千题百炼——高中数学个热点问题三:第炼取球问题
高中数学概率取球练习题.doc

高中数学概率取球练习题1•下列说法正确的是A.任何事件的概率总是在之间B频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会越来越接近概率D.概率是随机的,在试验前不能确定2•集合A={2,3},B={1,2,3},从A, B中各取任意一个数,则这两数之和等于4的概率是A.IllB.C.D. 363.从一批产品中取出三件产品,设A二“三件产品全不是次品”,“三件产品全是次品”,C= “三件产品不全是次品”,则下列结论正确的是A. A与C互斥B. E与C互斥C.任何两个均互斥D. 任何两个均不互斥4.抛掷一枚质地均匀的硬币,如果连续抛掷1000次, 那么第999次出现正面朝上的概率是A. 19B. 11000C. 991000D. 15•从一批羽毛球产品中任取一个,其质量小于 4. 8g 的概率为0.3,质量小于4.85g的概率为0. 32,那么质量在[4.8, 4.85]范围内的概率是A. 0.B. 0. 3C. 0. 0D. 0. 686.从1004名学生中选取50名参加活动,若采用下面的方法选取:选用简单随机抽样从1004人中剔除4人,剩下的1000人再按系统抽样的方法进行抽样,则每人入选的概率A.不全相等均不相等C.都相等且为25/502D.都相等且为1/207.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是A. 1 .B. 1C. 1D.无法确定8•从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是A. IB. 12C. 1D.9.一个袋中装有2个红球和2个白球,现从袋中取岀1球,然后放回袋中再取出一球,则取出的两个球同色的概率是A. IB. 1C. 1D.10.现有五个球分别记为A、C、J、K、S,随机放进三个盒子,每个盒子只能放一个球,则K或S在盒中的概率是A. 1 10B. 5C. 9D. 101011.如图,在半径为R的圆内随机撒一粒黄豆,它落在阴影部分内接正三角形上的概率是D1A. 11B. 1C. 1D. 613、在500mL的水中有一个草履虫,现从中随机取出2mL水样放到显微镜下观察,则发现草履虫的概率是A. O.B. 0.C. 0.004D.不能确定14、下列事件中,随机事件的个数是①如果a、b 是实数,那么b+a二a+b;②某地1月1日刮西北风;③当x是实数时,x220;④一个电影院当天的上座率超过50%。
千题百炼——高考数学100个热点问题(一):第3炼 利用数轴解决集合运算问题

2
当 a − 2 = 0 即 a = 2 时,①变为 当 a ≠ 2 时,若要①恒成立,则
−4 < 0 恒成立
a − 2 < 0 ⇒ −2 < a < 2 2 ∆ = − + − < 4 a 2 16 a 2 0 ( ) ( )
∴−
3 < x ≤ −1 2
3 3 ∴ A = − , 2 2 x 2 − (2m + 1) x + m 2 + m < 0
∴ ( x − ( m + 1) ) ( x − m ) < 0
数轴快速的进行集 的交并 一 基础知识 算在数轴中的体现
1 集
A I B : 在数轴 表示为 A, B 表示区域的 共部分 A U B : 在数轴 表示为 A, B 表示区域的总和 CU A : 在数轴 表示为 U 中除去 A 剩 的部分 要注意边界值能否取到
2 问题处理时的方法 技 1 涉及到单变 的范围问题,均可考虑利用数轴来进行数形结 ,尤 的问题时,由于数轴 边小于右边,所以能够以此建立含参数的 等关系 2 在同一数轴 作多个集 区域 3 涉及到多个集 集 交并 算时,数轴 是得力的 ,从图 可清楚的看出 共部分和 表示的区间时,可用 同颜色或 同高度来区分各个集 的 是对于含 参数
第一章
第 3 炼 利用数轴解决集
算问题
集
逻辑
第 3 炼重利用数轴解决集合运算
题重
数形结 是解决高中数学问题的常用手段, 优点在于通过图形能够直观的观察到某些 结果, 代数的精确性结 ,能够快速解决一些较麻烦的问题 在集 的 算中,涉及到单 变 的取值范围,数轴就是一个非常好用的 算 ,本文将以一些题目为例,来介绍如何使用
千题百炼 高考数学100个热点问题(一):第4炼 函数值域的求法

千题百炼高考数学100个热点问题(一):第4炼函数值域的求法千题百炼-高考数学100个热点问题(一):第4炼函数值域的求法第二章第4章值域函数及其精化函数的性质第4炼求函数的值域函数值域问题作为函数的三要素之一,也是高考中的一个重要考点,值域问题往往渗透到各种问题中,成为问题解决过程的一部分。
因此,掌握一些求取取值范围的基本方法。
当你需要找到函数的取值范围时,你可以掌握解析式的特点,找到相应的方法冷静地解决它。
1、基本知识:1。
寻找值域的步骤:(1)确定函数的定义域(2)分析解析式的特点,并寻找相对应的方法(此为关键步骤)(3)计算出函数的值域2.寻找数值范围的常用工具:虽然有时,寻找数值范围就像仙女的拼写公式。
分析特征对应于寻找值范围的方法。
只要你掌握了每种方法并对功能进行了分类,你就可以进行操作,但你也应该掌握一些常用的想法和工具。
(1)函数的单调性:决定函数图像的形状,同时对函数的值域起到决定性作用。
若f?x?为单调函数,则在边界处取得最值(临界值)。
(2)函数图像(数字与形状的组合):如果可以制作函数图像,则值范围一目了然(3)换元法:f?x?的解析式中可将关于x的表达式视为一个整体,通过换元可将函数解析式化归为可求值域的形式。
(4)最大值法:如果函数f?十、哪里a、 b?连续的,f?十、M的最大值和最小值,然后是f?十、数值范围是多少?m、 m?注:一定在f?x?连续的前提下,才可用最值来解得值域3.常用函数的取值范围:在处理常用函数的取值范围时,通常可以通过组合数字和形状以及使用函数图像来求解取值范围。
巧妙地处理公共函数的取值范围,也便于通过变形和变换将复杂的解析公式转换为公共函数。
