高中数学:随机数的产生 (34)

合集下载

随机数的生成方法

随机数的生成方法

在一定的统计意义下可作为随机样本 X1,X2,…,Xn 的一组样本值,称r1 , r2 , … , rn一组具有与X相 同分布的随机数. 例1 设随机变量X~B(1, 0.5), 模拟该随机变 量X的一组样本值. 一种简单的方法是 抛一枚均匀硬币,观察出现正反面的情况, 出现正面记为数值“1”,否则记为“0”得: 0,0,1,0,1,1,1,0,1,0,0,0, 0,1,1,0,1,0, … 可看成总体X 的一系列样本值,或称产生了 一系列具有两点分布的随机数.
} { X xn }

P{ X xn } pn ,
(n 1,2,)
产生X的随机数的算法步骤 : (1) 产生一个(0, 1)区间上均匀分布随机数r(RND);
(2) 若 P(n-1)<r≤P(n) ,则令X 取值为xn. 例3 离散型随机变量X的分布律如下 X=x 0 P(x) 0.3 1 0.3 2 0.4
数学软件有产生常用分布随机数的功能
需要数据 量很大时 不太有效 需要寻求一种简便、经济、可靠, 并能在 计算机上实现的产生随机数的方法.
对特殊分布
二.均匀分布随机数的产生 最常用、最基础的随 机数是在(0,1)区间 内均匀分布的随机数 (简记为RND)
理解为:随机 变量X~U(0,1) 的一组样本值 的模拟值
2. 数列{rn}本质上是实数列, 给定初始值由递推 公式计算出的一串确定的数列.
从计算机中直接调用 某种分布的随机数同样存 在类似问题.
解决方法与思路: 1. 选择模拟参数 2. 对数列进行统计检验
不能简单 等同于真 正意义的 随机数.
1. 选择模拟参数 1) 周期的长度取决于参数x0, 入, M的选择; 2) 通过适当选取参数可以改善随机数的统计 性质. 几组供参考的参数值: x。=1,λ=7,M=1010 (L=5×107)

高一数学整数值随机数的产生

高一数学整数值随机数的产生

TPM设备招标采购管理KTPM新益为TPM管理咨询公司概述:在制造业,设备是生产进行的根本。 设备运行的好坏,直接影响生产的效率,间接影响企业的收益。 TPM作为有效的设备管理模式,是保障设备正常运行的关键。 在TPM设备采购环节,对于大型或复杂的设备或成套设备,在正式组织招标以前,需要对供应商的资格和能力进行预先审查,及资格预审。 TPM设备采购资格预审一、TPM设备采购资格预审的基本内容资格预审包括两大部分,即基本资格预审和专业资格预审。 1、基本资格预审基本资格是指供应商的合法地位和信誉,包括是否注册、是否破产、是否存在违法违纪行为等。 2、专业资格预审专业资格是指已具备基本资格的供应商履行拟订采购项目的能力,具体包括:(1)经验和以往承担类似合同的业绩和信誉;(2)为履行合同所配备的人员情况;(3)为履行合同任务而配备的机械、设备以及施工方案等情况;(4)财务情况;(5)售后维修服务的网点分布、人 等。 二、TPM设备采购资格预审程序进行资格预审,首先要编制资格预审文件,邀请潜在的供应商参加资格预审,发售资格预审文件,最后进行资格评定。 1、编制资格预审文件资格预审文件可以由采购部编写,也可以委托研究、设计或咨询机构协助编写。 2、邀请潜在的供应商参加资格预审邀请潜在的供应商参加资格预审,一般是通过在媒体上发布资格预审通告进行的。 通告的内容一般包括:采购企业名称、采购项目名称、采购规模、计划采购开始日、交货日期,发售资格预审文件的时间、地点和售价,以及提交资格预审文件的最迟日期。 3、发售资格预审文件和提交资格预审申请资格预审通告发布后,采购部门应立即开始发售资格预审文件,资格预审申请的提交必须按资格预审通告中规定的时间,截止期后提交的申请书一律拒收。 4、资格评定,确定参加投标的供应商名单采购部门在规定的时间内,按照资格预审文件中规定的标准和方法,对提交资格预审申请书的供应商的资格进行审查。

