八年级数学经典难题

合集下载

(完整版)八年级数学经典难题

(完整版)八年级数学经典难题

经典难题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥C O.求证:CD=GF.(初二)2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15度求证:△PBC是正三角形.(初二)3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA 1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典难题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二)3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.求证:AP=AQ.(初二)4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.求证:点P到边AB的距离等于AB的一半.(初二)经典难题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.(初二)2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.(初二)3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO 相交于B、D.求证:AB=DC,BC=AD.(初三)经典难题(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:√3≤L<2.2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=80度,D、E分别是AB、AC上的点,∠DCA =30度,∠EBA=20度,求∠BED的度数.答案经典难题(一)4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠D EN和∠QMN=∠QNM,从而得出∠DEN=∠F。

初二数学十大经典难题

初二数学十大经典难题

1 方程|2000-x-y|+更号下2x+3y-1000=0的一组解为x=a,y=b,则a+b的值是几?2 若代数式x(x+1)(x+2)(x+3)+p恰好能分解为两个二次整式的乘积(其中二次项系数均为1且一次项系数相同),则p得最大值是几。

?3 已知:a<b,且x=a/|a+b|,y=b|a+b|,则p=(a^2*x^3-b^2*y^3+b^2*y*x^2-a^2*x*y^2)/|x-y|的值等于几?4 设p(x)是一个关于x的二次多项式,且7x^3-5^2+6x-m-1=(x-1)p(x)+a,其中m,a是与x无关的常数,则p(x)得表达式是几?5 若a为自然数,b为整数,且满足(a+更号下3b)^2=7-4更号下3,则a=?b=?6 已知a,b,c为三角形的三条边长,满足条件a*c^2+b^2*c-b^3=a*b*c,若三角形的一个内角为100°,则三角形的另两个角的大小分别是几和几?7 没有图,P为线段AB上一点,以AP为边作一个正方形APMN,以BP为底在线段的另一侧作等腰△BPQ,连接MQ,若AB的长为4,则△MQN的面积的最大值是几?8 还是没有图,任意四边形ABCD中,AC,BD相交于O(AC和BD是两条对角线),△DOC的面积S1=4,△AOB的面积S2=64,则四边形ABCD的面积最小是几?9 已知a,b是互质的正整数,且a+b,3a,a+4b恰好为一直角三角形的三条边长,则a+b的值是几?10 计算题((x-y)(z-x))/((x-2y+z)(x+y-2z))+((z-y)(x-y))/((x+y-2z)(y+z-2X))+((x-z)(y-x))/((y+z -2x)(x-2y+z))设m=大更号下a+2*小更号下a-1+大更号下a-2*小更号下a-1,求m^10+m^9+m^8+…+m-47的值。

注:1≤a≤2;小更号在大更号的下面。

20002.25a^4/(a+b)^2+b^4*(a+b)^2+a^3*b+b^3*a7x^2+2x+8a=-2,b=140,404(是等腰直角三角形BPQ)100a=5,b=3;a=17,b=7m=2-am^10+m^9+m^8+…+m-47=(2-a)/(a-1)*(1-(2-a)^10)-47。

