周成康_广义相对论学习心得
我看“广义相对论”_初一议论

我看“广义相对论”
我看“广义相对论”
E=MC2是爱因斯坦提出的“广义相对论”。
据说其中包含了两个意思:1、当物体速度达到光速时,物体内部的时间将停止;2、在引力场的作用下,光线将弯曲。
当这两个“定律”被发现出来时,世界被震惊了。
后来这两个“定律”被验证是正确的。
有人做了这样一个试验:他们做了两只极其准确的钟,其中一只放在宇宙飞船上,另一只放在实验室里,飞船绕地球飞行一圈后返回,结果那只闹钟比实验室那只慢了几分钟!
面对这个实验,我有一些想法:假如一个物质达到了光速,则物体内部的全部时间将会停止,那么在没有时间的情况下,300,000千米/秒的光将不会移动;由于只有速度,没有时间,路程也就等于零。
那光是怎样移动的呢?
在E=MC2中,另外一个内涵是“在引力场作用,光线将弯曲”。
比如黑洞,他具有强大的引力,任何物质都逃不过它的吸引,那我们的视网膜就接受不到任何从黑洞那儿发出的光线,自然也看不到黑洞了。
“相对论”证明了这一点。
那么,宇宙呢?假如飞船超过光速飞行,按理说飞船内部应该“时间倒转”,也就是说内部应该往飞船行驶方向相反的地方去,那么,飞船外壳会与飞船内壁发生磨擦,那么飞船会怎么样呢?
假如,可以利用“第一定律”,将飞船速度调成光速,使内部时
间停止,再继续飞行若干光年,那船上的飞行员就可以在飞船上呆上几百、几千个地球年了。
那人类是不是就可以实现“长生不老”的愿望了呢?。
人类何以拨动宇宙的琴弦——爱因斯坦广义相对论绽放百年有感

人类何以拨动宇宙的琴弦——爱因斯坦广义相对论绽放百年有感当代欧美思想史大家斯特龙伯格教授热情洋溢地写到“20世纪初,乔伊斯的杰作《芬尼根守灵夜》,就文字运用的精彩绝伦而言举世无双,与爱因斯坦物理学恰成双峰对峙,都难以逾越。
”1915年11月25日绽露的“引力场方程”(通称广义相对论),实为爱因斯坦奠基的现代物理学宫殿中最璀璨的明珠。
她的横空出世,把欧洲科技界,特别是天文物理数学领域自哥白尼时代激发出来的探索宇宙奥秘之热情引入到一个波澜壮阔、高潮迭起的新纪元。
正如探源博大精深中国哲学,如果不洞悉《周易》;寻找宇宙运行规律,如不明察爱因斯坦广义相对论引力理论,同样不可思议。
1905年,26岁的爱因斯坦以专利局最普通职员的身份,创立了光量子假说,解决了牛顿以来经典物理学无法解释的光电效应,(因此获得了1921年诺贝尔物理学奖);同年5月他发表论文《论动体的电动力学》,独立完整地提出狭义相对性原理,物理学史称1905年为“爱因斯坦年”。
此后,爱因斯坦倾注10年心血,孕育、催生了广义相对论理论,将其研究推向了难以超越的巅峰。
爱因斯坦还第一个肯定光的波粒二象性,奠基量子力学诸多重大科学发现。
爱因斯坦不仅是继伽利略、牛顿以来最伟大的物理学家,还是著名的国际反法西斯战士,也是人类核安全的积极推进者。
爱因斯坦是《时代周刊》1999年评选的“世纪伟人”之一。
20世纪20年代末,英国天文学家爱丁顿的实验成果(在太阳外缘发现了恒星位移大小在0.9秒到1.8秒间,这与爱因斯坦广义相对论理论的预言完全相符)鼓舞玻尔、玻恩、泡利、德布罗意、海森伯、薛定尔、狄拉克等一大批顶级科学家,众人拾柴点燃了量子力学之火,迎来了物理学的“黄金年代”:爱因斯坦殚智竭虑,志在建立描述引力和电磁力的统一场论;量子力学的日臻完善在已发现的引力、电磁力、强力(原子之间的作用力)、弱力(质子电子之间的作用力)四中力中,提出了将电磁力和弱力统一的标准模型。
学习广义相对论宇宙论的心得体会

学习广义相对论宇宙论的心得体会最近看完梁灿斌的微分几何与广义相对论教程中的宇宙论部分,果然比以前的学到的科普知识深了一层,下面就来写一段自己的小结体会。
先谈一下宇宙论的范围,以前总觉得好像研究宇宙中的东西就叫做宇宙论,但现在知道宇宙论研究的就是宇宙本身,如果研究其中恒星、黑洞之类的,还称不上的严格意义上宇宙论。
宇宙论有一条基本原理,就是宇宙在大尺度下是均匀与各向同性的,即使是星系(比如我们的银河系)乃至星系团,在浩瀚宇宙中也只是沧海一粟而已。