随机数的产生课件

随机数的产生课件

均匀性
总结词
均匀性是指随机数生成器生成的数字在 预期范围内分布的均匀程度。
VS
详细描述
随机数序列的分布应该尽可能均匀,以确 保每个数字出现的概率接近预期的概率。 如果生成的随机数在某个范围内过于集中 ,或者某些数字出现的频率明显高于其他 数字,那么这种随机数生成器就不具备好 的均匀性。
独立性
总结词
独立性是指随机数生成器生成的数字之间相 互独立的程度。
详细描述
独立性意味着生成的每个随机数不应该依赖 于之前生成的数字。如果生成的随机数之间 存在依赖关系,那么这种随机数生成器就不 具备好的独立性。独立性是评估随机数生成 器性能的重要指标之一,因为在实际应用中 ,我们通常需要独立的随机数来进行各种计 算和模拟。
决策支持
在模拟和预测模型中,随 机数用于生成各种可能的 场景和结果,为决策提供 支持。
04
随机数生成器的性 能评估
周期性
总结词
周期性是指随机数生成器在经过一定数量的迭代后重复生成数字的特性。
详细描述
周期性是评估随机数生成器性能的重要指标之一。一个好的随机数生成器应该 有较长的周期,即能够持续生成新的随机数序列,而不是快速地重复之前的数 字。周期性越长,随机数生成器的可靠性越高。
素。
05
随机数生成器的选 择与使用
根据应用需求选择合适的随机数生成器
伪随机数生成器
适用于需要大量随机数但不需要高度随机性的场景,如模拟、游戏 、测试等。
真随机数生成器
适用于需要高度随机性和安全性的场景,如密码学、统计学、科学 计算等。
混合随机数生成器
结合伪随机数生成器和真随机数生成器的优点,适用于对随机性和安 全性都有一定要求但不需要达到最高标准的场景。

高一数学整数值随机数的产生

高一数学整数值随机数的产生
1、一、深圳注册物流公司需要的资料: 首先要准备好注册资料,公司名称,公司信息,股东会议及章程,股东个人身份证明等等都要准备好。 2、 二、注册资本 由于有了认缴制,注册资本是自由的,没有最低限制,没有股东出资比例限制,注册与实收资本可以不一样,认缴年限股东会议决定。 3、三、注册流程 网上注册方便快捷,五证合一,深圳网上注册公司通过的公司营业执照,可以代替以往其他几样证件,只要这一张营业执照即可,不用再去办其他的证件了。注册物流公司的流程已经非常的方便了。 4、四、代理注册公司 虽然网上注册是现代化了,但有些专业操作还是比较复杂的,对于不专业的人来说,很多网上操作步骤不会使用。所以一般都是由专业代理注册公司来办理 创业宝:公司注册流程|标签:互联网创业这个一个很具体详细的一个公司注册流程。
பைடு நூலகம்
1、首先第一步要去工商局名称核准登记 1、全体投资人身份证复印件2、查名表格(名字3-10个,主要经营范围、注册资金、出资比例、地址、全体投资人签字)。 3、地区名+企业名称(字号)+贸易(行业名)+有限公司(类型)。 4、提交各区域工商行政管理局查名。 5、时间为5个工作日(分局到市工商局审核后确定名称是否可用)。 2、接下来第二步是刻章。1、全体股东章。2、法人章。3、财务章。 办理部门:刻章社 3、第三步是银行开立验资户1、预约银行开立验资户(所需材料:名称核准通知书原件及复印件、投资人的私章、投资人身份证原件复印件、经办人身份证原件复印件、开户费,以上材料根据银行要求)。2、等待2-5个工作日(具体根据开户银行不同时间不同)。 办理部门:银行 北京投资公司注册时应该注意的问题成立一个公司必须要有公司注册地址,没有地址公司则不能成立。不是所有的房屋地址都可以注册公司,像产权性质为民宅是不能用于注册公司的