(1)一次函数(y?kx?b):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域(2)二次函数(y?Ax?BX?C):二次函数的图像是抛物线。
一般来说,这个公式可以用来确定函数的对称轴,然后用图像来求解它。
2020高中数学---取球问题

第90炼 取球问题一、基础知识:在很多随机变量的题目中,常以“取球”作为故事背景,通过对“取球”提出不同的要求,来考察不同的模型,常见的模型及处理方式如下:1、独立重复试验模型:关键词“可放回的抽取”,即下一次的取球试验与上一次的相同。
2、超几何分布模型:关键词“不放回的抽取”3、与条件概率相关:此类问题通常包含一个抽球的规则,并一次次的抽取,要注意前一次的结果对后一步抽球的影响4、古典概型:要注意虽然题目中会说明“相同的”小球,但是为了能使用古典概型(保证基本事件为等可能事件),通常要将“相同的”小球视为“不同的”元素,在利用排列组合知识进行分子分母的计数。
5、数字问题:在小球上标注数字,所涉及的问题与数字相关(奇,偶,最大,最小等),在解决此类问题时,要将数字模型转化为“怎样取球”的问题,从而转化为前几个类型进行求解。
二、典型例题:例1:一袋中有6个黑球,4个白球(1)不放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (2)有放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (3)有放回的依次取出3个球,求取到白球个数X 的分布列,期望和方差(1)思路:因为是不放回的取球,所以后面取球的情况受到前面的影响,要使用条件概率相关公式进行计算。
第一次已经取到白球,所以剩下6个黑球,3个白球;若第二次取到黑球,则第三次取到黑球的概率为6598⋅,若第二次取到白球,则第三次取到黑球的概率为3698⋅,从而能够得到第三次取到黑球的概率 解:设事件A 为“不放回取球,第一次取出白球时,第三次取到黑球”()65364829898723P A ∴=⋅+⋅== (2)思路:因为是有放回的取球,所以每次取球的结果互不影响,属于独立重复试验模型,所以第三次取球时依然是6个黑球,3个白球,取得黑球的概率为69解:设事件B 为“有放回取球,第一次取出白球时,第三次取到黑球”()23P B ∴=(3)思路:本问依然属于独立重复试验模型,X 的取值为0,1,2,3,则X 符合二项分布,即23,5XB ⎛⎫⎪⎝⎭,所以可通过二项分布的概率计算公式求得概率,得到分布列 解:X 的取值为0,1,2,3,依题意可得:23,5XB ⎛⎫ ⎪⎝⎭()30332705125P X C ⎛⎫∴=== ⎪⎝⎭ ()2133254155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()12233236255125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()3332835125P X C ⎛⎫=== ⎪⎝⎭23,5XB ⎛⎫⎪⎝⎭26355EX ∴=⋅= 231835525DX =⋅⋅=例2:已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各任取2个球 (1)求取出的4个球中没有红球的概率 (2)求取出的4个球中恰有1个红球的概率(3)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望思路:本题这三问的关键在于所取球中红球的个数,考虑红球个数来自于两个盒内拿出红球个数的总和,所以可将红球总数进行分配,从而得到每个盒中出红球的情况,进而计算出概率(1)设事件i A 为“甲盒中取出i 个红球”,事件j B 为“乙盒中取出j 个红球”则()()2213332246,i i j ji j C C C C P A P B C C --== 设事件A 为“4个球中没有红球”则()()()0202133300224633161510C C C C P A P A P B C C =⋅=⋅=⋅= (2)设事件B 为“4个球中恰有1个红球”()()()0211110213331333011022224646393326156155C C C C C C C C P B P A B P A B C C C C ∴=+=⋅+⋅=⋅+⋅= (3)ξ可取的值为0,1,2,3()()1010P P A ξ∴===()()215P P B ξ===()()()0220111113331333021122224646225C C C C C C C C P P A B P A B C C C C ξ==+=⋅+⋅= ()()11021333122246331361510C C C C P P A B C C ξ===⋅=⋅=ξ∴的分布列为:01231055102E ξ∴=⨯+⨯+⨯+⨯=例3:甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记成功取法次数为随机变量X ,求X 的分布列和数学期望.解:(1)设事件A 为“两只手中所取的球颜色不同”,则A 为“两只手中所取的球颜色相同”()()2333432119999993P A P A ⎛⎫=-=-⋅+⋅+⋅= ⎪⎝⎭(2)X 可取的值为0,1,2左手取球成功的概率222234129518C C C P C ++==右手取球成功的概率22233322914C C C P C ++== ()511301118424P X ⎛⎫⎛⎫∴==-⋅-= ⎪ ⎪⎝⎭⎝⎭()5151711118418418P X ⎛⎫⎛⎫==-⋅+⋅-= ⎪ ⎪⎝⎭⎝⎭ ()515218472P X ==⋅=X ∴的分布列为01224187236EX ∴=⨯+⨯+⨯= 例4:袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍,每次从袋中摸出一个球,然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直到第5次摸球后结束(1)求摸球四次就停止的事件发生的概率(2)记摸到红球的次数为ξ,求随机变量ξ的分布列及其期望(1)思路:本题为有放回摸球,可理解为独立重复试验,如果摸球四次就停止,说明在这四次中一共摸到3次红球,且前三次有两次摸到红球,第四次又摸到红球。
