α-苯乙醇合成苯乙酮
萃取精馏分离苯乙酮与α-苯乙醇的模拟研究

Ab s t r a c t : Ac e t o p h e n o n e a n d — p h e n y l e t h a n o l a r e c l o s e ・ b o i l i n g mi x t u r e w h i c h c a n n o t b e e ic f i e n t l y s e p a r a t e d b y n o r ma l d i s t i l l a t i o n me t h o d s . On t h e b a s i s o f c o mp a is r o n a n d a n a l y s i s o f t h e s e p ra a t i o n me t h o d s r e p o te r d, t h e
义。
关键词 : 苯 乙酮 ; 一 苯 乙醇 ; 萃取 精馏 ; 模拟研究
中图分类号 : T Q 0 2 8. 3 文献标识码 : A 文章编号 : 1 0 0 5 - 9 9 5 4 ( 2 0 1 3 ) 0 4 - 0 0 7 4 - 0 5
D oI : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 5 - 9 9 5 4 . 2 0 1 3 . 4. 0 0 1 8
c h o s e n a s t h e s u i t a b l e s o l v e n t f o r t h e b i n a r y s y s t e m t h r o u g h q u a l i t a t i v e j u d g me n t a n d q u a n t i t a t i v e e s t i m a t i o n b y
苯乙酮的制备研究

苯乙酮的制备研究苯乙酮,也叫丙酮苯,是一种有机化合物,化学式为C6H5COCH3,具有强烈的香气和刺激性。
因其广泛应用于工业和医药领域,因此对其制备方法进行深入研究,具有很高的实用价值。
本文对苯乙酮的制备研究进行探讨,介绍其常用的制备方法以及反应机理。
1.酸催化法该方法是通过酸性催化剂催化苯与丙酮反应生成苯乙酮。
常用的酸性催化剂有硫酸、磷酸、五氧化二磷等。
反应机理:酸性催化剂可以将丙酮中的α-氢离子去除,形成羰基负离子,然后与苯发生亲核加成反应,最终得到苯乙酮。
2.氧化偶联法该方法是通过将苯和丙酮溶于碱性氧化剂中进行氧化反应,生成苯甲基酮,然后再将其经过酸催化偶联反应,得到苯乙酮。
二、苯乙酮的反应机理苯乙酮是一种α-酮,其含有酮基和苯环,可以经过多种反应。
1.酮的加成反应苯乙酮的酮基可以发生羰基加成反应。
例如,苯乙酮与氨在氧化铜的催化下发生反应,生成咪唑类物质。
反应机理:氧化铜催化下,苯乙酮中的羰基吸引了氨中的一个氢离子,生成一种带负电荷的羰基中间体,接着,中间体进一步与氨发生亲核加成反应,得到产物。
2.催化加氢反应反应机理:在铂等贵金属催化剂作用下,氢气分子可以在铂催化剂表面吸附,然后分解成氢原子,接着,氢原子在催化剂表面反应,生成苯乙醇。
3.酮的羟醛化反应苯乙酮可以经过羟醛化反应变成苯乙醛。
例如,苯乙酮经过氢气和催化剂的作用下,可以生成苯乙醛。
