近世代数课件--2.3理想与商环

合集下载

《近世代数》PPT课件

《近世代数》PPT课件
– 剩余类的加法和乘法运算
a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示

• x的幂次表示

– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021

编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。

近世代数学习教材PPT课件

近世代数学习教材PPT课件

§8.2 代数系统常见的一些性质
(3)代数系统常见性质 1)结合律:(a b) c=a (b c) 2)交换律:a b=b a 3)分配律:a (b+c)=(a b)+(a c) 4)单位元:a 1=a 5)逆元:a a-1=1 6)零元:a 0=0
7)生成元
逆元

特殊子环 (两个二元运算:,
单位元,无零因子 整环 理想 商环
)
特殊环
两个运算的结合律、交换律、吸收律
格 两个运算的分配律 分配格 布尔代数 两个运算的单位元、逆元 两个运算有单位元 有界格 两个运算有逆元 有补格
第九章 群论
§9.1 一些群的定义
(7)半群——代数系统满足交换律
§9.2 一些群的理论与半群性质:
半群的子代数也是半群。 循环半群是可换半群。 (19)关于群的基本理论 群方程可解性:a x = b(或x a = b)对x存在唯一解; 群的消去律:a b = a c(或b a = c a)必有b = c; 任一群必与变换群同构; 与一个群同构或满同态的代数系统必为群; 一个代数系统有限群满足结合律及消去律则必为群;
第三篇 近世代数
代数系统是建立在集合论基础上以代 数运算为研究对象的学科。本篇共三章, 第五章代数系统基础介绍代数系统的一般 原理与性质, 第六章群论,主要介绍具有 代表性的代数系统-群,最后第七章其它 代数系统,介绍除群外常见的一些代数系 统,如环、域、格与布尔代数等,这三章 相互配合构成了代数系统的完整的整体。
§8.3 同构与同态
(4)同构:(X, )与(Y,)存在一一对应函
数g : XY使得如x1 , x2X,则有:g(x1 x 2)=g(x1)

近世代数第二章

近世代数第二章
同理可得 (b c) a b a c a 。 所以, (
m
, , ) 构成有单位元的交换环。
例4. 设 R 是一个有单位元的交换环, x 为 R 上的一个未定元(定义见后面)或字母,
R[ x] {a0 a1x
an x n | ai R,n }
是系数在 R 上的一元多项式的集合。按通常多项式的加法和乘法定义 R[ x ] 中的加法和乘 法,则 R[ x ] 构成一个有单位元的交换环。 例5. 设 R {0} ,规定 0 0 0,0 0 0 ,则 R 构成环,称为零环(zero ring) 。零环是唯 一的一个有单位元且单位元等于零的环,并且零元也可逆的环。零环太简单了,意义不大, 今后在对环讨论时,将其排除在外。 例6. 设 ( A, ) 是任一加群,规定乘法如下:对任意 a, b A , a b 0 ,则 ( A, ) 作成一个 环。通常也称之为零环。这样的环意义也不大,因为这时 ( A, ,) 的结构主要取决于加群
x [0,1]) ,零元为零函数 0 ,即 0( x) 0( 任 x [0,1]) 。
由于一个环 R 首先是一个加群,因而加法结合律与结合律成立。对于加群 ( R, ) ,存在 零元 0 ,即任 a R , 0 a a ,且存在 a R 使 a ( a ) 0 。其次,环 R 对乘法是一 个半群,乘法满足结合律以及乘法对加法满足分配律。由这些运算定律可推得环 R 的一些 常用运算性质。 定理 2.1.1. 设 R 是一个环, a, b R ,则 (1) a 0 0 a 0 ; (2) ( a ) a ; (3) a ( b) ( a) b ab ; (4) ( a ) (b) ab ; (5) x a a x 0 ; (6) a x 0 x a ; (7) a b a c b c 。 证明.(1) 因为 a 0 a 0 a (0+0) a 0 a 0 0 ,故由加法消去律得 a 0 0 。同 理可证 0 a 0 。 (2) 因为 a 是 a 的负元,即 a ( a ) 0 ,故 a 也是 a 的负元。即 ( a ) a 。 (3) 因为 a (b) a b a (b b) a 0 0 ,所以, a ( b) 是 a b 的负元。因此, 我们有 a ( b) ab 。 同理可证: ( a ) b ab 。 (4) 由(3)得 (a) (b) ( a (b)) ( ab) ab 。 (5) 、 (6) 、 (7)由加群运算性质可得证。 利用环 R 中加法与乘法运算的性质,还可证明下面一些法则成立。 移项法则: (8) 对任意 a, b, c R ,有 a b c a c b ; (9)乘法对减法满足分配律:对任意 a, b, c R ,我们有