由宇宙学原理,我们可以选定各向同性参考系,并且知道宇宙的空间几何(三维)是常曲率的,因此只可能有球形、平直或者是双曲型的度规结构。
然而,我们还要考虑的宇宙四维时空结构,为此我们需要使用所谓的Robertson-Walker度规。
请注意,宇宙的时空并不是一个单纯的容器,而是与物质分布通过Einstein方程G=8πT相联系。
Einstein当年并不满意这个方程得到的动态解,特别增加了一项宇宙因子项Λ,通过求解修正的Einstein 方程G+Λg=8πT得到静态宇宙解,但遗憾的是这个解是不稳定的。
然而,关于宇宙因子Λ的讨论却是几经周折,当量子场论发现“真空不空”时就解释成了真空的能量密度,1998年的观测发现宇宙加速膨胀时又以Λ作为了主要原因。
借助于Robertson-Walker度规,可以对Einstein方程做一番复杂的推到,最后得到Friedmann方程,实际上宇宙论的讨论大都是从Friedmann方程出发的。
由Friedmann方程,我们可以得到两种极端情况,对于尘埃宇宙的能量密度ρ∝a^(-3),而辐射宇宙(极早期)则有ρ∝a^(-4),其中a是R-W度规中的尺度因子。
此外,Friedmann方程还引出了奇点问题,后来Penrose与Hawking断言了在相当宽容的条件下,奇点是不可避免的,这说明广义相对论与经典物理有着不相容的一面。
物理学家曾试图用量子力学的方法来消除奇点问题,但至今还没有公认的理论出现,幸运的是在大爆炸的Planck时间(约为10^(-34)秒)以后,广义相对论还是能够适用的。
读《广义相对论》有感

读《广义相对论》有感我接触广义相对论要追溯到高中时代了,记得当初,老师讲到经典力学、能量方程、首次提出了相对论的概念,在此之前,相对论对于我来说是一个遥不可及的存在,只知道他是爱因斯坦提出的一个伟大理论,之后,我特意阅读了广义相对论的文章,并有所得。
广义相对论是爱因斯坦于1916年发表的用几何语言描述的引力理论,它代表了物理学中引力理论研究的最高水平。
广义相对论将经典的牛顿万有引力包含在狭义相对论的框架中,并在此基础上应用等效原理而建立。
在广义相对论中,引力被描述为时空的一种几何属性而这种时空曲率与处于时空中的物质与辐射的能量动量张量直接相联系,其联系方式即是爱因斯坦的引力场方程。
广义相对论有许许多多的研究分支,其中包括引力时间膨胀和引力红移、光线偏折和引力时间延迟、引力波、轨道效应、近星点的进动、轨道衰减、测地线效应和参考系拖拽、引力透镜、在天文学上,广义相对论亦有其突出的作用,其中,黑洞是我最感兴趣的话题。
广义相对论预言了黑洞的存在,即当一个星体足够致密时,其引力使得时空中的一块区域极端扭曲以至于光都无法逸出。
在当前被广为接受的恒星演化模型中,一般认为大质量恒星演化的最终阶段的情形包括1.4倍左右太阳质量的恒星演化为中子星,而数倍至几十倍太阳质量的恒星演化为恒星质量黑洞。
具有几百万倍至几十亿倍太阳质量的超大质量黑洞被认为定律性地存在于每个星系的中心,一般认为它们的存在对于星系及更大的宇宙尺度结构的形成具有重要作用。
在天文学上致密星体的最重要属性之一是它们能够极有效率地将引力能量转换为电磁辐射。
恒星质量黑洞或超大质量黑洞对星际气体和尘埃的吸积过程被认为是某些非常明亮的天体的形成机制,著名且多样的例子包括星系尺度的活动星系核以及恒星尺度的微类星体。
在某些特定场合下吸积过程会在这些天体中激发强度极强的相对论性喷流,这是一种喷射速度可接近光速的且方向性极强的高能等离子束。
在对这些现象进行建立模型的过程中广义相对论都起到了关键作用,而实验观测也为支持黑洞的存在以及广义相对论做出的种种预言提供了有力证据。
大学生《狭义与广义相对论浅说》读后感

大学生《狭义与广义相对论浅说》读后感下面是小编为大家整理的大学生《狭义与广义相对论浅说》读后感,欢迎大家阅读。
更多大学生《狭义与广义相对论浅说》读后感请关注读后感栏目。