反应机理:在催化剂的作用下,苯乙酮中的羰基吸引氢离子,然后经过析出水产生α,β-不饱和醛。
最后,α,β-不饱和醛在氢气的作用下,被还原成为苯乙醛。
苯乙酮广泛应用于工业和医药领域,如:1.工业领域苯乙酮作为有机合成材料,广泛应用于合成香料、染料、药物、树脂、柔性泡沫材料等领域。
2.医药领域总之,苯乙酮的制备方法和反应机理的研究,具有很高的实用价值,在生产和科研领域都有广泛的应用和重要的作用。
萃取精馏分离苯乙酮与_苯乙醇的模拟研究_章锋

·76·
化学工程 2013 年第 41 卷第 4 期
的 VLE 和 LLE 性质,广泛地应用于萃取精馏的模拟 当中[11-13]。进料流量为 1 000 kg / h,原料中苯乙酮 和 α-苯乙醇的质量分数分别为 95% 与 5% ,固定塔 板数为 30,进料压力为 14 kPa,设定塔顶压力为 5 kPa,全塔压降为 5 kPa,塔顶馏出物流率为 951 kg / h。分别考察原料与溶剂进料位置、回流比、溶剂流 量对分离效果的影响,将不同条件下模拟得到的塔 顶苯乙酮的质量分数和塔釜中苯乙酮与 α-苯乙醇 的质量比画出曲线,从而确定出连续萃取精馏塔的 最佳操作条件。
FEED-进料; S-溶剂; EC-萃取精馏塔; D-塔顶出料; W-塔釜出料 图 1 萃取精馏塔装置
Fig. 1 Experimental apparatus of extraction distillation column
·75·
物质。其中苯乙酮和 α-苯乙醇的沸点非常接近,常 压下二者沸点分别为 202,203. 5 ℃ 。采用常规的精 馏方法很难将二者进行有效地分离。
目前文献中报道的苯乙酮和 α-苯乙醇的分离 方法主要有 3 种。第 1 种[3]是将待分离物系汽化后 通过催化床层,α-苯乙醇发生脱水反应,反应产物冷 凝后再进行真空精馏; 第 2 种[4]方法则是在待分离 物系当中加入过量的有机酸,在少量无机酸的催化 作用下,α-苯乙醇和有机酸发生酯化反应,然后反应 产物进行真空精馏; 第 3 种[1]方法则是通过高效的 塔设备直接进行真空精馏。
第 41 卷 第 4 期 2013 年 4 月
化学工程 CHEMICAL ENGINEERING( CHINA)
Vol. 41 No. 4 Apr. 2013
苯乙醇合成苯乙酮

α-苯乙醇合成苯乙酮氧化醇类化合物为相应的羰基化合物, 在有机化学研究及工业应用中占有非常重要的地位.近年来关于醇的氧化反应研究, 尤其是在催化剂方面, 得到了很快的发展.一钼钨催化体系钼钨催化剂在醇的氧化反应中有很广泛的应用, 2009 年Hida 等[44]用Na2WO4-H2O2 催化氧化体系, 以N,N-二甲基乙酰胺为溶剂, 用Na2HPO4•12H2O 调节溶液pH 值, 中性条件下, 催化过氧化氢氧化仲醇、伯醇为羰基化合物(Eq. 10). 中性的反应特点使此方法可应用于对酸敏感的醇的氧化. 虽然此方法具有催化剂和氧化剂均便宜、易得的优点, 但对于伯醇的氧化效果比较差. 例如2-乙基-1-己醇的氧化产物的产率仅为50%.二钴催化体系Iwahama 等[54]以无机钴盐Co(OAc)和配合物Co(acac)3为催化剂, N-羟基邻苯二甲酰亚胺(近几年来被认为是在温和条件下氧化各种有机物质的有价值的催化剂)存在下, 分子氧为氧源, 可以在室温下氧化各种醇(Eq. 17). 