《近世代数》课件

《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。

近世代数课件--2.3理想与商环

近世代数课件--2.3理想与商环
Ⅰ. a b I , a, b I ; Ⅱ. ra, ar I , r R , aI .□
2019/7/21
数学与计算科学学院Company Logo
§3 理想与商环
命题 3.4 设 R 是一个环. (1)若 {Iα}αΑ 是环 R 的一族理想,则 αΑ Iα 也是环 R 的理想. (2)若 I 和 J 都是环 R 的理想,则
2019/7/21
数学与计算科学学院Company Logo
§3 理想与商环
定义 3.2 设 R 是一个环, I 是 R 的一个非空子集. (1)我们称 I 是环 R 的一个左(右)理想,是指 I 满足条 件: Ⅰ. I 是环 R 的加群的子群; Ⅱ. ra I (相应地, ar I ), r R , aI . (2)我们称 I 是环 R 的一个(双侧)理想,是指 I 既是环 R 的左理想,又是环 R 的右理想. (3)凡是由 R 的真子集构成的 R 的左(右,双侧)理想都 称为环 R 的真左(右,双侧)理想.
§3 理想与商环
注意 (1)若 R 是一个环, R' 是 R 的一个非空子集,则
R' 是 R 的子环
a b, ab R' , a, b R' ,并且
R' 关于“”和“ ”构成一个环
a b, ab R' , ab R'.
(2)环 R 的任意子环 R' 的零元就是环 R 的零元;子环 R' 中任意
I J {a b | a I, b J}
也是环 R 的理想,而且是环 R 的包含 I 和 J 的最小理想, 也就是说,对于 R 的任何包含 I 和 J 的理想 K ,总有 IJ K.

近世代数精品课程25页PPT

近世代数精品课程25页PPT
近世代数精品课程

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
6பைடு நூலகம்最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you

近世代数引论PPT课件

近世代数引论PPT课件
域是近世代数中的一个基本概念,它是一个加法群和 一个乘法半群的组合,具有一些重要的性质。
详细描述
域是一个非空集合,其中定义了两种运算:加法和乘法 ,满足一定的性质。在域中,加法和乘法都是可逆的, 即每个元素都有唯一的加法逆元和乘法逆元。此外,域 中的乘法满足结合律,且每个元素都有乘法单位元。
子域与扩域
环论在几何学中的应用
环论也是近世代数的一个重要分支,它在几何学中也有着广泛的应用。例如,在代数几 何中,环论被用于描述多项式环的结构;在解析几何中,环论也被用于描述函数的性质。
数论中的应用
域论在数论中的应用
域论是近世代数中一个重要的分支,它在数论中有着广泛的应用。例如,在代数数论中,域论被用于描述代数数 的性质;在数论中,域论也被用于研究整数的性质和结构。
分式域与函数域
总结词
分式域和函数域是两种特殊的域,它们在数学和物理 中有广泛的应用。分式域是由其整环的分式组成的域 ,而函数域则是基于函数的定义域和值域形成的域。
详细描述
分式域是由一个整环的分式组成的域。整环是一个只含 有限除数的环,也就是说,如果一个元素在整环中不能 被其他元素整除,则该元素被称为不可约元素。分式环 是由整环中所有分式组成的集合,它构成一个域。函数 域是基于函数的定义域和值域形成的域。具体来说,给 定一个函数f和一个集合D,函数域是由集合D中所有可 能的函数值组成的集合,它也构成一个域。
交叉学科的研究
近世代数与其他学科的交叉研究也是未来的一个重要方向,如 代数几何、代数数论、计算机科学等学科的交叉研究,可以促
进近世代数的发展和应用。
THANKS
感谢观看
环论
环的定义和性质
要点一
总结词
环是具有加法和乘法两种运算的代数系统,满足一定的性 质。

