高中数学:随机数的产生 (9)
四川外国语大学附属外国语学校高一数学3教案:3.2.1—3.2.2古典概型及随机数的产生

第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节.3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句.进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程.点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力.1、结合熟悉的算法,把握算法的基本思想,学会用自然语言来描述算法。
高中数学《概率-整数值随机数的产生》练习

3.2.2 (整数值)随机数的产生[A 基础达标]1.某银行储蓄卡上的密码是一个6位数号码,每位上的数字可以在0~9这10个数字中选取.某人未记住密码的最后一位数字,如果随意按密码的最后一位数字,则正好按对密码的概率是( )A.1106 B.1105 C.1102 D.110解析:选D.只考虑最后一位数字即可,从0到9这10个数字中随机选一个的概率为110. 2.袋子中有四个小球,分别写有“幸”“福”“快”“乐”四个字,有放回地从中任取一个小球,取到“快”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出小球上分别写有“幸”“福”“快”“乐”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:13 24 12 32 43 14 24 32 31 2123 13 32 21 24 42 13 32 21 34据此估计,直到第二次就停止的概率为( )A.15B.14C.13D.12解析:选B.由随机模拟产生的随机数可知,直到第二次停止的有13,43,23,13,13共5个基本事件,故所求的概率为P =520=14. 3.通过模拟试验,产生了20组随机数:6830 3013 7055 7430 7740 4422 78842604 3346 0952 6807 9706 5774 57256576 5929 9768 6071 9138 6754如果恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射击中恰有三次击中目标的概率约为( )A .25%B .30%C .35%D .40%解析:选A.表示三次击中目标分别是3013,2604,5725,6576,6754,共5组数,而随机数总共20组,所以所求的概率近似为520=25%. 4.假定某运动员每次投掷飞镖正中靶心的概率为40%,现采用随机模拟的方法估计该运动员两次投掷飞镖恰有一次命中靶心的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中靶心,5,6,7,8,9,0表示未命中靶心;再以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:93 28 12 45 85 69 68 34 31 2573 93 02 75 56 48 87 30 11 35据此估计,该运动员两次掷镖恰有一次正中靶心的概率为( )A .0.50B .0.45C .0.40D .0.35解析:选A.两次掷镖恰有一次正中靶心表示随机数中有且只有一个数为1,2,3,4中的之一.它们分别是93,28,45,25,73,93,02,48,30,35共10个,因此所求的概率为1020=0.50.5.某种心脏病手术,成功率为0.6,现准备进行3例此种手术,利用计算机取整数值随机数模拟,用0,1,2,3代表手术不成功,用4,5,6,7,8,9代表手术成功,产生20组随机数:966,907,191,924,270,832,912,468,578,582,134,370,113,573,998,397,027,488,703,725,则恰好成功1例的概率为( )A .0.6B .0.4C .0.63D .0.43解析:选B.设恰好成功1例的事件为A ,A 所包含的基本事件为191,270,832,912,134,370,027,703共8个.则恰好成功1例的概率为P (A )=820=0.4,故选B. 6.抛掷两枚相同的骰子,用随机模拟方法估计向上的面的点数和是6的倍数的概率时,用1,2,3,4,5,6分别表示向上的面的点数,用计算器或计算机分别产生1到6的两组整数随机数各60个,每组第i 个数组成一组,共组成60组数,其中有一组是16,这组数表示的结果是否满足向上面的点数和是6的倍数:________.(填“是”或“否”)解析:16表示第一枚骰子向上的点数是1,第二枚骰子向上的点数是6,则向上的面的点数和是1+6=7,不表示和是6的倍数.答案:否7.从集合{a ,b ,c ,d }的子集中任取一个,这个集合是集合{a ,b ,c }的子集的概率是________.解析:集合{a ,b ,c ,d }的子集有∅,{a },{b },{c },{d },{a ,b },{a ,c },{a ,d },{b ,c },{b ,d },{c ,d },{a ,b ,c },{a ,b ,d },{b ,c ,d },{a ,c ,d },{a ,b ,c ,d },共16个,{a ,b ,c }的子集有∅,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c },共8个,故所求概率为12. 