千题百炼——高中数学100个热点问题(三)第100炼利用同构特点解决问题

合用文档第 100 炼 利用同构特点解决问题一、基础知识:1、同构式:是指除了变量不同样,其余地方均同样的表达式2、同构式的应用:(1)在方程中的应用:若是方程f a 0 和 f b 0 表现同构特点,则 a,b 可视为方程f x 0的两个根( 2)在不等式中的应用:若是不等式的两侧表现同构特点,则可将同样的构造构造为一个函数,进而和函数的单调性找到联系。
可比较大小或解不等式(3)在解析几何中的应用: 若是 A x 1, y 1 ,B x 2 , y 2 满足的方程为同构式, 则 A,B 为方程 所表示曲线上的两点。
特其余,若满足的方程是直线方程,则该方程即为直线 AB 的方程( 4)在数列中的应用:可将递推公式变形为“依序同构”的特点,即关于a n ,n 与a n 1, n 1 的同构式,进而将同构式设为辅助数列便于求解二、典型例题:x 1 例 1:( 2015 天津十二校联考) 设 x, y R ,满足y1()552 x sin x1 3,则 x y2 y sin y11A.B.2C.4D. 6思 路 : 本 题 研 究 对 象 并 非 x, y , 而 是 x 1 , y1,进而可变形为x15 x1 sin x1 125,观察上下式子左边构造同样,进而可将同样的构造y 1 y 1 sin y112视为一个函数, 而等式右边两个结果互为相反数, 可联想到函数的奇偶性, 进而利用函数性质求解5x 1 解:5y 12x sin x1 3 x 15x 1 sin x 1 12 2 y sin y 11y 1 5y1 sin y112设 f tt 5 2t sin t ,可得 ft 为奇函数,由题意可得:f x 11 f y 1f y 1f x 11x 1y 1x y2答案: B例 2:若函数 fxx 1 m 在区间 a,b 上的值域为a ,b b a 1 ,则实数 m 的2 2取值范围是 _____________a 1 maa, f b思路:注意到f x 是增函数,进而获取f ab,即2,发现22b 1 mb2两个式子为 a,b 的同构式, 进而将同构式视为一个方程,而 a,b 为该方程的两个根, m 的取值只需要保证方程有两根即可解:f x 为增函数a1 aa mf ab2 , f bb221b m2a, b 为方程 x 1 mx 在 1,上的两个根,即 mx x 1 有两个不同样的根2 2令 tx 1 t 0xt 2 1所以方程变形为:m 1 t21 t1 t2 2t 1 ,结合图像可得:m0,1222答案: m0,12例 3:设 a,b ? R ,则 | “ a > b ”是“ a a > b b ”的( )A. 充分不用要条件B. 必要不充分条件C. 充要条件D. 既不充要又不用要条件思路:观察 a a > b b 可发现其同构的特点,所以将这种构造设为函数f xx x ,解析f xx xx 2 , xf x a > b ? f ( a )f( )其单调性。
千题百炼——高中数学100个热点问题(三):第97炼 不等式选讲

第97炼 不等式选讲一、基础知识:(一)不等式的形式与常见不等式: 1、不等式的基本性质: (1)a b b a >⇔<(2),a b b c a c >>⇒>(不等式的传递性)注:,a b b c a c ≥≥⇒≥,a c ≥等号成立当且仅当前两个等号同时成立 (3)a b a c b c >⇒+>+(4),0;,0a b c ac bc a b c ac bc >>⇒>><⇒< (5)()02,nna b a b n n N >>⇒>≥∈(6))02,a b n n N >>>≥∈ 2、绝对值不等式:a b a b a b -≤+≤+ (1)a b a b +≤+等号成立条件当且仅当0ab ≥ (2)a b a b -≤+等号成立条件当且仅当0ab ≤(3)a b b c a c -+-≥-:此性质可用于求含绝对值函数的最小值,其中等号成立当且仅当()()0a b b c --≥ 3、均值不等式(1)涉及的几个平均数: ① 调和平均数:12111n nnH a a a =+++②几何平均数:n G = ③ 代数平均数:12nn a a a A n+++=④ 平方平均数:2nn a Q ++=(2)均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12n a a a ===(3)三项均值不等式:①a b c ++≥ 2223a b c abc ++≥② 33a b c abc ++⎛⎫≤ ⎪⎝⎭③a b c ++≤4、柯西不等式:()()()222222212121122n n n n a a a b b b a b a b a b ++++++≥+++等号成立条件当且仅当1212nna a ab b b ===或120n b b b ====(1)二元柯西不等式:()()()22222a bc d ac bd ++≥+,等号成立当且仅当ad bc =(2)柯西不等式的几个常用变形 ① 柯西不等式的三角公式:()()()222222121122n n n b b b a b a b a b ++++≥±+±++±② ()222212121212n nn na a a a a ab b b b b b ++++++≥+++()()222212121212nn n n a a a b b b a a a b b b ⎛⎫⇔++++++≥+++ ⎪⎝⎭②式体现的是当各项22212,,,n a a a 系数不同时,其“平方和”与“项的和”之间的不等关系,刚好是均值不等式的一个补充。
2023年中考数学高频考点专题强化-投球问题(实际问题与二次函数)

