (cos A ,sin A) ,且 m n 1
相关文档
最新文档