(完整版)八年级数学经典难题

(完整版)八年级数学经典难题

经典难题(一)1、已知:如图,O 是半圆的圆心,C、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二)2、已知:如图,P 是正方形 ABCD 内点,∠PAD=∠PDA=15 度求证:△PBC是正三角形.(初二)3、如图,已知四边形 ABCD、A1B1C1D1 都是正方形,A2、B2、C2、D2 分别是 AA 1、BB1、CC1、DD1 的中点.求证:四边形 A2B2C2D2 是正方形.(初二)4、已知:如图,在四边形 ABCD 中,AD=BC,M、N 分别是 AB、CD 的中点,AD、BC 的延长线交 MN 于E、F.求证:∠DEN=∠F.经典难题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM⊥BC 于 M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设 MN 是圆 O 外一直线,过 O 作OA⊥MN 于 A,自 A 引圆的两条直线,交圆于B、C 及D、E,直线 EB 及CD 分别交 MN 于P、Q.求证:AP=AQ.(初二)3、如果上题把直线 MN 由圆外平移至圆内,则由此可得以下命题:设 MN 是圆 O 的弦,过 MN 的中点 A 任作两弦 BC、DE,设 CD、EB 分别交 MN 于 P 、Q.求证:AP=AQ.(初二)4、如图,分别以△ABC的AC 和BC 为一边,在△ABC的外侧作正方形 ACDE 和正方形 CBFG,点P 是EF 的中点.求证:点 P 到边 AB 的距离等于 AB 的一半.(初二)经典难题(三)1、如图,四边形 ABCD 为正方形,DE∥AC,AE=AC,AE 与 CD 相交于 F.求证:CE=CF.(初二)2、如图,四边形 ABCD 为正方形,DE∥AC,且 CE=CA,直线 EC 交 DA 延长线于F.求证:AE=AF.(初二)3、设 P 是正方形 ABCD 一边BC 上的任一点,PF⊥AP,CF 平分∠DCE.求证:PA=PF.(初二)4、如图,PC 切圆 O 于 C,AC 为圆的直径,PEF 为圆的割线,AE、AF 与直线 PO 相交于 B、D.求证:AB=DC,BC=AD.(初三)经典难题(四)1、已知:△ABC是正三角形,P 是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)2、设 P 是平行四边形 ABCD 内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设 ABCD 为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)4、平行四边形 ABCD 中,设 E、F 分别是 BC、AB 上的一点,AE 与CF 相交于 P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、设 P 是边长为 1 的正△ABC 内任一点,L=PA+PB+PC,求证:√3≤L<2.2、已知:P 是边长为 1 的正方形 ABCD 内的一点,求 PA+PB+PC 的最小值.3、P 为正方形 ABCD 内的一点,并且 PA=a,PB=2a,PC=3a,求正方形的边长.4、如图,△ABC 中,∠ABC=∠ACB=80 度,D、E 分别是 AB、AC 上的点,∠DC A=30 度,∠EBA=20 度,求∠BED 的度数.答案经典难题(一)4.如下图连接 AC 并取其中点 Q,连接 QN 和QM,所以可得∠QMF=∠F,∠QNM=∠ DEN 和∠QMN=∠QNM,从而得出∠DEN=∠F。

(完整版)初二数学经典难题(带答案及解析)

(完整版)初二数学经典难题(带答案及解析)

初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

初二数学难题30道

初二数学难题30道

初二数学难题30道1. 解析几何:在直角坐标系中,点A(2, 3),点B(1, 2),求线段AB的中点坐标。

2. 代数方程:解方程 2x + 5 = 3x 4。

3. 函数问题:给定函数 f(x) = x^2 2x + 1,求 f(3) 的值。

4. 不等式求解:解不等式 5x 2 > 3。

5. 平行四边形:已知平行四边形ABCD,AB = 6cm,BC = 8cm,求对角线AC的长度。

6. 解析几何:在直角坐标系中,点A(1, 2),点B(3, 4),求线段AB的长度。

7. 代数方程:解方程 3x^2 4x + 1 = 0。

8. 函数问题:给定函数 g(x) = 2x + 3,求 g(2) 的值。

9. 不等式求解:解不等式 2x 5 < 1。

10. 平行四边形:已知平行四边形ABCD,AB = 7cm,BC = 9cm,求对角线BD的长度。

11. 解析几何:在直角坐标系中,点A(4, 5),点B(2, 1),求线段AB的长度。

12. 代数方程:解方程 4x^2 9x + 2 = 0。

13. 函数问题:给定函数 h(x) = x^3 3x^2 + 2x,求 h(1) 的值。

14. 不等式求解:解不等式3x + 4 ≤ 7。

15. 平行四边形:已知平行四边形ABCD,AB = 8cm,BC = 10cm,求对角线AC的长度。

16. 解析几何:在直角坐标系中,点A(3, 2),点B(1, 1),求线段AB的中点坐标。

17. 代数方程:解方程 5x 3 = 2x + 7。

18. 函数问题:给定函数 f(x) = x^2 + 4x + 4,求 f(0) 的值。

19. 不等式求解:解不等式4x 8 ≥ 2。

20. 平行四边形:已知平行四边形ABCD,AB = 9cm,BC = 11cm,求对角线BD的长度。

21. 解析几何:在直角坐标系中,点A(2, 3),点B(1, 4),求线段AB的长度。

22. 代数方程:解方程 6x^2 5x 1 = 0。

初二数学经典难题(带答案及解析)