大学生《狭义与广义相对论浅说》读后感【一】《狭义相对论》我中学就有耳闻,那时候虽然什么都不懂,只知道《狭义相对论》是很厉害的理论,也让我体会到了世界的奇妙,宇宙万物的高深,启发了我对科普知识的浓厚兴趣。
简洁来说狭义相对论有两条原理1.所有的物理定律在各个不同的惯性坐标系中都相同2.光速恒定不变E=MC2(平方)是根据这两条原理得出的,只是狭义相对论的一部分简单的讲就是除了物理定律和光速任何物质都是相对变动的,包括时间和空间。
最让我印象深刻的就是狭义相对论的时空观,它让我对物质世界的理解又到了一种层次。
俗话说“覆水难收“意思是倒出去的水很难再收回来,时间也是这样,时间流逝了就很难再回来。
但是爱因斯坦的相对论彻底的推翻了这些俗语,当达到光速的时候就有可能做得到穿越时空。
这些观点衍生出来了很多推论和假设,最出名和最让人感兴趣的就是双生子佯谬问题。
一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球。
爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻。
许多人有疑问,认为A看B在运动,B看A也在运动,为什么不能是A比B年轻呢?由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论。
如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式。
在此只是用语言来描述一种最简单的情形。
不过只用语言无法更详细说明细节,有兴趣的请参考一些相对论书籍。
我们的结论是,无论在哪个参考系中,B都比A年轻。
为使问题简化,只讨论这种情形,火箭经过极短时间加速到亚光速,飞行一段时间后,用极短时间掉头,又飞行一段时间,用极短时间减速与地球相遇。
狭义与广义相对论浅说阅读随笔

《狭义与广义相对论浅说》阅读随笔一、相对论背景介绍在人类对物理世界的认识历程中,人们一直在寻求统一且符合逻辑的宇宙法则。
牛顿力学在很长时间内被认为是解释物质运动和相互作用的最好理论,随着物理学的发展和研究的深入,人们逐渐发现了某些难以解释的现象和问题,比如在微观领域的量子力学问题和高速运动情况下的理论问题。
这样的探索与研究为相对论的诞生奠定了基础,特别是在人类科技发展初期关于光速的追求,提出了新的时空观念。
由此产生的问题刺激了人们对时间和空间观念的反思,引发了科学界对物理学理论的一次重大革命。
在这样的背景下,爱因斯坦的相对论应运而生。
狭义相对论,首次打破了牛顿力学中的绝对时空观,提出了空间与时间的相对性。
它强调了宇宙的自然法则与物理定律在任何惯性参考系下都保持一致的特性,并以光速作为其核心参考量度标准。
该理论的核心思想是:物理定律在所有惯性参照系中都是等价的。
通过此理论我们得以对时间和空间的测量产生了全新的理解,在这一基础上构建的宇宙观让人们重新认识了时间和空间的相对性特征以及物体在高速运动下的物理表现。
这为后续研究开启了新的视角和路径,对于进一步推动物理学的进步有着不可磨灭的贡献。
而广义相对论则进一步扩展了狭义相对论的理论框架,引入了引力场和曲率空间的概念,揭示了引力是如何影响时空结构的。
广义相对论不仅解释了引力的一些现象,而且深化了我们对宇宙的认知和物质之间相互作用的理解。
因此这一理论自诞生以来引起了巨大的反响和研究热潮,进一步推进了物理学和人类对宇宙的认知进程。
相对论是一个融合了时间和空间观念、对运动规律和引力理论进行全面改革的重大理论体系。
在阅读过程中更是带来了无尽深思以及对自然的无限好奇及崇敬之感的提升。
二、狭义相对论详解在深入阅读《狭义与广义相对论浅说》狭义相对论作为全书的核心内容之一,引起了我极大的兴趣。
这一章节详细阐述了狭义相对论的基本原理和核心概念,为我揭示了时空相对性的神秘面纱。
广义相对论的学习总结

广义相对论的学习总结1.引言1.1前言经过过去一年对广义相对论的学习,基本对广义相对论的基本原理和运用有了比较完整的认识。