2023年中考数学高频考点专题强化-投球问题(实际问题与二次函数)1.(2022·全国·九年级专题练习)中国在2022年北京冬奥会上向全世界展示了“胸怀大局,自信开放,迎难而上,追求卓越,共创未来”的北京冬奥精神.跳台滑雪是北京冬奥会的比赛项目之一,下图是某跳台滑雪场地的截面示意图.平台AB 长1米(即1AB =),平台AB 距地面18米,以地面所在直线为x 轴,过点B 垂直于地面的直线为y轴,取1米为单位长度,建立平面直角坐标系,已知滑道对应的函数为214(1)5y x x c x =-+≥.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落过程中的某位置(忽略空气阻力).设运动员飞出时间为t 秒,运动员与点A 的竖直距离为h 米,运动员与点A 的水平距离为l 米,经实验表明:26,h t l vt ==.(1)求滑道对应的函数表达式;(2)当5v =,1t =时,通过计算判断运动员此时是否已落在滑道上;(3)在试跳中,运动员从A 处飞出,运动员甲飞出的路径近似看作函数21289555y x x =-++图像的一部分,着陆时水平距离为1d ,运动员乙飞出的路径近似看作函数211107636y x x =-++图像的一部分,着陆时水平距离为2d ,则1d ______2d (填“>”“=”或“<”).2.(2022秋·河南郑州·九年级校考期末)某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度y (单位:m )与行进的水平距离x (单位:m )之间关系的图象如图所示.已知篮球出手位置A 与篮筐的水平距离为4.5m ,篮筐距地面的高度为3.05m ;当篮球行进的水平距离为3m 时,篮球距地面的高度达到最大为3.3m.(1)图中点B表示篮筐,其坐标为_______,篮球行进的最高点C的坐标为________;(2)求篮球出手时距地面的高度.3.(2022秋·新疆乌鲁木齐·九年级校考期中)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约5米高,球落地后又一次弹起,根据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)足球第一次落地点C距守门员多少米?(3)运动员乙要抢到足球第二个落点D,他应从B处再向前跑多少米?4.(2023·北京海淀·九年级期末)在一场篮球比赛中,队员甲在距篮下4m处跳起投篮,出手的高度为2.25m,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m.已知球篮中心到地面的距离为3.05m.(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中.(2)此时,若对方队员乙在甲前面1.5m 处跳起盖帽拦截,已知乙队员的最大摸高为3.1m ,那么他能否拦截成功?5.(2021·山东青岛·统考中考真题)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度1y (米)与小钢球运动时间x (秒)之间的函数关系如图所示;小钢球离地面高度2y (米)与它的运动时间x (秒)之间的函数关系如图中抛物线所示.(1)直接写出1y 与x 之间的函数关系式;(2)求出2y 与x 之间的函数关系式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?6.(2021秋·新疆·九年级新疆农业大学附属中学校考期中)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y (单位:m )与飞行时间x (单位:s )之间具有函数关系2210y x x =-+,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为12m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?7.(2022秋·河南开封·九年级校考期中)如图,一小球M从斜坡OA上的O点处抛出,球的抛出路线是抛物线的一部分,建立如图所示的平面直角坐标系,斜坡可以用一次函数12y x=刻画.若小球到达的最高的点坐标为()4,8,解答下列问题:(1)求抛物线的表达式;(2)在斜坡OA上的B点有一棵树,B点的横坐标为2,树高为4,小球M能否飞过这棵树?通过计算说明理由;(3)求小球M在飞行的过程中离斜坡OA的最大高度.8.(2023·北京海淀·九年级期末)一名身高为1.8m的篮球运动员甲在距篮筐(点B)水平距离4m处跳起投篮,篮球准确落入篮筐,已知篮球的运动路线是抛物线,篮球在运动员甲头顶上方0.25m处(点A)出手,篮球在距离篮筐水平距离为1.5m处达到最大高度3.5m,以水平地面为x轴,篮球达到最大高度时的铅直方向为y轴,建立如图所示的平面直角坐标系.(1)求篮球运动路线(抛物线)的函数解析式;(2)求篮球出手时,运动员甲跳离地面的高度是多少米?(3)已知运动员乙跳离地面时,最高能摸到3.3运动员乙在运动员甲与篮筐之间的什么范围内能在空中截住球?9.(2022秋·北京海淀·九年级校考期中)如图,排球运动场的场地长18m,球网高度2.24m,球网在场地中央,距离球场左、右边界均为9m.一名球员在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分.在球运行时,将球与场地左边界的水平距离记为x(米),与地面的高度记为y(米),经多次测试后,得到如下数据:x(米)0124678y(米)2 2.15 2.28 2.44 2.5 2.49 2.44(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)击球点的高度为______米,排球飞行过程中可达到的最大高度为______米;(3)求出y 与x 的函数解析式;(4)判断排球能否过球网,并说明理由.10.(2022秋·江苏宿迁·九年级统考期末)掷实心球是中考体育考试项目之一.