高二数学随机数的产生

高二数学随机数的产生

数学:“(整数值)随机数的产生”的教学设计杭州市余杭高级中学童元意一、内容和内容解析本节课的内容是介绍利用计算器或计算机产生取整数值的随机数的方法,让学生初步学会利用计算器或计算机统计软件Excel产生随机(整数值)数进行模拟试验.它是在学生学习了随机事件、频率、概率的意义和性质以及用概率解决实际问题和古典概型的概念后,为了让学生进一步体会用频率估计概率思想,同时也是为了更广泛、有效地解决一些实际问题、体现信息技术的优越性而新增的内容.计算随机事件发生的概率,除了用古典概率的公式来计算外,还可以通过做试验或者用计算器、计算机模拟试验等方法产生随机数,从而得到事件发生的频率,以此来近似估计概率.产生(整数值)随机数的方法有两种:(1)是由试验产生的随机数,例如我们要产生1~25之间的随机整数,我们把25个大小形状等均相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌,然后从中摸出一个球,这个球上的数就是随机数.它的优点在于真正体现了随机性,缺点在于如果随机数的量很大,统计起来速度就会太慢;(2)是用计算器或计算机产生的随机数,它的优点在于统计方便、速度快,缺点在于,计算器或计算机产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类似随机数的性质,但并不是真正的随机数,是伪随机数.教学中将结合具体实例,让学生了解随机数在一些随机模拟方法中的作用,加深对随机现象的理解,然后通过计算器(机)模拟估计古典概型随机事件发生的概率和建立非古典概型题求解.用模拟方法来估计某些随机事件发生概率的必要性:通过大量重复试验,用随机事件发生的频率来估计其概率,但人工进行试验费时、费力,并且有时很难实现.这部分内容是新增加的内容,是随机模拟中较简单、易操作的部分,所以要求每个学生会操作.利用古典概型产生的随机数是取整数值的随机数.本节课的教学重点是了解随机数的概念,运用随机模拟的方法得到事件发生的频率,以此来近似估计概率.二、目标和目标解析本节课让学生理解产生(整数值)随机数的意义,并初步学会利用计算器或计算机模拟试验方法产生随机数,理解随机模拟方法的基本思想:初步学会设计和运用模拟方法近似计算概率.1.在回顾利用大量重复试验来统计频数耗时,让学生理解随机模拟的必要性,初步体验随机模拟思想.2.在介绍如何利用计算器产生之间取整数值的随机数和抛掷硬币转化为产生随机数0,1的过程中,让学生初步熟悉利用计算器产生(整数值)随机数的方法,进一步理解频数的随机性和相对稳定性.3.介绍利用计算机统计软件Excel产生(整数值)随机数的方法,让学生理解随机模拟的基本思想是用频率近似估计概率.理解概率的意义,与前面第一节学习内容相呼应.4.通过练习和例题的具体实例让学生设计一种随机模拟方法,使学生初步掌握建立概率模型,应用计算器或计算机统计软件Excel来模拟试验的方法近似计算概率,即初步掌握随机模拟方法(蒙特卡罗(Monte Carlo)方法),并初步学会设计一些模拟试验解决一些较简单的现实问题.三、教学问题诊断分析从学生的认知基础和认知结构看,第一,在初中学生虽然对利用计算器进行常规操作已非常熟练,但是对于利用随机函数产生随机数掌握参差不齐,有些先实行初中课改的地区(如余杭等)已在课堂上了解过随机知识,但有些地区可能对这一知识的了解属于空白;第二,学生对计算器或计算机所产生的随机数的“不确定性”可能有怀疑,对试验及试验结果的科学性也可能会有所质疑;第三由于没有随机模拟的体验和认识,对于随机模拟方法的理解有一定的难度;第四如何把具体问题转化为随机模拟问题来解决,如何建立概率模型,即设计随机模拟方法中的随机数与具体问题中的具体情形相对应,这是一个关键,由于学生积累的经验还不够,这也是一个教学难点.从教师这方面看,首先这部分内容操作性强,鉴于教学条件及学生的差异,高效的组织教学将是一个突出的问题;其次学生虽然已对于随机事件、频率、概率的意义、古典概型等方面都有所认识,但不可能从根本上理解随机模拟方法,在完成操作任务的同时,还要结合一些典型案例的处理,使学生经历较完整的数据处理的全过程,在过程中让学生体会随机模拟的基本思想,学习数据处理的方法,把理性的认识和实际的操作结合起来,对教师驾驭课堂、灵活应变能力提出了较高的要求.四、教学支持条件分析由于教学中要求学生能够利用计算器产生整数值随机数,因此学生的计算器课前要准备,或者让学生自己事先看说明书.同时教师可让学生了解计算机产生随机数方法.为了有效实现教学目标,条件许可,有条件的学校可让学生上机操作,可安装好有统计功能的软件,如Excel等具有随机函数的统计软件,让学生上机操作模拟试验.五、教学过程设计(一)课题引入,为什么要学习本节的内容(学习本节的必要性)(1)在前面第一节中,同学们做了大量重复的试验,用频率去估计概率,这种方法比较通用,但有的同学可能觉得这样做试验花费的时间太多.那怎么办?