答案:128.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,则他乘上上等车的概率为________.解析:共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为36=12. 答案:129.天气预报说,在接下来的一个星期里,每天涨潮的概率为20%,则下个星期恰有2天涨潮的概率是多少?解:利用计算机产生0~9之间取整数值的随机数,用1,2表示涨潮,用其他数字表示不涨潮,这样体现了涨潮的概率是20%,因为时间是一周,所以每7个随机数作为一组,例如产生20组随机数:7032563 2564586 3142486 56778517782684 6122569 5241478 89715683215687 6424458 6325874 68943315789614 5689432 1547863 35698412589634 1258697 6547823 2274168相当于做了20次试验,在这组数中,如果恰有两个是1或2,就表示恰有两天涨潮,它们分别是3142486,5241478,3215687,1258697,共有4组数,于是一周内恰有两天涨潮的概率近似值为420=20%. 10.一个学生在一次竞赛中要回答8道题是这样产生的:从15道物理题中随机抽取3道;从20道化学题中随机抽取3道;从12道生物题中随机抽取2道.使用合适的方法确定这个学生所要回答的三门学科的题的序号(物理题的编号为1~15,化学题的编号为16~35,生物题的编号为36~47).解:利用计算器的随机函数RANDI(1,15)产生3个不同的1~15之间的整数随机数(如果有一个重复,则重新产生一个);再利用计算器的随机函数RANDI(16,35)产生3个不同的16~35之间的整数随机数(如果有一个重复,则重新产生一个);再用计算器的随机函数RANDI(36,47)产生2个不同的36~47之间的整数随机数(如果有一个重复,则重新产生一个),这样就得到8道题的序号.[B 能力提升]11.某班准备到郊外野营,为此向商店订了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是( )A .一定不会淋雨B .淋雨的机会为34C .淋雨的机会为12D .淋雨的机会为14解析:选D.根据题意,用1代表下雨,2代表不下雨,用A 代表中帐篷如期运到,B 代表没有如期运到,采用模拟法得到基本事件有(1,A ),(1,B ),(2,A ),(2,B )这4种情况.若淋雨必须满足天下雨且帐篷没有如期运到,这一基本事件发生即只有(1,B )1种情况发生,故淋雨的机会为14. 12.在用随机(整数)模拟求“有4个男生和5个女生,从中取4个,求选出2个男生2个女生”的概率时,可让计算机产生1~9的随机整数,并用1~4代表男生,用5~9代表女生.因为是选出4个,所以每4个随机数作为一组.若得到的一组随机数为“4678”,则它代表的含义是________.答案:选出的4人中,只有1个男生13.某人有5把钥匙,其中2把能打开门,现随机地取1把钥匙试着开门,不能开门就扔掉,问第三次才打开门的概率是多少?如果试过的钥匙不扔掉,这个概率又是多少?设计一个试验,随机模拟估计上述概率.解:用计算器或计算机产生1到5之间的整数随机数,1,2表示能打开门,3,4,5表示打不开门.(1)三个一组(每组数字不重复),统计总组数N 及前两个大于2,第三个是1或2的组数N 1,则N 1N即为不能打开门就扔掉,第三次才打开门的概率的近似值. (2)三个一组(每组数字可重复),统计总组数M 及前两个大于2,第三个为1或2的组数M 1,则M 1M即为试过的钥匙不扔掉,第三次才打开门的概率的近似值. 14.(选做题)某商区停车场临时停车按时段收费,收费标准为:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时的部分按1小时计算),现有甲、乙二人在该商区临时停车,两人停车都不超过4小时.(1)若甲停车1小时以上且不超过2小时的概率为13,停车付费多于14元的概率为512,求甲停车付费恰为6元的概率;(2)若每人停车的时长在每个时段的可能性相同,求甲、乙二人停车付费之和为36元的概率.解:(1)设“甲临时停车付费恰为6元”为事件A ,则P (A )=1-⎝ ⎛⎭⎪⎫13+512=14. 所以甲临时停车付费恰为6元的概率是14. (2)设甲停车付费a 元,乙停车付费b 元,其中a ,b =6,14,22,30.则甲、乙二人的停车费用共16种等可能的结果:(6,6),(6,14),(6,22),(6,30),(14,6),(14,14),(14,22),(14,30),(22,6),(22,14),(22,22),(22,30),(30,6),(30,14),(30,22),(30,30),其中(6,30),(14,22),(22,14),(30,6)4种情形符合题意.所以“甲、乙二人停车付费之和为36元”的概率为P =416=14.。
高中数学课件- (整数值)随机数的产生

填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
明目标、知重点
1.了解随机数的意义. 2.会用模拟方法(包括计算器产生随机数进行模拟)估计概率. 3.理解用模拟方法估计概率的实质.