如图1是一名男生投实心球情境,实心球行进路线是条抛物线,行进高度()y m 与水平距离()x m 之间的函数关系如图2所示.掷出时,起点处高度为95m .当水平距离为4m 时,实心球行进至最高点5m 处.(1)求y 关于x 的函数表达式;(2)根据中考体育考试评分标准(男生版),投据过程中,实心球从起点到落地点的水平距离大于等于9.7m 时,即可得满分10分.该男生在此项考试中能否得满分,请说明理由.11.(2022·上海·九年级专题练习)某校九年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209m ,与篮圈中心的水平距离为7m ,当球出手后水平距离为4m 时到达最大高度4m ,设篮球运动的轨迹为抛物线,篮圈距地面3m .建立如图所示的平面坐标系,求抛物线的解析式并判断此球能否准确投中?12.(2021秋·新疆乌鲁木齐·九年级校考阶段练习)国庆假期一部《长津湖》带给我们极大的震撼,面对美军的先进武器,志愿军不怕牺牲,以一敌百,更是有很多技术精湛的“神投手”.某志愿军身负重伤,不轻易放弃,用最后一丝力气投出一枚手榴弹,如果把该志愿军投出的手榴弹轨迹作为一抛物线,如图所示,手榴弹飞行的最大高度为10米,此时水平飞行距离为9米,手榴弹离手点离地面高度为1.9米.(1)求此抛物线解析式;(2)求志愿军同志的手榴弹扔了多远?13.(2022秋·河南郑州·九年级统考期末)卡塔尔世界杯鏖战正酣.足球比赛中,当守门员远离球门时,进攻队员常常使用吊射战术(把球高高地挑过守门员的头顶,射入球门),一般来说,吊战术中足球的轨迹往往是一条抛物线.摩洛哥与葡萄牙比赛进行中,摩洛哥一位球员在离对方球门30米的O处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球达到最大高度8米,已知球门的高度为2.44米,在没有对方球员和门将阻挡的前提下,球是否会进球门?如果葡萄牙的球员C罗站在起脚吊射球员前3.2米处,而C罗跳起后最高能达到2.88米,那么他能否在空中截住这次吊射?14.(2022秋·河北衡水·九年级衡水桃城中学校考期末)一小球M 从斜坡OA 上的点O 处抛出,球的抛出路线是抛物线的一部分,建立如图所示的平面直角坐标系,斜坡可以用一次函数12y x =刻画.若小球到达最高点的坐标为(4,8).(1)求抛物线的函数解析式(不写自变量x 的取值范围);(2)小球在斜坡上的落点A 的垂直高度为________米;(3)若要在斜坡OA 上的点B 处竖直立一个高4米的广告牌,点B 的横坐标为2,请判断小球M 能否飞过这个广告牌?通过计算说明理由;15.(2022秋·北京海淀·九年级北京市十一学校校考期末)如图,排球运动场的场地长18m ,球网高度2.24m ,球网在场地中央,距离球场左、右边界均为9m .一名球员在场地左侧边界练习发球,排球的飞行路线可以看作是对称轴垂直于水平面的抛物线的一部分.某次发球,排球从左边界的正上方发出,击球点的高度为2m ,当排球飞行到距离球网3m 时达到最大高度2.5m .小石建立了平面直角坐标系xOy (1个单位长度表示1m ),求得该抛物线的表达式为215722y x =-+.根据以上信息,回答下列问题: (1)画出小石建立的平面直角坐标系;(2)判断排球能否过球网,并说明理由.16.(2023·北京海淀·九年级期末)一位运动员在距篮圈中心(点C )水平距离5m 处竖直跳起投篮(A 为出手点),球运行的路线是抛物线的一部分,当球运行的水平距离为3m 时,达到最高点(点B ),此时高度为3.85m ,然后准确落入篮圈.已知篮圈中心(点C )到地面的距离为3.05m ,该运动员身高1.75m ,在这次跳投中,球在头顶上方0.15m 处出手,球出手时,他跳离地面的高度是多少?17.(2022秋·河北唐山·九年级校考期末)任意球是足球比赛的主要得分手段之一,在某次足球比赛中,李强站在点O 处发出任意球,如图,把球看做点,其运行轨迹的高度()m y 与水平距离()m x 满足函数关系式()212y a x h =-+,李强罚任意球时防守队员站在李强前方8米处组成人墙,防守队员的身高为2米,对手球门与李强的水平距离为18米,已知足球球门的宽是7.32米,高是2.43米.(1)当3h =时,求y 与x 的函数关系式;(2)在第(1)问的前提下,足球能否越过人墙?足球能否直接射进球门?请说明理由;(3)若李强罚出任意球一定能直接射进球门得分,直接写出h 的取值范围.18.(2022秋·四川泸州·九年级泸县五中校联考期中)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为2=-,请根据要求解答下列问题:h t t205(1)在飞行过程中,小球从飞出到落地所用时间是多少?(2)在飞行过程中,小球飞行高度何时最大?最大高度是多少?参考答案:1.(1)211094(1)55y x x x =-+≥ (2)动员此时没有落在滑道上(3)<2.(1)(4.5,3.05),(3,3.3);(2)2.3米3.(1)y =-19(x -6)2+5 (2)足球第一次落地点C 距守门员(635+米(3)运动员乙要抢到足球第二个落点D ,他应再向前跑(3563米4.(1)20.2( 2.5) 3.5y x =--+,能准确投中(2)乙不能拦截成功,5.(1)1530y x =+;(2)22540y x x =-+;(3)70米 6.(1)飞行时间是2s 或3s ;(2)小球从飞出到落地所用时间是5s ;(3)在飞行过程中,小球飞行高度第5s 2时最大,最大高度是25m 2.7.(1)21(4)82y x =--+ (2)小球M 能飞过这棵树,(3)小球M 在飞行的过程中离斜坡OA 的最大高度为4988.(1)20.2 3.5y x =-+(2)0.2米(3)乙在运动员距离甲1.5米之内以及篮板0.5米之内能在空中截住球.9.(1)1(2)2,2.5 (3)2112726y x x =-++ (4)能,10.(1)2891555y x x =-++ (2)该男生在此项考试不能得满分,11.21(4)49y x =--+,能 12.(1)y =-110(x -9)2+10;(2)19米 13.球会进球门;C 罗能在空中截住这次吊射14.(1)21(4)82y x =--+ (2)72(3)能飞过这棵树,15.(1)见解析;(2)排球能过球网, 16.0.15m17.(1)()2112348y x =--+ (2)足球能越过人墙,能直接射进球门,(3)2.25 3.24h <<18.(1)4s ;(2)小球飞行2秒时高度最大,最大高度是20m .。