(2)在概率求解中我们也发现一些随机事件的试验具有一些共同特征,所以我们在上一节把一类特殊的随机事件的概率求解转化为古典概型求解,使运算简单化,但我们只能解决一些简单的古典概型问题,对于一些基本事件数比较大时,我们很难把它列举得不重复不遗漏,同时对于随机事件中所包含的基本事件数又容易算错,而且对于基本事件的等可能性又比较难于验证.同时还有一些概率模型题不属于古典概型,我们又如何求解这类题.(二)问题情境,引出概念针对以上原因,我们提出这样一个课题.情境1:关于2009年一季度杭州市饮用水省级监督抽查中,共抽查我市41批次饮用水,合格37批次,抽查合格率90.2%,其中,抽查纯净水21批次,合格19批次,抽查合格率90.5%;抽查矿泉水3批次,全部合格,抽查合格率继续保持100.0%;抽查天然水17批次,合格15批次,抽查合格率88.2%,问1:假设你是一名饮用水卫生工作人员,要从82批次饮用水中抽取41批次进行卫生达标检查,你准备怎么做?问2:假如我们需要是从8200批次饮用水中抽取410批次进行检验,你又打算怎么办?设计意图:通过情境1的问题让学生能回忆起前面统计知识中利用随机抽样方法如抽签法、随机数表法等进行抽样的步骤和特征,初步了解随机数的意义,又让学生明白这就是一种用手工试验产生整数值随机数的方法,从而让学生对随机数这个名称有更进一步的认识,加强知识之间的纵向联系,使学生从具体试验中了理解随机数的含义.师生活动:教师引导,学生思考回答:预设学生回答一:采用简单随机抽样(抽签法)方法:如摸球法或转盘法我们把82个大小形状等均相同的小球标上00,01,02,…,39,40号签,放入一个不透明的袋中,把它们充分搅拌,然后每次从中摸出一个球,一共摸41次球,就得到一组抽样数据.预设学生回答二:采用简单随机抽样方法(随机数表法)等.教师可展示:采用简单随机抽样方法(随机数表法):比如给出第6行到第8行的随机数表:16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82显示随机数表设计意图:是让学生脑海中有两位随机数这样一种直观印象,为后面问题6中的三天恰有两天下雨这一事件,如何想到用三位随机数组模拟作第一次小铺垫.教师:每次摸出一个球,这个球上的数就是随机数.由于随机数表的每个数都是随机产生的,我们也可以利用随机数表产生随机数.随机数就是在一定范围内随机产生的数,并且得到这个范围内每一数的机会一样.引入课题,板书本节课题.情境2:在第一节中,同学们做了大量重复的试验,比如抛硬币和掷骰子的试验,用频率估计概率,假如现在要作1000次掷骰子试验,你打算怎么办?设计意图:通过情境2的问题让学生进一步体会当需要随机数的量很大时,用手工试验产生随机数速度太慢,从而说明利用现代信息技术的重要性,也就很自然转到利用计算器或计算机产生随机数的必要性.在问题的思考过程中让学生自我发现问题,主动解决问题的欲望.师生活动:教师在表述问题的过程中,学生思考讨论,急于寻找解决问题的方案.(三)操作实践,了解概念问题1:利用手工试验产生随机数的速度太慢,你有其它方法来代替试验呢?设计意图:让学生了解总体个体数不是很大时,可以利用手工随机试验的方法,如果需要随机数的量很大,随机试验的方法不是很方便,速度太慢.促使学生去探求更方便的方法,从而培养学生在学习中善于发现问题、解决问题的能力.让学生在已有的环境中进一步寻找解决问题的途径,激发学生学习新知识的热情和兴趣.现代信息技术的高速快捷是学生所熟悉的工具,学生很容易想到利用计算器来产生随机数.学生最熟悉就是计算器,但对计算器的随机函数的操作对于学生来说,是比较陌生的内容,很难找到一个思考的方向.所以以老师介绍计算器的操作为主,了解随机函数的原理后,再看看计算器说明书,学生会很容易掌握计算器的操作.师生活动:学生可能回答借助计算器,但对于具体操作不是清楚.教师事先可以编制几个小问题,让学生熟悉这款新型CASIO计算器fx-991ES.2.小数点位数的有趣试验:按以下要求显示,你能利用计算器显示:①小数点位数为0;②小数点位数为8为;③小数点位数为18位(挑战极限题:计算器显示的小数位数最多为9位).教师介绍,在利用计算器产生随机数可以先进行以下操作就可以产生整数值的随机数CASIO学生用计算器fx—991ES步骤如下:设计意图:由于这一部分内容是新增内容,学生以前没接触过,大部分学生没多大反应,这时教师在课堂上带着学生用计算器(科学计算器或图形计算器)操作一遍.对于问题2(1)主要是让同学在理解原理后,通过操作熟悉计算器操作流程.在学生明白原理后,通过让学生自己按照规则操作,一方面,降低了问题的难度,切合学生的思维,通过操作熟悉操作流程;另一方面,使问题有了内在的“逻辑”联系,让学生觉得有迹可寻,有据可依,在思维上起到了自然的顺应过程,让学生熟悉计算器产生随机数的操作流程,了解随机数.通过(2)至(5)的一系列问题的思考,让学生对利用计算器产生随机数的思维层次再上升到一个新台阶,对于问题2(1)(2)让学生登记操作记录主要是为后面问题6中的三天恰有两天下雨这一事件,如何想到用三位随机数组模拟作第二次小铺垫.同时让学生逐步熟悉计算器产生取整数值随机数的操作流程.