3.2.2
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
填要点、记疑点
3.2.2
1.随机数
要产生 1~n(n∈N*)之间的随机整数,把 n 个 大小形状
(1)选定 A1 格,键入“=RANDBETWEEN(0,9)”,按 Enter 键,则在此格中的
数是随机产生的;
(2)选定 A1 格,点击复制,然后选定要产生随机数的格,比如 A2 至 A100,点
击粘贴,则在 A2 至 A100 的数均为随机产生的 0~9 之间的数,这样我们就很
快就得到了 100 个 0~9 之间的随机数,相当于做了 100 次随机试验.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
探究点一:随机数的产生
3.2.2
分析 2 能不能用古典概型求概率的公式求三天中恰有两天下雨的概率?为什么? 答 不能,因为试验结果出现不是等可能的,不能用古典概型公式,只好采取
随机模拟的方法求频率,近似看作概率.
分析 3 如果采用随机模拟的方法,如何操作?
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
探究点二:随机模拟方法
3.2.2
反思与感悟 整数随机数模拟试验估计概率时,首先要确定随机数的范围和用哪
些数代表不同的试验结果.我们可以从以下三方面考虑:
2021学年高中数学第3章概率32古典概型321古典概型322整数值随机数randomnumber

19
0.35 [ 抛 掷 这 枚 硬 币 三 次 恰 有 两 次 正 面 朝 上 的 有 010,010,100,100,010,001,100 共 7 组,则抛掷这枚硬币三次恰有两次 正面朝上的概率可以为270=0.35.]
20
合作 探究 释疑 难
21
基本事件及其计数问题
【例 1】 连续掷 3 枚硬币,观察落地后 3 枚硬币是正面向上还 是反面向上.
(1)写出这个试验的所有基本事件; (2)“恰有两枚正面向上”这一事件包含哪几个基本事件?
22
[解] (1)由树形图表示如下:
23
试验的所有基本事件为(正,正,正),(正,正,反),(正,反, 正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反, 反,反).
(2)“恰有两枚正面朝上”包含以下 3 个基本事件:(正,正,反), (正,反,正),(反,正,正).
(2)若把所取出卡片的标号之和作为基本事件,则共有多少个基 本事件?是古典概型吗?
(3)求所取卡片标号之和小于 4 的概率.
30
思路点拨:先列举出基本事件,紧扣古典概型的特点加以判断, 再用古典概型概率公式求相应概率.
31
[解] (1)基本事件为(红 1,红 2),(红 1,红 3),(红 1,蓝 1),(红 1,蓝 2),(红 2,红 3),(红 2,蓝 1),(红 2,蓝 2),(红 3,蓝 1),(红 3,蓝 2),(蓝 1,蓝 2)共 10 种,由于基本事件个数有限,且每个基 本事件发生的可能性相同,所以是古典概型.
3.理解用模拟方法估计概率的实质, 率,提升数学抽象素养.