全国高考数学复习微专题: 取球问题

取球问题一、基础知识:在很多随机变量的题目中,常以“取球”作为故事背景,通过对“取球”提出不同的要求,来考察不同的模型,常见的模型及处理方式如下:1、独立重复试验模型:关键词“可放回的抽取”,即下一次的取球试验与上一次的相同。
2、超几何分布模型:关键词“不放回的抽取”3、与条件概率相关:此类问题通常包含一个抽球的规则,并一次次的抽取,要注意前一次的结果对后一步抽球的影响4、古典概型:要注意虽然题目中会说明“相同的”小球,但是为了能使用古典概型(保证基本事件为等可能事件),通常要将“相同的”小球视为“不同的”元素,在利用排列组合知识进行分子分母的计数。
5、数字问题:在小球上标注数字,所涉及的问题与数字相关(奇,偶,最大,最小等),在解决此类问题时,要将数字模型转化为“怎样取球”的问题,从而转化为前几个类型进行求解。
二、典型例题:例1:一袋中有6个黑球,4个白球(1)不放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (2)有放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (3)有放回的依次取出3个球,求取到白球个数X 的分布列,期望和方差(1)思路:因为是不放回的取球,所以后面取球的情况受到前面的影响,要使用条件概率相关公式进行计算。
第一次已经取到白球,所以剩下6个黑球,3个白球;若第二次取到黑球,则第三次取到黑球的概率为6598⋅,若第二次取到白球,则第三次取到黑球的概率为3698⋅,从而能够得到第三次取到黑球的概率 解:设事件A 为“不放回取球,第一次取出白球时,第三次取到黑球”()65364829898723P A ∴=⋅+⋅== (2)思路:因为是有放回的取球,所以每次取球的结果互不影响,属于独立重复试验模型,所以第三次取球时依然是6个黑球,3个白球,取得黑球的概率为69解:设事件B 为“有放回取球,第一次取出白球时,第三次取到黑球”()23P B ∴=(3)思路:本问依然属于独立重复试验模型,X 的取值为0,1,2,3,则X 符合二项分布,即23,5X B ⎛⎫ ⎪⎝⎭:,所以可通过二项分布的概率计算公式求得概率,得到分布列解:X 的取值为0,1,2,3,依题意可得:23,5X B ⎛⎫ ⎪⎝⎭:()30332705125P X C ⎛⎫∴=== ⎪⎝⎭ ()2133254155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()12233236255125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()3332835125P X C ⎛⎫=== ⎪⎝⎭23,5X B ⎛⎫⎪⎝⎭Q :26355EX ∴=⋅= 231835525DX =⋅⋅=例2:已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各任取2个球 (1)求取出的4个球中没有红球的概率 (2)求取出的4个球中恰有1个红球的概率(3)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望思路:本题这三问的关键在于所取球中红球的个数,考虑红球个数来自于两个盒内拿出红球个数的总和,所以可将红球总数进行分配,从而得到每个盒中出红球的情况,进而计算出概率(1)设事件i A 为“甲盒中取出i 个红球”,事件j B 为“乙盒中取出j 个红球”则()()2213332246,i i j ji j C C C C P A P B C C --== 设事件A 为“4个球中没有红球”则()()()0202133300224633161510C C C C P A P A P B C C =⋅=⋅=⋅= (2)设事件B 为“4个球中恰有1个红球”()()()0211110213331333011022224646393326156155C C C C C C C C P B P A B P A B C C C C ∴=+=⋅+⋅=⋅+⋅= (3)ξ可取的值为0,1,2,3()()1010P P A ξ∴===()()215P P B ξ===()()()0220111113331333021122224646225C C C C C C C C P P A B P A B C C C C ξ==+=⋅+⋅= ()()11021333122246331361510C C C C P P A B C C ξ===⋅=⋅=ξ∴的分布列为:01231055102E ξ∴=⨯+⨯+⨯+⨯=例3:甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记成功取法次数为随机变量X ,求X 的分布列和数学期望.解:(1)设事件A 为“两只手中所取的球颜色不同”,则A 为“两只手中所取的球颜色相同”()()2333432119999993P A P A ⎛⎫=-=-⋅+⋅+⋅= ⎪⎝⎭(2)X 可取的值为0,1,2左手取球成功的概率222234129518C C C P C ++==右手取球成功的概率22233322914C C C P C ++== ()511301118424P X ⎛⎫⎛⎫∴==-⋅-= ⎪ ⎪⎝⎭⎝⎭()5151711118418418P X ⎛⎫⎛⎫==-⋅+⋅-= ⎪ ⎪⎝⎭⎝⎭ ()515218472P X ==⋅=X ∴的分布列为01224187236EX ∴=⨯+⨯+⨯= 例4:袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍,每次从袋中摸出一个球,然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直到第5次摸球后结束(1)求摸球四次就停止的事件发生的概率(2)记摸到红球的次数为ξ,求随机变量ξ的分布列及其期望(1)思路:本题为有放回摸球,可理解为独立重复试验,如果摸球四次就停止,说明在这四次中一共摸到3次红球,且前三次有两次摸到红球,第四次又摸到红球。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