初二数学经典难题(带答案及解析)

初二数学经典难题(带答案及解析)初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ 周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD 对角线AC上一动点(P与A、C不重合),点E在线段BC 上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD 边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC 和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

初二数学经典难题(带答案与解析)

初二数学经典难题(带答案与解析)

-WORD格式--试题-范文范例--指导案例初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ 与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

初二数学经典难题(带答案及解析)

初二数学经典难题(带答案及解析)

初二数学经典难题一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.求证:∠DEN=∠F.3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.7.(10分)(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.8.(10分)(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.9.(10分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.10.(10分)(2007•福州)如图,已知直线y=x与双曲线交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线上一点C的纵坐标为8,求△AOC的面积;(3)过原点O的另一条直线l交双曲线于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.初二数学经典难题参考答案与试题解析一、解答题(共10小题,满分100分)1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典难题(一)
1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.
求证:CD=GF.(初二)
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15度
求证:△PBC是正三角形.(初二)
3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.
求证:四边形A2B2C2D2是正方形.(初二)
4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.
经典难题(二)
1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC 于M.
(1)求证:AH=2OM;
(2)若∠BAC=600,求证:AH=AO.(初二)
2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.
求证:AP=AQ.(初二)
3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:
设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交M N于P、Q.
求证:AP=AQ.(初二)
4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE 和正方形CBFG,点P是EF的中点.
求证:点P到边AB的距离等于AB的一半.(初二)
经典难题(三)
1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.
求证:CE=CF.(初二)
2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.
求证:AE=AF.(初二)
3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.
求证:PA=PF.(初二)
4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)
经典难题(四)
1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)
2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.
求证:∠PAB=∠PCB.(初二)
3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.
(初三)
4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且
AE=CF.求证:∠DPA=∠DPC.(初二)
经典难题(五)
1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,求证:
√3≤L<2.
2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.
3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.
4、如图,△ABC中,∠ABC=∠ACB=80度,D、E分别是AB、AC上的点,∠DCA=30度,∠EBA=20度,求∠BED的度数.
答案
经典难题(一)
4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠Q NM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。

经典难题(二)
1.(1)延长AD到F连BF,做OG⊥AF,
又∠F=∠ACB=∠BHD,
可得BH=BF,从而可得HD=DF,
又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM
(2)连接OB,OC,既得∠BOC=1200,
从而可得∠BOM=600,
所以可得OB=2OM=AH=AO, 得证。

经典难题(三)
4.
证明:作CQ⊥PD于Q,连接EO,EQ,EC,OF,QF,CF,所以PC2=PQ*PO(射影定理),
又PC2=PE*PF,
所以EFOQ四点共圆,
∠EQF=∠EOF=2∠BAD,
又∠PQE=∠OFE=∠OEF=∠OQF,
而CQ⊥PD,所以∠EQC=∠FQC,因为∠AEC=∠PQC=90°,故B、E、C、Q四点共圆,
所以∠EBC=∠EQC=1/2∠EQF=1/2∠EQF=∠BAD.
∴CB∥AD,
所以BO=DO,即四边形ABCD是平行四边形,
∴AB=DC,BC=AD.
经典难题(四)
2.作过P点平行于AD的直线,并选一点E,使AE∥DC,BE∥PC. 可以得出∠ABP=∠ADP=∠AEP,可得:
AEBP共圆(一边所对两角相等)。

可得∠BAP=∠BEP=∠BCP,得证。

经典难题(五)
2.顺时针旋转△BPC 60度,可得△PBE为等边三角形。

既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上,即如下图:可得最小PA+PB+PC=AF。

3.顺时针旋转△ABP 90度,可得如下图:。

相关文档
最新文档