会用模拟方法估计概率.(重点)
4
自主 预习 探新 知
高中数学第三章概率随机数的含义与应用EXCEL随机数据生成方法素材

3。
3 随机数的含义与应用EXCEL随机数据生成方法求教:我的电子表格中rand()函数的取值范围是-1到1,如何改回1到0回答:有两种修改办法:是[1-rand()]/2,或[1+rand()]/2。
效果是一样的,都可生成0到1之间的随机数电子表格中RAND()函数的取值范围是0到1,公式如下:=RAND()如果取值范围是1到2,公式如下:=RAND()*(2—1)+1RAND( )注解:若要生成a 与b 之间的随机实数:=RAND()*(b-a)+a如果要使用函数RAND 生成一随机数,并且使之不随单元格计算而改变,可以在编辑栏中输入“=RAND()”,保持编辑状态,然后按F9,将公式永久性地改为随机数。
示例RAND()介于0 到1 之间的一个随机数(变量)=RAND()*100 大于等于0 但小于100 的一个随机数(变量)excel产生60—70随机数公式=RAND()*10+60要取整可以用=int(RAND()*10+60)我想用excel在B1单元个里创建一个50-80的随机数且这个随机数要大于A1单元个里的数值,请教大家如何编写公式!整数:=ROUND(RAND()*(80-MAX(50,A1+1))+MAX(50,A1+1),0)无需取整数:=RAND()*(80—MAX(50,A1))+MAX(50,A1)要求:1,小数保留0。
12,1000-1100范围3,不要出现重复=LEFT(RAND()*100+1000,6)至于不许重复你可以设置数据有效性在数据—有效性设=countif(a:a,a1)=1选中a列设有效性就好了其他列耶可以急求excel随机生成数字的公式,取值要在38.90-44。
03之间,不允许重复出现,保留两位小数,不允许变藏=round(RAND()*5+38.9,2)公式下拉Excel随机数Excel具有强大的函数功能,使用Excel函数,可以轻松在Excel表格产生一系列随机数。
高中数学人教A版必修三课件3.2.2古典概型 (整数值)随机数的产生2

课堂篇探究学习
探究一
探究二
探究三
思维辨析
当堂检测
变式训练2从甲、乙、丙、丁4人中,任选3人参加志愿者活动,请
用随机模拟的方法估计甲被选中的概率.
解:用1,2,3,4分别表示甲、乙、丙、丁四人.
利用计算器或计算机产生1到4之间的随机数,每三个一组,每组
中数不重复,得到n组数,统计这n组数中含有1的组数m,则估计甲被
机产生的0或1,这样我们就很快就得到了100个随机产生的0,1,相当
于做了100次随机实验.
4.如果需要统计抛掷一枚质地均匀的骰子30次时各面朝上的频
数,但是没有骰子,你有什么办法得到实验的结果?
提示由计算器或计算机产生30个1~6之间的随机数.
课前篇自主预习
5.一般地,如果一个古典概型的基本事件总数为n,在没有实验条
321230
就相当于做了25次实验,在每组数中,如果恰有3个或3个以上的
数是0,则表示至少答对3道题,它们分别是
001003,030032,210010,112000,共有4组数,由此可得该同学6道选择
4
题至少答对3道的概率近似为 =0.16.
25
课堂篇探究学习
探究一
探究二
探究三
思维辨析
当堂检测
反思感悟如果事件A在每次实验中产生的概率都相等,那么可以
③则任取一球,得到白球的概率近似为 .
(2)步骤:
①利用计算器或计算机产生1到7之间的整数随机数,每三个数一
组(每组中数不重复),统计组数为n';
②统计这n组数中,每组三个数字均小于6的组数m';
′
③则任取三球,都是白球的概率近似为 .
[学习资料]高中数学 19(整数值)随机数(random numbers)的产生习题 新人教A版必修3
![[学习资料]高中数学 19(整数值)随机数(random numbers)的产生习题 新人教A版必修3](https://img.taocdn.com/s3/m/b243f02aeff9aef8941e06a5.png)
4.掷两枚均匀的正方体骰子,用随机模拟方法估计出现点数之和为10的概率时产生的整数随机数中,每几个数为一组( )
A.1 B.2
C.3 D.10
解析:要考察两枚均匀的正方体骰子得出的点数之和,故在产生的整数随机数中,应每两个数字一组.
答案:B
5.已知某运动员每次投篮命中的概率都等于40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率,先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了20组随机数.
答案:D
2.天气预报说,在今后的三天中,每三天下雨的情况不完全相同,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:用1,2,3,4表示下雨,从下列随机数表的第1行第2列开始读取直到末尾从而获得N个数据.据此估计,这三天中恰有两天下雨的概率近似为( )
19 07 96 61 91 92 52 71 93 28
5727 0293 7140 9857 0347 4373 8636
9647 1417 4698 0371 6233 2616 8045
6011 3661 9597 7424 6710 4281
据此估计,该射击运动员射击4次至少击中3次的概率为__________.