这篇文章是为了总结自己学习的体会,尽量用自己的语言谈谈对广义相对论的理解。
由于作者水平有限,也为了文章的简洁,所以省去数学推导,仅保留基本的数学公式和方法说明。
广义相对论是爱因斯坦一大理论成果,可以解释宏观世界一切物体的运动,可以在一切坐标系下运用,本身又保持了相当完美的对称性和简洁性。
随着空间探测技术的发展,广义相对论的许多结论都得到了证明,而广义相对论和量子力学构成了现代物理的两大支柱。
1.2导语在具体介绍广义相对论的内容之前,我想用自己的语言,对广义相对论的思想和研究问题步骤做一个小的总结和介绍。
总的来说,广义相对论是建立在四个假设之上,通过这四个假设,爱因斯坦认为惯性场和引力场等效,以及所有参考系的平权性。
然后爱因斯坦把引力场认为是一种几何效应。
是由于质量在空间上的分布不均匀,导致空间的空间扭曲。
在数学上,用张量来代表物理量,以满足物理规律在所有参考系下都成立。
用黎曼几何来刻画弯曲空间,联络来描述引力强度,曲率张量来描述空间弯曲,度规张量来描述引力势。
接下来便是构建场运动方程。
我们可以用惠曼的名言总结道:“物质告诉时空如何弯曲,时空告诉物质如何运动。
”按照爱因斯坦的想法,引力是由于质量空间分布不均匀造成的几何效应。
所以爱因斯坦场方程左边应该是反映时空的几何性质的张量,右边是能动张量。
再继续利用能量守恒定律,便可以推出爱因斯坦场方程。
应用爱因斯坦的场方程,得到了很多新奇的结论和实验预言,并且以“水星进动”和“引力红移”为代表的实验验证了广义相对论的正确性。
广义相对论还预言了引力弯曲效应极大情况下黑洞的存在。
而广义相对论作为宇宙学的理论基础,特别是近几十年观测技术的进步,使得宇宙学建立起了相对完整的理论系统。
2.基本假设广义相对论建立在以下假设下。
2.1等效原理广义相对论用的是强等效原理。
狭义相对论观后感

狭义相对论观后感
狭义相对论这玩意儿,就像是宇宙给咱们人类出的一道超级烧脑的谜题,但一旦你开始理解一点,又觉得特别酷。
最开始接触的时候,我就感觉爱因斯坦他老人家简直是个穿越到过去的外星人。
时间和空间竟然不是咱们以前认为的那种绝对的东西,这就好比你一直以为地球是平的,突然有人告诉你,地球是个球呢,而且还在不停地转。
什么时间会变慢,长度会缩短,我当时就想,这不是在跟我开玩笑吧?
就说那个著名的双生子佯谬吧。
一对双胞胎,一个坐着接近光速的飞船去宇宙溜达一圈,回来后发现留在地球上的兄弟都变老了好多。
这事儿要是真发生在自己身上,那得多神奇啊。
你看,狭义相对论就这么轻易地把时间和空间像揉面团一样捏来捏去。
这让我觉得,我们平时所感受到的那种稳稳当当的世界,其实背后有着超级复杂又神奇的规律。
而且这理论还特别有个性,它要求你得抛弃掉一些传统的观念。
像速度的叠加不再是简单的一加一等于二了。
你在火车上跑,火车又在地上跑,你的速度可不是简单的两个速度相加,而是得按照狭义相对论的公式来算。
这就好像是宇宙给速度设定了一个“速度上限”,不能让你随便超光速,就像游戏里设定了等级上限一样,超有秩序感。
我还觉得狭义相对论像是一把特殊的钥匙,打开了通往一个超级神秘世界的大门。
它让我重新审视这个世界,那些平常看似平常的东西,像光线的传播、物体的运动,一下子变得充满了奥秘。
每次想到这些,就感觉自己像是一个小小的探险家,在这个由爱因斯坦揭示的神奇宇宙规则里探索,虽然脑袋有时候会被绕晕,但真的很有趣。
总之呢,狭义相对论就是那种让你越琢磨越觉得宇宙不可思议的理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广义相对论学习心得
理论物理周成康
学号16212289 张宏浩老师您好,我是选修了您的广义相对论的硕士生周成康,首先谢谢您在广相课程中的付出的劳动。
我的导师是姚道新老师,方向是关联电子体系的蒙特卡洛模拟。
虽然方向与广义相对无关,但是基于兴趣选择了广义相对论的课程。