近世代数课件2

近世代数课件2
25
代数系统(S,⊙)是否 做成半群的判断方法就是检验代数 运算⊙在集合S上是否适合结合律.
设(S , o)是一个半群, Φ ≠ T ⊆ S , 则称(T , o)是(S , o)的一个 子半群 ⇔ ∀a, b ∈ T , 有a o b ∈ T .
26
设 是 个 空 合若 S 一 非 集 , 1)在 上 在 个 数 算 ” S 存 一 代 运 “ ; 2)代 运 “ ” 集 S上 合 合 数 算 在 合 适 结 律 (也 ∀ ,b,c∈S,有 a b) c =a (b c).) 即a ( 则 集 S关 代 运 做 一 半 , 称 合 于 数 算 成 个 群 记 半 (S,. 作 群 )
37
M n(R)(实数域R上全体n阶矩阵组成 的集合)关于矩阵的乘法、加法能否做成M n(R) 上的半群、交换半群吗?若把M n(R)换为On(R), 其中 n(R) = {A∈ M n(R) AA′ = A′A = I}, 结果如 O 何?若把M n(R)换为GLn(R), 其中 ( GLn(R) = {A∈ M n(R) A ≠ 0} 另一表示形式: GL n, R)),结果如何?若把M n(R)换为SLn(R), ( ),结 其中SLn(R) = {A∈ M n(R) A = 1},结果如何?
16
GLn( R) = {A ∈ M n( R) A ≠ 0} 关于矩阵的乘法、加法能否做成 ?(另 GLn( R)上的代数系统?(另一表 示形式:GL n, R)) (
17
有理数集合关于规定 ⊕:Q × Q → Q, ∀a, b ∈ Q, 有a ⊕ b = a + b + ab 能否做成有理数集合Q上 的代数系统?
29
在半群(S, o)中, 任取n n ≥ 3)个元a1, a2,L, an, ( 只要不改变元素次序,则 a1 o a2 oLo an的任一计算方法 所得结果均相同.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I
生成元.
2012-9数学与计算科学学院Company Logo
§3 理想与商环
注意 (1)与群的情形类似,一个环 R 的任意两个互不
包含的子环(理想)的并不再是环 R 的子环(相应地,理想). (2)由命题 3.4 可知,对于一个环 R 的任意有限个理想, 譬如, I 1 , I 2 , , I n ,我们有
出,作为加群, Z / n
.此
外,对于任意的 [ a ], [ b ] Z n ,我们有
[ a ] a n a ( n ) , [b ] b n b ( n )
, .
从而,
[ a ] [ b ] [ ab ] ab n ab ( n ) ( a ( n )) ( b ( n ))
§3
理想与商环
(2)设 I 是环 R 的一个理想.若 S 是 R 的非空子集, 使得 I ( S ) ,则称 S 为理想 I 的一个生成集.若存在 R 的 有限子集 { a1 , a 2 , , a n } ,使得 I 为
R
({ a 1 , a 2 , , a n })
,则称 I
的 一个有限生成 的理想;不致 混淆时,可将 ({ a1 , a 2 , , a n }) 简记作 ( a1 , a 2 , , a n ) . (3) 设 I 是 环 R 的 一 个 理 想 . 若 存 在 a I , 使 得 (a ) ,则称 I 为环 R 的主理想,并称 a 为理想 I 的一个
2012-9数学与计算科学学院Company Logo
§3
理想与商环
注意 (1)环 R 的左理想和右理想都是环 R 的子环. (2)任何环 R 都有理想,例如, { 0 } 和 R ,它们分别称 为环 R 的零理想和单位理想,统称为环 R 的平凡理想. 没有非平凡的理想的环都称为单环.
命题 3.3
LOGO
第二章


2012-9-19
数学与计算科学学院

§1 环的概念

§2
§3 §4 §5 §6
多项式环
理想与商环 环的同态 交换环 整环的因子分解
§7 唯一分解环上的多项式环
2012-9数学与计算科学学院Company Logo
§3
理想与商环
设 R 是一个环, S 是 R 的一个非空子集.如果 S 关于环
因此 ab
I a ' b ' I
.这样一来,我们可以定义 R / I 上的 ,a, b R .
乘法 ”如下: “
( a I ) ( b I ) ab I
显而易见, R / I 上的乘法对 R / I 上的加法适合分配律. 所以 ( R / I , , ) 是一个环.
§3 理想与商环
现在考察
a I a ' I R/I
.对于任意的
a , a ' , b , b ' R
,若
且b I
b ' I
,则 a a ' I 且 b b ' I ,从而, ,
ab a ' b ' a ( b b ' ) ( a a ' ) b ' I
J K
.所以 I
J
是环 R 的包含 I 和 J 的最
有了命题 3.4(1),我们可以引入如下定义:
定义 3.5
S
(1)设 R 是一个环.对于 R 的任意非空子集
,我们将环 R 的包含 S 的最小理想称为环 R 的由 S 生成
的理想,记作 ( S ) .
2012-9数学与计算科学学院Company Logo
1 I
I
.此外,如果环 R 有单位元 1 ,那么
就是环 ( R / I , , ) 的单位元.我们将环 ( R / I , , )
的单位元记作 1 .于是 1 1 I .
2012-9数学与计算科学学院Company Logo
§3 理想与商环
例 4
(( n ), )
u ab
rR
J
和任意的 u I J :不妨设
I
,其中 a I , b J .于是, ra , ar
, rb , br , .
J
,从而,
ru r ( a b ) ra rb I J
ur ( a b ) r ar br I J
I J K
.
数学与计算科学学院Company Logo
2012-9-
§3
理想与商环