解析:由题意知模拟射击4次的结果,经随机模拟产生了20组随机数,在这20组随机数中表示射击4次至少击中3次的有:5727 0293 9857 0347 4373 8636 9647 4698 6233 2616 8045 3661 9597 7424 4281,共15组随机数.因此所求概率为 =0.75.
吉林省舒兰市第一中学高中数学人教A版导学案 必修三 3.3.2均匀随机数的产生

第一章 3.3.2 均匀随机数的产生编号022【学习目标】1.了解均匀随机数产生的方法与意义.2.会利用随机模拟试验估量几何概型的概率.【学习重点】如何利用均与随机数估量试验的概率.【基础学问】均匀随机数(1)产生方法:方法一,利用几何概型产生;方法二,用转盘产生;方法三,用______或______产生.(2)应用:利用均匀随机数可以进行随机模拟试验估量______的概率.【做一做】下列关于用转盘进行随机模拟的说法中正确的是()A.旋转的次数的多少不会影响估量的结果B.旋转的次数越多,估量的结果越精确C.旋转时可以按规律旋转D.转盘的半径越大,估量的结果越精确重难点突破:1.均匀随机数的产生剖析:产生均匀随机数和产生整数随机数的方法基本相同,都可以接受计算器和Excel软件产生,只是具体操作时所用的函数略有不同.下面以产生之间的均匀随机数为例来说明这种随机数的产生方法.(1)计算器法.比如我们要产生之间的均匀随机数,具体操作如下:(2)计算机法.比如首先打开Excel软件,在想要产生随机数的第一个单元格中输入“=rand()”,再按Enter键,这时就在此单元格中产生了一个之间的均匀随机数,选中此单元格“复制”,再点选其他单元格中的一个,拖动鼠标直到最终一个单元格,执行“粘贴”操作,这时就得到了若干个之间的均匀随机数.2.产生范围的均匀随机数剖析:我们知道rand()函数可以产生范围内的均匀随机数,但事实上我们需要用到的随机数的范围是各种各样的,下面就介绍如何将范围内的随机数转化为之间的随机数.初探:先利用计算器或计算机产生内的均匀随机数a1,由于0≤a1≤1,且b-a>0,所以0≤a1(b-a)≤b -a,∴a≤a1(b-a)+a≤b.探究结果:rand()*(b-a)+a表示之间的均匀随机数.特例:若0≤a1≤1,则-0.5≤a1-0.5≤0.5,即-1≤2(a1-0.5)≤1.所以当我们需要范围内的均匀随机数时,可以接受(rand()-0.5) 2,也可以接受2rand()-1来产生.【例题讲解】【例题1】在长为12 cm的线段AB上任取一点M,并以线段AM为边作正方形,用随机模拟方法求这个正方形的面积介于36 cm2与81 cm2之间的概率.反思:用随机模拟方法估量几何概型的步骤:①确定需要产生随机数的组数,如长度、角度型只用一组,面积型需要两组;②由基本大事空间对应的区域确定产生随机数的范围;③由大事A发生的条件确定随机数应满足的关系式;④统计大事A对应的随机数并计算A的频率来估量A的概率.【例题2】利用随机模拟方法计算图中阴影部分(曲线y=2x与x轴、x=±1围成的部分)的面积.反思:利用随机模拟方法估量图形面积的步骤是:①把已知图形放在平面直角坐标系中,将图形看成某规章图形(长方形或圆等)的一部分,并用阴影表示;②利用随机模拟方法在规章图形内任取一点,求出落在阴影部分的概率P (A )=N 1N ;③设阴影部分的面积是S ,规章图形的面积是S ′,则有S S ′=N 1N ,解得S =N 1N S ′,则所求图形面积的近似值为N 1NS ′.【达标检测】1.用计算器或计算机产生20个0~1之间的随机数x ,但是基本大事都在区间上,则需要经过的变换是( )A .y =3x -1B .y =3x +1C .y =4x +1D .y =4x -1 2.b 1是上的均匀随机数,b =3(b 1-2),则b 是区间________上的均匀随机数.3.利用随机模拟方法计算如图所示的阴影部分(y =x 3和x =2以及x 轴所围成的部分)的面积.步骤是:(1)利用计算器或计算机产生两组0到1之间的均匀随机数,a 1=RAND ,b 1=RAND ; (2)进行伸缩变换a =2a 1,b =8b 1;(3)数出落在阴影内的样本点数N 1(满足b <a 3的点(a ,b )的个数),用几何概型公式计算阴影部分的面积. 