师生活动:教师提出问题,学生自己利用计算器操作让学生实践操作,熟悉计算器的操作功能,学生把操作出现随机数0,1和随机数之间整数分别填在操作记录单上.(四)解决问题,促进学生掌握随机模拟试验方法1.模拟感知,操作体验问题3:我们知道,抛一枚质地均匀的硬币出现正面向上的概率是50%,你能设计一种利用计算器模拟掷硬币的试验来验证这个结论吗?设计意图:设计概率模型是解决概率问题的难点,也是能解决概率问题的关键,是数学建模的第一步.抛硬币是学生最熟悉也是最简单的问题,他们会很自然会想到把正面向上、反面向上这两个基本事件用两个随机数来代替.题目中故意以50%的这个数字出现,主要是让学生通过熟悉50%想到用随机数0,1来模拟,为后面问题6每天下雨的概率为40%的概率建模作第一次小铺垫.通过此问题使学生的学习最近发展区得到激发,充分调动了学生学习的积极性.这样既能让学生继续熟悉利用计算器模拟试验的操作流程,同时为学生解决后面例题模拟下雨作好铺垫.师生活动:教师给出问题,学生独立思考,探讨解决方案.通过教师的问题启发,师生共同分析抛掷硬币的结果有两个基本事件数:正面向上、反面向上.我们只要用两个取整数值的随机数代替这两个基本事件就可以了.学生边操作边把数字记录在记录单上.2.思考质疑,提升认识思考:随着模拟次数的不同,结果是否有区别,为什么?设计意图:虽然在概率第一节学生已做过多次的手工抛掷硬币试验,现在通过让学生模拟试验,当试验次数很多时,进一步体会频率的稳定性.一方面:要让学生熟悉计算器随机模拟操作,另一方面:进一步理解进行大量重复试验次数越多,频率越接近概率.这样即能回顾前面所学的知识,又使知识更加系统化,便于学生掌握.同时培养团结合作的精神.师生活动:教师巡视,学生操作统计,思考交流.3.多种工具,掌握方法教师:刚才我们利用了计算器来产生随机数,我们知道计算机有许多统计功能的软件,而且可以直接统计频数和计算频率,每个具有统计功能的软件都有随机函数.问题4:(1)你会利用统计软件Excel来产生随机数0,1吗?你能设计一种利用计算机模拟掷硬币的试验吗?设计意图:通过此问题的提出,主要是让学生了解有许多统计软件都有随机函数这个功能,在以前我们其实已经接触过,并与前面第一章所学的用Qbasic语言编写程序相联系.Excel是学生比较熟悉统计软件,也可让学生回顾初中用Excel画统计图的一些功能和知识,其次让学生掌握多种随机模拟试验方法.师生活动:学生可在教师提示下回答,一般都了解Excel软件.教师先引导,然后与学生一起熟悉一下Excel软件,了解产生随机数的函数,画统计图的功能及对统计数据结果的处理功能,这块内容基本上以教师介绍为主,教师可以边介绍边操作,可以事先做好Excel每个可操作工作表.教师:介绍操作思路:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1.并介绍随机函数randbetween(a,b)产生从整数a到整数b的取整数值的随机数.(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0、1的格,比如A2至A100快捷键,则在A2至A100的数均为随机产生的0或1,这样我们很快得到了100个随机产生的0,1,相当于做了100次随机试验.问题4:(2)为了统计方便和更直观了解出现正面向上的频率分布折线图,我们还需作一些什么准备?设计意图:通过边操作边提出问题,主要是让学生能进一步巩固和熟悉画一些统计图的功能,和对统计结果数据的处理功能.师生活动:教师可以边操作边提出问题,学生观察、思考、熟悉操作一般统计步骤.教师:介绍操作思路:(3)选定C1格,键入频数函数“=FREQUENCY(A1:A100,0.5)”,按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数,也就是反面朝上的频数.(4)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率.问题5:(1)你能在Excel软件中画试验次数从1到100次的频率分布折线图吗?(2)当试验次数为1000,1500时,你能说说出现正面向上的频率有些什么变化?设计意图:在学生的估计、猜测然后进行实际操作中,(在学生经历估计--猜测---实际操作的过程中)体会应用随机模拟方法估计古典概型中随机事件的概率值的方法,并让学生理解随机模拟的基本思想是用频率接近概率,频率由试验获得,概率由古典概型得到.同时通过多次重复试验,引导学生体会频率的随机性与相对稳定性.让学生经历用计算机产生数据,整理数据,分析数据,画统计图的全过程,使学生相信统计结果的真实性、随机性及规律性.师生活动:教师引导,学生自己试验、观察、操作、直观感受.教师指出:上面我们用计算机或计算器模拟了掷硬币的试验,我们称用计算机或计算器模拟试验的方法为随机模拟方法或蒙特卡罗(Monte Carlo)方法.蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,或称计算机随机模拟方法,是一种基于“随机数”,以概率统计理论为指导的一类非常重要的数值计算方法.与它对应的是确定性算法.蒙特卡罗模拟源于美国在第二次世界大战进研制原子弹的“曼哈顿计划”,该计划的主持人之一数学家冯·诺伊曼对裂变中的中子随机扩散直接模拟.并用摩纳哥国的世界赌城Monte Carlo 作为秘密代号来称呼.蒙特·卡罗方法在金融工程学,宏观经济学,在应用物理、原子能、固体物理、化学、生物、生态学等领域都得到了广泛的应用.计算机技术的发展,使得蒙特卡罗方法在最近10年得到快速的普及.现代的蒙特卡罗方法,已经不必亲自动手做实验,而是借助计算机的高速运转能力,使得原本费时费力的实验过程,变成了快速和轻而易举的事情.它不但用于解决许多复杂的科学方面的问题,也被项目管理人员经常使用.借助计算机技术,蒙特卡罗方法实现了两大优点:一是简单,省却了繁复的数学报导和演算过程,使得一般人也能够理解和掌握;二是快速;三是节省资源.(五)加强应用,掌握随机模拟试验方法问题6:(1)种植某种树苗的成活率为50%,若种植这种树苗2颗,你能设计一种随机模拟的方法近似求恰好成活1棵的概率吗?变式(1)种植某种树苗的成活率为,若种植这种树苗2颗,你能设计一种随机模拟的方法近似求恰好成活1棵的概率吗?设计意图:此问题的设计主要是为后面问题6(2)解决作第二次铺垫,将一枚质地均的硬币连续抛两次这试验在第一节中已比较熟悉,又学了古典概型后,对这样的试验出现几个基本事件数己掌握,但学生对概率值与用随机数来模拟这个桥梁(即数学模型)搭建还需要一个过程,所以需要让学生经历方法形成和体验这样一个过程.师生活动:教师留给学生足够时间思考,让学生把25%与随机数的建立联系,这桥梁搭建还是比较快速而且也比较容易的.学生经过独立思考,探讨交流,给出各种解决方案.问题6:(2)天气预报说,在今后的三天中,每一天下雨的概率均为40%,这三天中恰有两天下雨的概率是多少?问1:能用古典概型的计算公式求解吗?问2:你如何模拟每一天下雨的概率为40%?设计意图:给出这道题主要让学生学会利用所学的随机模拟方法来解决实际问题,是对思想方法的一种应用.通过把问题分层提出,主要是降低本题难度.如何模拟每一天下雨的概率40%是解决这道题的关键,是随机模拟方法应用的重点,也是难点之一.难点之二让每三个随机数作为一组,这在前面通过登记操作记录单和以数组出现得到分散.让学生体会如何用随机模拟的方法估计概率,并使学生学会巩固用随机模拟方法估计未知量的基本思想.同时让学生明确利用随机模拟方法也可解决不是古典概型而比较复杂的概率应用题.师生活动:教师给出足够时间让学生思考,对于前面两小问可让学生独立思考,作出回答.教师适当给予点拨.师生共同分析:这里试验出现的可能结果是有限个,但是每个结果的出现不是等可能的,所以不能用古典概型求概率的公式.用计算器或计算机做模拟试验可以模拟下雨出现的概率是40%.第一步,设计概率模型:分析:我们通过设计模拟试验的方法来解决问题.利用计算器或计算机可以产生0到9之间取整数值的随机数,我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,这样可以体现下雨的概率是40%.因为是3天,所以每三个随机数作为一组.第二步,进行模拟试验:这部分内容安排学生以小组为单位,分工合作,教师事先作好统计表格,要求学生完成好,报上试验次数和三天中恰好两天出现的次数.方法一:(随机模拟方法——计算器模拟)利用计算器随机函数方法二:(随机模拟方法——计算机模拟)其中A,B,C三列是模拟三天的试验结果,D,E,F列为统计结果,D列表示如果三天中恰有两天下雨,则D为1,否则D为0,E1表示30天中恰有两天下雨的天数,F1表示30天恰有两天下雨的频率.第三步,统计试验的结果.例如,产生20组随机数907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537989就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两天下雨,它们分别是191,271,932,812,393,即共5个数.我们得到三天中恰有两天下雨的概率近似为.思考3:你得到的频率值与课本上得到的概率近似值25%怎么不相同?为什么会有这种差异?思考4:你知道老师为什么让你们做这些活动吗?思考5:你能用随机模拟方法编拟一道相类似的概率题吗?设计意图:让学生进一步通过具体的事例理解频率估计概率,频率值的随机性与相对稳定性.师生活动:学生可操作试验,讨论回答.(六)归纳小结,整体认识问题8:(1)你能归纳利用随机模拟方法估计概率的步骤吗?(2)通过此例,你能体会到随机模拟的优势吗?请举例说说.设计意图:通过问题的思考和解决,使学生理解模拟方法的优点,并充分利用信息技术的优势.同时既是对知识的进一步理解与思考,又是对本节内容的回顾与总结.师生活动:教师引导学生思考总结用随机模拟方法估计概率,解决具体问题的一般步骤:(1)建立概率模型,这是非常关键的一步.如模拟每一天下雨的概率为40%.。