证明 是加群
(1)设 { I α } α Α 是 R 的一族理想.于是, α Α 的子群.对于任意的
ra , ar I α , α Α ,
rR
(R, )
和任意的
a α Α I α ,我们有
和 构成一个环 “ R ' 关于 ” “ ”
a b , ab R ' , ab R ' .
(2)环 R 的任意子环 R ' 的零元就是环 R 的零元;子环 R ' 中任意 元素 a 在 R ' 中的负元就是 a 在 R 中的负元. (3)任何环 R 都有子环,例如, { 0 } 和 R . { 0 } 和 R 都称为环 R 的 平凡子环. 若 R ' 是环 R 的子环并且 R ' 是 R 的真子集,则称 R ' 为环 R 的真 子环.
§3 理想与商环
(3)若 R 是交换环,则对于任意的 a R ,
( a ) { ra na | r R , n Z } ;
若 R 是一个有单位元的交换环,则对于任意的 a R ,
( a ) aR { ar | r R } .
Δ
例 2
考察整数环 ( Z , , ) .由于它是有单位元的交换环.
设 R 是一个环, I 是 R 的非空子集.则 I
为环 R 的理想的充分必要条件是: Ⅰ. a b I , a , b I ; Ⅱ. ra , ar
2012-9-
I , r R ,a I
.□
数学与计算科学学院Company Logo
§3
理想与商环
命题 3.4 的理想.
| k Z }.
nR
.事实
设 R 是一个环, I 是环 R 的一个理想.由于 I 是环 R 的 加群的正规子群,因此我们可以谈论商群 ( R / I , ) ,其中
R / I {a I | a R} .
当然, ( R / I , ) 是交换群.
2012-9数学与计算科学学院Company Logo
因此 I J 是环 R 的理想.
2012-9数学与计算科学学院Company Logo
§3
最后,显而易见,
理想与商环
I I { 0} I J
,J
{ 0} J I J
;
对于环 R 的任何包含 I 和 J 的理想 K ,由 I 和 J 都是加群 K 的子集可知 I 小理想.□
这就是说,商环 Z /( n ) 的乘法与模 n 剩余类的乘法是一致的.所以 商环 Z /( n ) 就是模 n 剩余类环 Z n .
2012-9数学与计算科学学院Company Logo
§3 理想与商环
命题 3.7 的理想; (2)若 L 是环 R / I 的一个理想,则存在 R 的一个理想 J , 使得 I J ,并且 L
设 n 是一个正整数, n 是 n 生成的加群 ( Z , ) 的子
群 , ( n ) 是 n 生 成的环 ( Z , , ) 的 理 想.例 2 中已 经指出 ,加群 与加群 ( n , ) 是同一个群.其次,在第一章§5 中已经指
Z n .因此,作为加群,我们有 Z /( n ) 察偶数环 ( R , , ) .由于它是交换环.因此,对于
nR { nr | r R } { 2 nk | k Z } .
任意的非零偶数 n ,我们有 显然, nR 是偶数环 R 的理想,但 n nR .因此 ( n ) 上, R 的由 n 生成的主理想为 ( n ) { nk
2012-9数学与计算科学学院Company Logo
§3 理想与商环
定义 3.6
R
我们将如上定义的环 ( R / I , , ) 称为环
关于理想 I 的商环.
注意
我们已经约定,将环 R 的零元记作 0 .为了
避免记号上的混淆,我们将环 ( R / I , , ) 的零元记作 0 . 根据环 ( R / I , , ) 的零元的定义, 0 就是加群 ( R / I , ) 的零元 I ,即 0
设 R 是一个环.

(1)若 { I α } α Α 是环 R 的一族理想,则 α Α
R
也是环
(2)若 I 和 J 都是环 R 的理想,则
I J {a b | a I , b J }
也是环 R 的理想,而且是环 R 的包含 I 和 J 的最小理想, 也 就 是 说, 对于 R 的 任 何 包 含 I 和 J 的 理 想 K , 总 有
R ' , a , b R ' ,即 R ' 关于环 R
的乘法 ”封闭. “
2012-9-
数学与计算科学学院Company Logo
§3
注意
理想与商环
(1)若 R 是一个环, R ' 是 R 的一个非空子集,则
R'是R
的子环 , a , b R ' ,并且
相关文档
最新文档