例如,做1 000次试验,即N =1 000,模拟得到N 1=250.由S S 阴影矩≈1N N ,得S 阴影≈________.4.取一根长度为3 m 的绳子,拉直后在任意位置剪断,用随机模拟方法求出剪得两段的长都不小于1 m 的概率.5.如图所示,在一个边长为3 cm 的正方形内部画一个边长为2 cm 的正方形,向大正方形内随机投点,用随机模拟的方法求所投的点落入小正方形内的概率.【问题与收获】基础学问答案:(1)计算机 计算器 (2)几何概型【做一做】 B 旋转时要无规律旋转,否则估量的结果与实际有较大的误差,所以C 项不正确;转盘的半径与估量的结果无关,所以D 项不正确;旋转的次数越多,估量的结果越精确,所以B 项正确,A 项不正确.例题答案:【例题1】 解:步骤:(1)用计算机产生一组内的均匀随机数,a 1=RAND . (2)经过伸缩变换,a =12a 1得到内的均匀随机数. (3)统计试验总次数N 和内随机数的个数N 1. (4)计算频率N 1N.记大事A ={面积介于36 cm 2与81 cm 2之间}={边长介于6 cm 与9 cm 之间},则P (A )的近似值为N 1N .【例题2】 解:步骤:(1)利用计算机产生两组内的均匀随机数,a 1=RAND ,b 1=RAND .(2)进行平移和伸缩变换,a =2(a 1-0.5),b =2b 1,得到一组内的均匀随机数和一组内的均匀随机数.(3)统计试验总数N 和落在阴影内的点数N 1.(4)计算频率N 1N ,即为点落在阴影部分的概率的近似值.(5)用几何概率公式求得点落在阴影部分的概率为P =S4,则N 1N =S 4. 故S =4N 1N ,即阴影部分面积的近似值为4N 1N .达标检测答案:1.D2. 0≤b 1≤1,则函数b =3(b 1-2)的值域是-6≤b ≤-3,即b 是区间上的均匀随机数.3.4 S 阴影≈1N N ·S 矩=2501000×2×8=4.4.分析:在任意位置剪断绳子,则剪断位置到一端点的距离取遍内的任意数,并且内的每一个实数被取到都是等可能的.因此在任意位置剪断绳子的全部结果(基本大事)对应上的均匀随机数,其中取得的内的随机数就表示剪断位置与端点距离在内,也就是剪得的两段长都不小于1 m .这样取得的内的随机数个数与内个数之比就是大事A 发生的频率.解:设剪得两段的长都不小于1 m 为大事A .(1)利用计算器或计算机产生一组0到1之间的均匀随机数,a 1=RAND . (2)经过伸缩变换,a =3a 1.(3)统计出内随机数的个数N 1和内随机数的个数N .(4)计算频率1N N 即为概率P (A )的近似值.5.解:设大事A ={所投点落入小正方形内}.①用计算机产生两组上的均匀随机数,a 1=RAND ,b 1=RAND .②经过平移和伸缩平移变换,a =3a 1-1.5,b =3b 1-1.5,得上的均匀随机数.③统计落入大正方形内的点数N (即上述全部随机数构成的点(a ,b )的个数)及落入小正方形内的点数N 1(即满足-1<a <1且-1<b <1的点(a ,b )的个数).④计算1N N ,即为概率P (A )的近似值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(二十) (整数值)随机数(random numbers )的产生
一、选择题
1.袋子中有四个小球,分别写有“巴”“西”“奥”“运”四个字,有放回地从中任取一个小球,取到“奥”就停止.用随机模拟的方法估计直到第二次才停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出的小球上分别写有“巴”“西”“奥”“运”四个字,以每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
13 24 12 32 43 14 24 32 31 21
23 13 32 21 24 42 13 32 21 34
据此估计,直到第二次才停止概率为( )
A.15
B.14
C.13
D.12
★★答案★★:B
2.用计算机模拟随机掷骰子的试验,估计出现2点的概率,下列步骤中不.