千题百炼——高中数学个热点问题(三):第炼-取球问题————————————————————————————————作者:————————————————————————————————日期:第90炼 取球问题一、基础知识:在很多随机变量的题目中,常以“取球”作为故事背景,通过对“取球”提出不同的要求,来考察不同的模型,常见的模型及处理方式如下:1、独立重复试验模型:关键词“可放回的抽取”,即下一次的取球试验与上一次的相同。
2、超几何分布模型:关键词“不放回的抽取”3、与条件概率相关:此类问题通常包含一个抽球的规则,并一次次的抽取,要注意前一次的结果对后一步抽球的影响4、古典概型:要注意虽然题目中会说明“相同的”小球,但是为了能使用古典概型(保证基本事件为等可能事件),通常要将“相同的”小球视为“不同的”元素,在利用排列组合知识进行分子分母的计数。
5、数字问题:在小球上标注数字,所涉及的问题与数字相关(奇,偶,最大,最小等),在解决此类问题时,要将数字模型转化为“怎样取球”的问题,从而转化为前几个类型进行求解。
二、典型例题:例1:一袋中有6个黑球,4个白球(1)不放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (2)有放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率 (3)有放回的依次取出3个球,求取到白球个数X 的分布列,期望和方差(1)思路:因为是不放回的取球,所以后面取球的情况受到前面的影响,要使用条件概率相关公式进行计算。
第一次已经取到白球,所以剩下6个黑球,3个白球;若第二次取到黑球,则第三次取到黑球的概率为6598⋅,若第二次取到白球,则第三次取到黑球的概率为3698⋅,从而能够得到第三次取到黑球的概率 解:设事件A 为“不放回取球,第一次取出白球时,第三次取到黑球”()65364829898723P A ∴=⋅+⋅== (2)思路:因为是有放回的取球,所以每次取球的结果互不影响,属于独立重复试验模型,所以第三次取球时依然是6个黑球,3个白球,取得黑球的概率为69解:设事件B 为“有放回取球,第一次取出白球时,第三次取到黑球”()23P B ∴=(3)思路:本问依然属于独立重复试验模型,X 的取值为0,1,2,3,则X 符合二项分布,即23,5XB ⎛⎫⎪⎝⎭,所以可通过二项分布的概率计算公式求得概率,得到分布列 解:X 的取值为0,1,2,3,依题意可得:23,5XB ⎛⎫ ⎪⎝⎭()30332705125P X C ⎛⎫∴=== ⎪⎝⎭ ()2133254155125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()12233236255125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()3332835125P X C ⎛⎫=== ⎪⎝⎭ X 0 1 2 3 P271255412536125812523,5XB ⎛⎫⎪⎝⎭26355EX ∴=⋅= 231835525DX =⋅⋅=例2:已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲,乙两个盒内各任取2个球 (1)求取出的4个球中没有红球的概率 (2)求取出的4个球中恰有1个红球的概率(3)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望思路:本题这三问的关键在于所取球中红球的个数,考虑红球个数来自于两个盒内拿出红球个数的总和,所以可将红球总数进行分配,从而得到每个盒中出红球的情况,进而计算出概率(1)设事件i A 为“甲盒中取出i 个红球”,事件j B 为“乙盒中取出j 个红球”则()()2213332246,i i j ji j C C C C P A P B C C --== 设事件A 为“4个球中没有红球”则()()()0202133300224633161510C C C C P A P A P B C C =⋅=⋅=⋅= (2)设事件B 为“4个球中恰有1个红球”()()()0211110213331333011022224646393326156155C C C C C C C C P B P A B P A B C C C C ∴=+=⋅+⋅=⋅+⋅= (3)ξ可取的值为0,1,2,3()()1010P P A ξ∴===()()215P P B ξ===()()()0220111113331333021122224646225C C C C C C C C P P A B P A B C C C C ξ==+=⋅+⋅= ()()11021333122246331361510C C C C P P A B C C ξ===⋅=⋅=ξ∴的分布列为:ξ 0 1 23P110 25251101221301231055102E ξ∴=⨯+⨯+⨯+⨯=例3:甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记成功取法次数为随机变量X ,求X 的分布列和数学期望.