高中数学课件- (整数值)随机数的产生

高中数学课件-  (整数值)随机数的产生

填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
明目标、知重点
1.了解随机数的意义. 2.会用模拟方法(包括计算器产生随机数进行模拟)估计概率. 3.理解用模拟方法估计概率的实质.
3.2.2
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
填要点、记疑点
3.2.2
1.随机数
要产生 1~n(n∈N*)之间的随机整数,把 n 个 大小形状
(1)选定 A1 格,键入“=RANDBETWEEN(0,9)”,按 Enter 键,则在此格中的
数是随机产生的;
(2)选定 A1 格,点击复制,然后选定要产生随机数的格,比如 A2 至 A100,点
击粘贴,则在 A2 至 A100 的数均为随机产生的 0~9 之间的数,这样我们就很
快就得到了 100 个 0~9 之间的随机数,相当于做了 100 次随机试验.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
探究点一:随机数的产生
3.2.2
分析 2 能不能用古典概型求概率的公式求三天中恰有两天下雨的概率?为什么? 答 不能,因为试验结果出现不是等可能的,不能用古典概型公式,只好采取
随机模拟的方法求频率,近似看作概率.
分析 3 如果采用随机模拟的方法,如何操作?
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
探究点二:随机模拟方法
3.2.2
反思与感悟 整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪
些数代表不同的试验结果.我们可以从以下三方面考虑:

人教版高中数学-(整数值)随机数的产生

人教版高中数学-(整数值)随机数的产生

1 课题引入 2 方法展示 3 实践思考 4 归纳小结 5 目标检测 6 作业布置
课后作业
1、练习:1、3
2、课后自主查询相关资料,寻求能提高 随机模拟结果精确度的其他途径和方法。
用Excel模拟抛掷1000次硬币流程:
1、利用RANDBETWEEN(0,1)产生随机数; 2、复制单元格 ; 3、利用定位功能转到第1000个单元格; 4、按shift选中这1000个单元格,按 ctrl+V; 5、利用FREQUENCY函数统计0的个数。
1 课题引入 2 方法展示 3 实践思考 4 归纳小结 5 目标检测 6 作业布置
练习:请设计一种用计算机或计算器 模拟摸牌试验的方法,完成下面的任 务:从52张扑克牌(没有大小王)随 机地抽取一张牌,求这张牌出现下列 情形的概率:
1、是红心
2、红心7
3、是J或Q或K
4、编一个概率为 3 的情形 4
பைடு நூலகம்
1 课题引入 2 方法展示 3 实践思考 4 归纳小结 5 目标检测 6 作业布置
1 课题引入 2 方法展示
3 实践思考
4 归纳小结 5 目标检测 6 作业布置
德摩根抛掷了 费勒抛掷了
4092次
10000次
罗曼诺夫斯基 抛掷了80640次
手工试验方法耗时费事,效率低 改进方法:计算器
1 课题引入 2 方法展示 3 实践思考 4 归纳小结 5 目标检测 6 作业布置
预备知识: 利用计算器产生随机数的操作步骤: 1、shift mode 2 2、shift mode 6 0
(2)计算机或计算器产生的随机数是根据确 定的算法产生的,具有周期性(周期性很 长),具有类似随机数的性质,但并不是真 正的随机数,因此称它们为伪随机数。

高中数学3概率统计常考题型:(整数值)随机数(random numbers)的产生

高中数学3概率统计常考题型:(整数值)随机数(random numbers)的产生

(整数值)随机数(random numbers)的产生【知识梳理】1.随机数的产生(1)标号:把n个大小,形状相同的小球分别标上1,2,3,…,n;(2)搅拌:放入一个袋中,把它们充分搅拌;(3)摸取:从中摸出一个.这个球上的数就称为从1~n之间的随机整数,简称随机数.2.伪随机数的产生(1)规则:依照确定算法;(2)特点:具有周期性(周期很长);(3)性质:它们具有类似随机数的性质.计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数.3.利用计算器产生随机数的操作方法用计算器的随机函数RANDI(a,b)或计算机的随机函数RANDBETWEEN(a,b)可以产生从整数a到整数b的取整数值的随机数.例如,用计算器产生1到25之间的取整数值的随机数,方法如下:4.利用计算机产生随机数的操作程序每个具有统计功能的软件都有随机函数,以Excel软件为例,打开Excel软件,执行下面的步骤:(1)选定A1格,键入“=RANDBETWEEN(0,1)”,按Enter键,则在此格中的数是随机产生的0或1。