但不足之处是, 在有些反应中, 需要加入苯甲酸及其衍生物如MCBA, PMBA 作为共氧化剂. 产物中不可避免地会有酸或过酸的存在, 这给产物的分离带来麻烦.钴的席夫碱配合物已被证实可以有效地催化分子氧进行氧化反应, 而且席夫碱双氧-钴配合物作为催化剂、醛作为牺牲试剂已经引导了几种重要方法的发展, 如烯烃环氧化、硫醚氧化为亚砜等[55]. Sharma 等[56]合成了四种席夫碱钴配合物8~11 (Scheme 7), 并有效地催化分子氧氧化仲醇. 羟基的α位有羰基的底物更容易发生反应, 而且所需的时间短一些. 其中配合物8 的催化活性最好.金属酞菁稳定、易得, 是一类可供选择的仿生氧化催化剂, 已经用来氧化很多有机物. 金属酞菁在普通有机溶剂中不溶, 容易从反应体系中分离出来循环使用. 因此这类催化剂可以作为多相催化剂使用, 而没有多相催化剂固有的缺点, 如流失问题. Shaabani 等[57]相继用酞菁和金属钴形成配合物, 并用于催化分子氧氧化醇的反应中, 后者用离子液体作溶剂, 反应所需的时间比较短, 产物的产率均在80%以上.。
苯乙酮的制备研究

苯乙酮的制备研究
苯乙酮(C6H5COCH3),又称为丙酮苯,是一种具有香味的有机化合物。
它常用作溶剂、香料和药物合成的中间体。
本文将探讨苯乙酮的制备研究。
苯乙酮可以通过酰化反应制备,其中苯乙醇与酸酐反应生成苯乙酮和醋酸。
苯乙醇和酸酐进行酰化反应,反应需要在酸性媒介下进行。
酸性媒介可以选择无机酸,如硫酸或磷酸,或有机酸,如甲酸或乙酸。
反应温度通常在50-60°C范围内进行,反应时间通常为数小时。
这种方法制备苯乙酮的反应条件相对较为严苛,而且反应产物的纯度较低,因此需要
进行进一步的纯化步骤。
一种常用的纯化方法是对反应混合物进行萃取,用有机溶剂如醚
或烷烃将苯乙酮从其他杂质中分离出来。
然后,通过蒸馏过程可以得到纯度较高的苯乙
酮。
除了酰化反应,苯乙酮还可以通过其他方法进行制备。
苯乙烯可以经过氧化剂如铬酸
钾的催化氧化反应生成苯乙酮。
一些研究还表明在低温和非常强的光照条件下,苯乙醛可
以经过自氧化反应生成苯乙酮。
苯乙酮是一种重要的有机化合物,具有广泛的应用。
制备苯乙酮的主要方法是通过酰
化反应,在酸性媒介的条件下,苯乙醇与酸酐反应生成苯乙酮和醋酸。
制备过程中的条件
相对较为严苛,因此需要进行进一步的纯化步骤。
还有其他方法可以制备苯乙酮,如氧化
反应和自氧化反应。
希望通过进一步的研究和改进,可以提高苯乙酮的制备效率和纯度。
苯乙酮生产工艺

苯乙酮生产工艺
苯乙酮(化学式:C6H5COCH3)是一种无色液体,常用作溶剂,也可用于农药、香料等的合成中间体。
下面是苯乙酮的生产工艺的简要介绍。
苯乙酮的常用生产工艺主要有以下两种:
1. 乙酰苯氧化工艺:
首先,将苯和乙酸混合后加热,通过空气或氧气的氧化反应生成苯乙酮。
反应条件一般为温度在120-150°C,压力约为2-5
大气压下进行。
反应过程中,苯和乙酸在氧气的作用下进行氧化,生成苯乙酮和水。
反应物质与产物之间通过蒸汽冷凝和吸收过程进行分离。
2. 酸性、碱性催化剂流程:
首先,将苯和丙酮进行环化反应生成苯乙烯(反应条件为
150-200℃),然后将苯乙烯通过氧化反应生成苯乙酮。
反应过程中,苯和丙酮在酸性或碱性催化剂的作用下进行环化反应,生成苯乙烯。