很高兴选修了张宏浩老师的广义相对论的课程,本人本科只是一般院校,基础一般,不能说得上好,所以刚开始听的几堂课都比较吃力,但老师您的课幽默不失风趣,是我能够坚持听下来,对广义相对论与黎曼几何有了一定程度的了解。
广义相对是描述物质间的引力相互作用的理论,将引力与时空的变化相联系起来,而描述时空变化的工具是黎曼几何和张量分析。
黎曼几何相对于欧几里的几何的优势在于,在描述同样的空间扭曲时,不需要引入额外的维度来描述,例如描述二维曲面时,在欧氏几何需要三维空间才能表达,但是在黎曼几何却只需要同样的二维表达。
这意味着分析广相时,使用黎曼几何能有效简化过程,只利用最少的维度便可以表示清楚。
在广义相对论理论体系中,基本假设包含以下几点:1,等效原理:爱因斯坦提出“等效原理”,即引力和惯性力是等效的。
这一原理建立在引力质量与惯性质量的等价性上。
根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。
物体的运动方程即该参考系中的测地线方程。
测地线方程与物体自身固有性质无关,只取决于时空局域几何性质。
而引力正是时空局域几何性质的表现。
物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。
正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走;2,广义相对性原理:物理定律的形式在一切参考系都是不变的。
该定理是狭义相对性原理的推广。
在狭义相对论中,如果我们尝试去定义惯性系,会出现死循环:一般地,不受外力的物体,在其保持静止或匀速直线运动状态不变的坐标系是惯性系;但如何判定物体不受外力?回答只能是,当物体保持静止或匀速直线运动状态不变时,物体不受外力。
很明显,逻辑出现了难以消除的死循环。
这说明对于惯性系,人们无法给出严格定义,这不能不说是狭义相对论的严重缺憾。
为了解决这个问题,爱因斯坦直接将惯性系的概念从相对论中剔除,用“任何参考系”代替了原来狭义相对性原理中“惯性系”;3,引力质量与惯性质量:人们做了许多实验以测量同一物体的惯性质量和引力质量。
所有的实验结果都得出同一结论:惯性质量等于引力质量(实际上是成正比,调整系数后,就变成"等于"了,这么做是为了方便计算),牛顿自己意识到这种质量的等同性是由某种他的理论不能够解释的原因引起的。
但他认为这一结果是一种简单的巧合。
与此相反,爱因斯坦发现这种等同性中存在着一条取代牛顿理论的通道。
广义相对不但是人们对时空与引力的认识跨入一个新的高度,同时也预言了许多新的现象和结论,包括引力波,引力透镜效应等。
引力波随着LIGO成功测得,成为时下热词。
在爱因斯坦的广义相对论中,引力被认为是时空弯曲的一种效应。
这种弯曲是因为质量的存在而导致。
通常而言,在一个给定的体积内,包含的质量越大,那么在这个体积边界处所导致的时空曲率越大。
当一个有质量的物体在时空当中运动的时候,曲率变化反应了这些物体的位置变化。
在某些特定环境之下,加速
物体能够对这个曲率产生变化,并且能够以波的形式向外以光速传播。
这种传播现象被称之为引力波。
当一个引力波通过一个观测者的时候,因为应变(strain)效应,观测者就会发现时候时空被扭曲。
当引力波通过的时候,物体之间的距离就会发生有节奏的增加和减少,这个频率对于这了引力波的频率。
这种效应的强度与产生引力波源之间距离成反比。
绕转的双中子星系统被预测,在当它们合并的时候,是一个非常强的引力波源,由于它们彼此靠近绕转时所产生的巨大加速度。
由于通常距离源非常远,所以在地球上观测时的效应非常小,形变效应小于1.0E-21。
科学家们已经利用更为灵敏的探测器证实了引力波的存在。
目前最为灵敏的探测是LIGO,它的探测精度可以达到1.0E-22。
更多的空间天文台(欧洲航天局的eLISA计划,中国的中国科学院太极计划,和中山大学的天琴计划)。
另外,在您的课堂上还学习使用了mathematics 软件使用,学会利用软件计算简单的张量分析。
最后,谢谢老师的遵遵教诲,对这门课程付出的劳动。