解:(1)设事件A 为“两只手中所取的球颜色不同”,则A 为“两只手中所取的球颜色相同”()()2333432119999993P A P A ⎛⎫=-=-⋅+⋅+⋅= ⎪⎝⎭(2)X 可取的值为0,1,2左手取球成功的概率222234129518C C C P C ++==右手取球成功的概率22233322914C C C P C ++== ()511301118424P X ⎛⎫⎛⎫∴==-⋅-= ⎪ ⎪⎝⎭⎝⎭()5151711118418418P X ⎛⎫⎛⎫==-⋅+⋅-= ⎪ ⎪⎝⎭⎝⎭ ()515218472P X ==⋅=X ∴的分布列为X 0 1 2 P132471857213751901224187236EX ∴=⨯+⨯+⨯= 例4:袋中装有若干个质地均匀大小相同的红球和白球,白球数量是红球数量的两倍,每次从袋中摸出一个球,然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直到第5次摸球后结束(1)求摸球四次就停止的事件发生的概率(2)记摸到红球的次数为ξ,求随机变量ξ的分布列及其期望(1)思路:本题为有放回摸球,可理解为独立重复试验,如果摸球四次就停止,说明在这四次中一共摸到3次红球,且前三次有两次摸到红球,第四次又摸到红球。
通过红白球数量关系可知一次摸球中摸到红球的概率为13,然后可按照分析列式并求出概率。
解:设事件A 为“摸球四次即停止摸球“解:依题意可得:在一次摸球中,摸到红球的概率为13()223214339P A C ⎛⎫⎛⎫∴== ⎪ ⎪⎝⎭⎝⎭(2)思路:可知ξ可取的值为0,1,2,3,当0,1,2ξ=时,摸球是通过完成5次后停止,所以可利用独立重复试验模型计算概率;当3ξ=时,按照规则有可能摸球提前结束,所以要按摸球的次数(3次,4次,5次)分类讨论后再汇总解:ξ可取的值为0,1,2,3()523203243P ξ⎛⎫∴=== ⎪⎝⎭ ()4151280133243P C ξ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()23251280233243P C ξ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭()32222234112112151173333333324381P C C ξ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==++== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ξ∴的分布列为:ξ 01 2 3P3224380243 8024317813280801713101232432432438181E ξ∴=⨯+⨯+⨯+⨯=例5:某商场在店庆日进行抽奖促销活动,当日在该店消费的顾客可参加抽奖.抽奖箱中有大小完全相同的4个小球,分别标有字“生”“意”“兴”“隆”.顾客从中任意取出1个球,记下上面的字后放回箱中,再从中任取1个球,重复以上操作,最多取4次,并规定若取出“隆”字球,则停止取球.获奖规则如下:依次取到标有“生”“意”“兴”“隆”字的球为一等奖;不分顺序取到标有“生”“意”“兴”“隆”字的球,为二等奖;取到的4个球中有标有“生”“意”“兴”三个字的球为三等奖. (1)求分别获得一、二、三等奖的概率;(2)设摸球次数为ξ,求ξ的分布列和数学期望. 解:(1)设i A 为“获得i 等奖”()1111114444256P A =⨯⨯⨯=()()3231111514444256P A A =⨯⨯⨯⋅-=()1233411119444464P A C A =⋅⨯⨯⨯⋅= (2)摸球次数ξ可取的值为1,2,3,4()114P ξ∴==()31324416P ξ==⋅=()3319344464P ξ==⋅⋅= ()33327444464P ξ==⋅⋅=ξ∴的分布列为:ξ1 2 34P14 31696427641392711123441664644E ξ∴=⨯+⨯+⨯+⨯=例6:学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球;乙箱子里面装有1个白球,2个黑球;这些球除了颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏后将球放回原箱) (1)求在一次游戏中 ① 摸出3个白球的概率 ② 获奖的概率(2)求在三次游戏中获奖次数X 的分布列与期望(1)思路:本题的结果实质上是一个“拼球”的过程,即两个箱子各自拿球,然后统计白球的个数。
则①:若摸出3个白球,则情况为甲2乙1。
②:若获奖,则白球个数不少于2个,可分成白球有3个或有2个两种情况,分别求出概率再求和即可 解:设i A 为“甲箱子里取出i 个白球”,j B 为“乙箱子里取出j 个白球” ① 设事件A 为“摸出3个白球”()()21131221215315C C C P A P A B C C ⋅∴==⋅= ② 设事件B 为“获奖”(即白球不少于2个)()()()()1111223212321120212222535317510C C C C C C P B P A B P A B P A B C C C C ⋅∴=++=⋅+⋅+= (2)思路:三次游戏可视为独立重复试验,所以获奖次数X 服从二项分布,由(1)可得73,10XB ⎛⎫⎪⎝⎭,从而可利用公式计算概率,列出分布列 解:X 可取的值为0,1,2,3,依题意可得:73,10XB ⎛⎫ ⎪⎝⎭()3033270101000P X C ⎛⎫∴=== ⎪⎝⎭ ()21373189110101000P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭ ()22373441210101000P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()33373433101000P X C ⎛⎫=== ⎪⎝⎭X ∴的分布列为:X 0 1 2 3 P27100018910004411000343100073,10XB ⎛⎫⎪⎝⎭72131010EX ∴=⋅=例7:一个袋子中装有6个红球和4个白球,假设袋子中的每一个球被摸到可能性是相等的。