正确的是( ) A .用计算器的随机函数RANDI(1,7)或计算机的随机函数RANDBETWEEN(1,7)产生6个不同的1到6之间取整数值的随机数x ,如果x =2,我们认为出现2点
B .我们通常用计数器n 记录做了多少次掷骰子试验,用计数器m 记录其中有多少次出现2点,置n =0,m =0
C .出现2点,则m 的值加1,即m =m +1;否则m 的值保持不变
D .程序结束.出现2点的频率作为概率的近似值
★★答案★★:A
3.从3名男生和2名女生中任选3人参加演讲比赛,则这三人中恰有一名男生的概率是( ) A.310
B.35
C.25
D.13 ★★答案★★:A
4.从2,4,6,8,10这5个数中任取3个,则这三个数能成为三角形三边的概率是( ) A.25
B.710
C.310
D.35 ★★答案★★:C
5.甲、乙两人一起去游济南趵突泉公园,他们约定,各自独立地从1号到3号景点中任选2个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )
A.49
B.12
C.23
D.13
★★答案★★:D
二、填空题
6.某汽车站每天均有3辆开往省城的分为上、中、下等级的客车,某天袁先生准备在该汽车站乘车前往省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆.则他乘上上等车的概率为________.
解析:共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;
⑤下、中、上;⑥下、上、中(其中画横线的表示袁先生所乘的车),所以他乘坐上等车的概率为36
=12
. ★★答案★★:12
7.某小组有五名学生,其中三名女生、两名男生,现从这个小组中任意选出两名分别担任正、副组长,则正组长是男生的概率是________.
解析:从五名学生中任选两名,有10种情况,再分别担任正、副组长,共有20个基本事件,
其中正组长是男生的事件有8种,则正组长是男生的概率是820=25
. ★★答案★★:25
8.现有五个球分别记为A ,B ,C ,D ,E ,随机取出三球放进三个盒子,每个盒子只能放一个球,则D 或E 在盒中的概率是________.
解析:从5个球中取3个,有10种取法,再把3个球放入3个盒子,有6种放法,基本事件有60个,D 和E 都不在盒中含6个基本事件,则D 或E 在盒中的概率P =1-
660=910
. ★★答案★★:910
三、解答题
9.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
解:(1)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且
标号之和小于4的有3种情况,故所求的概率为P=3 10.
(2)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且
标号之和小于4的有8种情况,所以概率为P=8
15.
10.甲盒中有红、黑、白三种颜色的球各3个,乙盒子中有黄、黑、白三种颜色的球各2个,从两个盒子中各取1个球.
(1)求取出的两个球是不同颜色的概率;
(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).
解:(1)设A表示“取出的两球是相同颜色”,B表示“取出的两球是不同颜色”.
则事件A的概率为:P(A)=3×2+3×2
9×6
=
2
9.
由于事件A与事件B是对立事件,所以事件B的概率为:P(B)=1-P(A)=1-2
9=
7
9.
(2)随机模拟的步骤:
第1步:利用抽签法或计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N个随机数.用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球.
第2步:统计两组对应的N对随机数中,每对中两个数字不同的对数n.
第3步:计算n
N的值,则
n
N就是取出的两个球是不同颜色的概率的近似值.
11.先后随机投掷2枚正方体骰子,其中x 表示第1枚骰子出现的点数,y 表示第2枚骰子出现的点数.
(1)求点P (x ,y )在直线y =x -1上的概率;
(2)求点P (x ,y )满足y 2<4x 的概率.
解:(1)每颗骰子出现的点数都有6种情况,所以基本事件总数为6×6=36个. 记“点P (x ,y )在直线y =x -1上”为事件A ,A 有5个基本事件:
A ={(2,1),(3,2),(4,3),(5,4),(6,5)},
∴P (A )=536
. (2)记“点P (x ,y )满足y 2<4x ”为事件B ,则事件B 有17个基本事件:
当x =1时,y =1;
当x =2时,y =1,2;
当x =3时,y =1,2,3;
当x =4时,y =1,2,3;
当x =5时,y =1,2,3,4;
当x =6时,y =1,2,3,4.
∴P (B )=1736
.。