随后,苯乙烯在适当的条件下通过氧化反应生成苯乙酮。
反应中,需要进行冷凝和吸收过程进行产物的以分离。
以上是苯乙酮的常用生产工艺的简要介绍,生产过程中通常需要注意控制温度、压力和反应时间等因素,以确保产物的纯度和收率。
绿色方法合成苯乙酮

绿色方法合成苯乙酮李霞(化学系102班2010121210)摘要:叙述了近几年来使用双氧水和氧气作为清洁的氧化剂,对环境不会产生污染,乙苯选择性催化氧化合成苯乙酮即绿色方法合成苯乙酮的研究进展。
重点介绍了杂多化合物、过渡金属配合物、金属卟啉及金属钛菁等催化剂的催化效果。
关键词:苯乙酮;乙苯;催化氧化;绿色生产烷基芳香烃侧链氧化是指与芳环相连的、含α—H 的侧链烃基被氧化,生成相应的芳香族醇、醛、酮、羧酸、酸酐、亚酰胺、过氧化物的一大类反应。
传统上,这一反应是以高锰酸钾、重铬酸钾、二氧化锰或醋铬混合酐和铬酰氯等作为氧化剂来实现的,但这些氧化剂成本高,用量大,三废严重,在工业生产中缺乏竞争力。
苯乙酮是有机合成的重要中间体,广泛应用于染料香料医药等工业,乙苯氧化制苯乙酮对石油化工下游产品的开发精细化工的发展及饱和碳氢键选择氧化的理论研究都具有重要意义。
以下是近几年乙苯催化氧化合成苯乙酮的绿色氧化方法。
1、分子氧( 空气) 作为氧化剂分子氧( 空气) 为氧源实现饱和烷烃选择性催化氧化大致可分为两条路线: (1 ) 在共还原剂( 醛抗坏血酸)存在下利用原位产生的氧化剂的催化氧化;[1](2 ) 金属卟啉杂多酸及其他催化剂对饱和烷烃的直接催化氧化。
1.1金属卟啉—分子氧氧化体系金属卟啉分子氧氧化体系金属卟啉(MPs ) 是一类重要的仿生催化剂,它能够模拟细胞色素P-450 单充氧酶,在温和条件下活化分子氧,[2]使烃类物质在空气作用下高效率高选择性环境友好地得以催化氧化,从而得到各种有机合成中间体,满足工业生产的需求,因此,近几年来金属卟啉仿生催化剂的研究受到了国内外极为广泛关注。
彭清静等在探索单独用空气作氧化剂进行金属卟啉仿生催化时发现,象乙苯这样含有相对较为活泼的C-H 键的分子在u-氧代四苯基锰卟啉的催化下亦能够直接被分子氧氧化在乙苯0.2mol, 空气的体积流量10L/h 双锰卟啉0.015mol, 反应温度80 ℃,反应时间10 h的条件下,乙苯转化率2.92%,选择性73.7 7%。
苯乙酮的制备研究

苯乙酮的制备研究作者:殷福东姜福元来源:《消费导刊》2019年第14期摘要:本文将苯和乙酐或者乙酰氯反应,用三氯化铝作为反应的催化剂可以制得苯乙酮。
关键词:催化剂苯乙酮一、苯乙酮的制备方法将苯和乙酐或者乙酰氯反应,用三氯化铝作为反应的催化剂可以制得苯乙酮。
而在工业上常通过乙苯空气氧化法来制备苯乙酮。
除此之外,在催化氧化乙苯来制备苯乙烯时,苯乙酮可以作为副产物生成。
工业生产出来的苯乙酮中通常含有酸性物质,水和苯酚等杂质,可以用硫酸干燥然后减压分馏来精制以除去这些杂质,或者是在干燥和无光照条件下,在熔融状态时分步结晶精制,在低温时也可以用戊烷来精制。
接下来将介绍一些制备苯乙酮时常用的方法。
(一)工业上制备苯乙酮时一般直接用乙苯在常压下空气氧化。
但这种方法污染比较严重且转化率不高,不但如此,分离和提纯生成的副产物使反应的成本上升。
(二)将苯和乙酸、乙酐或者乙酰氯反应,以三氯化铝作为反应的催化剂可以制得苯乙酮。