(2)选定A1格,按Ctrl+C快捷键,然后选定要随机产生0,1的格,比如A2至A100,按Ctrl+V快捷键,则在A2至A100的数均为随机产生的0或1,这样相当于做了100次随机试验.(3)选定C1格,键入频数函数“=FREQUENCY(A1∶A100,0.5)",按Enter键,则此格中的数是统计A1至A100中,比0.5小的数的个数,即0出现的频数.(4)选定D1格,键入“=1-C1/100”,按Enter键,在此格中的数是这100次试验中出现1的频率.【常考题型】题型一、随机数的产生方法【例1】某校高一年级共有20个班1 200名学生,期末考试时,如何把学生随机地分配到40个考场中去?[解] 第一步,n=1;第二步,用RANDI(1,1 200)产生一个[1,1 200]内的整数随机数x表示学生的座号;第三步,执行第二步,再产生一个座号,若此座号与以前产生的座号重复,则执行第二步,否则n=n+1;第四步,如果n≤1 200,则重复执行第三步,否则执行第五步;第五步,按座号的大小排列,作为考号(不足四位的前面添上“0”,补足位数),程序结束.【类题通法】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017级人教版数学必修3 编号:22 编制时间:2017/11/10 编制人:路杰
§3. 2.2古典概型
【学习目标】
理解概率模型的特点及应用,根据需要会建立合理的概率模型,解决一些实际问题。

【重点难点】
重点:建立古典概型,解决简单的实际问题.
难点:从多种角度建立古典概型.
【预习案】
【导学提示】
教材助读
阅读教材P128-P130,找出疑惑之处.
复习:运用古典概型计算概率时,一定要分析其基本事件是否满足古典概型的两个条件:
①________________________________________;
2________________________________________.
一、新课导学
1、在建立概率模型时,把什么看作是一个基本事件(即一个试验结果)是人为规定的,要求每次试验__ _____________基本事件出现,只要基本事件的个数是___________,并且它们的发生是_____________ ,就是一个________________.
2、从不同的角度去考虑一个实际问题,可以将问题转化为不同的来解决,而所得到的古典概型的所有可能结果数,问题的解决就变得越简单.
二、合作探究
1、建立古典概率模型时,对基本事件的确定有什么要求?
2、从分别写有A、B、C、D、E的5张卡片中任取2张,所有基本事件有哪些?这2张上的字母恰好按字母顺序相邻的概率是多少?
【探究案】
例1假设银行卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
小结:求古典概型的步骤:(1)判断是否为古典概型.(2)列举所有的基本事件的总数n.(3)列举事件A所包
含的基本事件数m.(4)计算.
变式训练:某口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只
球.(1)共有多少个基本事件?
(2)摸出的2只球都是白球的概率是多少?
班级:小组:姓名:教师评价:组内评价:
例2、某种饮料每箱装6听,如果其中有2听不合格,问质检人员从中随机抽出2听,检测出不合格产品的概率有多大?
总结:(1)注意区别互斥事件和对立事件;
(2)求复杂事件的概率通常有两种方法:一是将所有事件转化为彼此互斥事件的和;二是先去求对立事件的概率,进而再求所有事件的概率.
变式训练:一枚硬币连续抛掷三次,求出现正面向上的概率.
【训练案】
1、一枚硬币抛掷两次,恰好出现一次正面的概率是()
A 0.5
B 0.25
C 0.75 D0
2、从分别写有ABCDE的5张卡片中任取两张,两字母恰好相连的概率()
A 0.2
B 0.4
C 0.3 D0.7
3、同时掷两个骰子,(1)一共有种不同的结果;(2)其中向上的点数之和是5的结果有_ 种;向上的点数之和是5的概率是___
.
4、一个密码箱的密码由5位数组成,5个数字都可任意设定为0~9中的任何一个数字,假设某人已经设定
了5位密码,(1)若此人忘了密码的所有数字,则他一次就能把锁打开的概率为(2)若此人只记得密码的前4位数字,则他一次就能把锁打开的概率为.
5、某班准备到郊外野营,为此向商店定了帐篷.如果下雨与不下雨是等可能的,能否准时收到帐篷也是等
可能的,只要帐篷如期运到,他们就不会淋雨,则淋雨的概率是.
6、从字母a、b、c、d任意取出两个不同字母的试验中,有基本事件,其中含有字母a的概率是
.
7、甲,乙两人做掷骰子游戏,两人各掷一次,谁掷得的点数多谁就获胜.,甲获胜的概率为.
8、五件产品中有两件次品,从中任取两件来检验.
(1)一共有种不同的结果;
(2)两件都是正品的概率是;
(3)恰有一件次品的概率是______________..
ruize
班级:小组:姓名:教师评价:组内评价:
【自主区】
【使用说明】教师书写二次备课,学生书写收获与总结.。

相关文档
最新文档