苯与乙酸酐酰化法这种方法对环境有污染且产率较低,而且生成的副产物中有醋酸会腐蚀设备。
(三)分解苯甲酸法在一定条件下苯甲酸可以发生分解反应生成水、二氧化碳以及苯乙酮。
这样生成的副产物容易分离且成本较低,缺点是转化率低并且对反应条件要求高,而且还容易形成其他的产物,因此工业生产一般不采用这种方法。
(四)苯乙醇氧化制苯乙酮在高温高压条件下通过苯乙醇制备苯乙酮,但苯乙醇成本较高,并不适用于工业生产。
(五)高温高压下苯乙烯催化氧化法在高溫高压下使用催化剂以及氧化剂氧化苯乙烯可以制备苯乙酮,但苯乙烯同苯乙醇类似,在作为原料使用时价格昂贵不适用于大规模应用。
(六)乙苯多相氧化法这种方法是在氧化剂以及催化剂都具备的条件下对乙苯选择性氧化来制备苯乙酮,近几年的探索重点集中在化学催化这一方面。
二、苯乙酮的生产前景苯乙酮可以作为医药、香料、染料生产领域中的原料,由氧化乙苯而制得苯乙酮,对于饱和碳氢键选择氧化、石油化工下游产品的研究开发以及精细化工的发展有着非常重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
α-苯乙醇合成苯乙酮
氧化醇类化合物为相应的羰基化合物, 在有机化学研究及工业应用中占有非常重要的地位.近年来关于醇的氧化反应研究, 尤其是在催化剂方面, 得到了很快的发展.
一钼钨催化体系
钼钨催化剂在醇的氧化反应中有很广泛的应用, 2009 年Hida 等[44]用Na2WO4-H2O2 催化氧化体系, 以N,N-二甲基乙酰胺为溶剂, 用Na2HPO4•12H2O 调节溶液pH 值, 中性条件下, 催化过氧化氢氧化仲醇、伯醇为羰基化合物(Eq. 10). 中性的反应特点使此方法可应用于对酸敏感的醇的氧化. 虽然此方法具有催化剂和氧化剂均便宜、易得的优点, 但对于伯醇的氧化效果比较差. 例如2-乙基-1-己醇的氧化产物的产率仅为50%.
二钴催化体系
Iwahama 等[54]以无机钴盐Co(OAc)和配合物Co(acac)3为催化剂, N-羟基邻苯二甲酰亚胺(近几年来被认为是在温和条件下氧化各种有机物质的有价值的催化剂)存在下, 分子氧为氧源, 可以在室温下氧化各种醇(Eq. 17). 但不足之处是, 在有些反应中, 需要加入苯甲酸及其衍生物如MCBA, PMBA 作为共氧化剂. 产物中不可避免地会有酸或过酸的存在, 这给产物的分离带来麻烦.
钴的席夫碱配合物已被证实可以有效地催化分子氧进行氧化反应, 而且席夫碱双氧-钴配合物作为催化剂、醛作为牺牲试剂已经引导了几种重要方法的发展, 如烯烃环氧化、硫醚氧化为亚砜等[55]. Sharma 等[56]合成了四种席夫碱钴配合物8~11 (Scheme 7), 并有效地催化分子氧氧化仲醇. 羟基的α位有羰基的底物更容易发生反应, 而且所需的时间短一些. 其中配合物8 的催化活性最好.
金属酞菁稳定、易得, 是一类可供选择的仿生氧化催化剂, 已经用来氧化很多有机物. 金属酞菁在普通有机溶剂中不溶, 容易从反应体系中分离出来循
环使用. 因此这类催化剂可以作为多相催化剂使用, 而没有多相催化剂固有的缺点, 如流失问题. Shaabani 等[57]相继用酞菁和金属钴形成配合物, 并用于催化分子氧氧化醇的反应中, 后者用离子液体作溶剂, 反应所需的时间比较短, 产物的产率均在80%以上.。