椭圆的定义及性质(PPT文档)
《椭圆及其标准方程》课件

感谢观看
THANKS
《椭圆及其标准方 程》ppt课件
目 录
• 椭圆的定义 • 椭圆的方程 • 椭圆的性质 • 椭圆的图像 • 椭圆的实际应用
01
椭圆的定义
椭圆的几何定义
01
椭圆是由平面内两个定点F1、F2 的距离之和等于常数(常数大于 F1、F2之间的距离)的点的轨迹 形成的图形。
02
两个定点F1、F2称为椭圆的焦点 ,焦点的距离c满足关系式: c²=a²-b²,其中a为椭圆长轴半径 ,b为短轴半径。
椭圆的范围
总结词
椭圆的范围是指椭圆被坐标轴所限制的范围。
详细描述
这意味着椭圆永远不会出现在坐标轴之外。在x轴上,椭圆的范围是从-a到a;在y轴上,椭圆的范围是从-b到b。 其中a和b是椭圆的长轴和短轴的半径。
椭圆的顶点
总结词
椭圆的顶点是指椭圆与坐标轴的交点 。
详细描述
椭圆的顶点是椭圆与x轴和y轴的交点 。这些点是椭圆的边界点,并且它们 位于椭圆的长轴和短轴上。具体来说 ,椭圆的顶点是(-a,0),(a,0),(0,-b) 和(0,b)。
小和形状。
平移变换
将椭圆在坐标系中移动,可以实现 椭圆的平移变换。平移变换不会改 变椭圆的大小和形状,只会改变椭 圆的位置。
旋转变换
通过旋转椭圆,可以实现椭圆的旋 转变换。旋转变换会改变椭圆的方 向,但不会改变椭圆的大小和形状 。
椭圆的图像应用
天文学
在天文观测中,行星和卫星的轨道通常可以用椭圆来近似 描述。通过研究椭圆的性质,可以更好地理解天体的运动 规律。
焦点位置
离心率
定义为c/a,其中c是焦点到椭圆中心 的距离,a是椭圆长轴的半径。离心率 越接近0,椭圆越接近圆;离心率越 大,椭圆越扁。
椭圆定义与性质(全)ppt课件

C
|CF1|+|CF2|=2a
F1
F2
D
练习
1 椭圆 x2 y2 1上一点P到一个焦点的距离为5, 25 9
则P到另一个焦点的距离为( A)
A.5
B.6 C.4
D.10
2.已知椭圆的方程为
x2 y2
1,焦点在X轴上,
则其焦距为(A) 8 m2
A 2 8 m2
B 2 2 2m
C 2 m2 8
两边除以 a 2b 2得
x2 a2
by22
1(ab0).
椭圆的标准方程
y
M
焦点在x轴:
x2 a2
y2 b2
1ab0
F1 o F2 x
(xc)2y2(xc)2y22a
焦点在y轴:
y2 a2
bx22
1(ab0)
y
F2
M
ox
F1
(yc)2x2(yc)2x22a
总体印象:对称、简洁,“像”直线方程的截距 式
1
(ab0)
∵ c=2,且 c2= a2 - b2 ∴ 4= a2 - b2 ……①
y
又∵椭圆经过点 3 ,5
∴
(52)2 a2
( 23)2 b2
1
2
2
……②
联立①②可求得:a2 10,b2 6
∴椭圆的标准方程为 y2 x2 1 10 6
P
F2
x
F1
(法二) 因为椭圆的焦点在y轴上,所以设它的
设点 设M(x,y)是曲线上任意一点; 列式 由限制条件,列出几何 等 式,写出适
合条件P的点M的集合P={M|P(M)}
代换 用坐标法表示条件P(M),列出方程 化简 f(x,y)=0,化简方程f(x,y)=0.
椭圆的课件ppt

对于长轴在y轴上的椭圆,参 数方程为:$x=bsintheta$,
$y=acostheta$。
其中,$theta$为参数,表示 椭圆上的点与长轴之间的夹角。源自05椭圆的作图方法
椭圆的基本作图方法
定义法
根据椭圆的定义,通过两个固定 点(焦点)和一根线段(焦距) 来绘制椭圆。
椭圆的任意两个不同点与椭圆中 心的连线形成的角为直角或锐角
。
椭圆的参数方程
椭圆的参数方程为 $x = a cos theta, y = b sin theta$,其中 $theta$ 是参数。
该方程描述了椭圆上任意一点 $P$ 的坐标与参数 $theta$ 的 关系。
通过参数方程,可以方便地研 究椭圆的几何性质和运动轨迹 。
离心率与长短轴关系
离心率与长短轴之间存在反比关系,即长轴越短,离心率越大;短轴 越短,离心率越小。
椭圆的对称性
对称性定义
椭圆关于坐标轴和原点对 称。
对称轴
椭圆有两条对称轴,分别 是长轴和短轴所在的直线 。
对称中心
椭圆的中心称为对称中心 ,是椭圆上任意一点关于 对称轴的对称点。
03
椭圆的几何应用
椭圆在几何图形中的应用
当 $a > b$ 时,椭圆呈横向;当 $a < b$ 时,椭圆呈纵向。
该方程描述了一个平面上的二维椭圆 ,其中心位于原点,长轴位于x轴上。
椭圆的几何性质
椭圆是一个封闭的二维曲线,由 两个焦点和其上的所有点组成。
椭圆的两个焦点到任意一点 $P$ 的距离之和等于椭圆的长轴长度 ,即 $|PF_1| + |PF_2| = 2a$。
01
椭圆在几何图形中可以作为椭圆 形的绘制基础,如椭圆形的车轮 、椭圆形的镜子等。
椭圆的简单几何性质课件

椭圆的简单几何性质课件椭圆的简单几何性质椭圆,作为一种常见的几何形状,具有许多有趣的性质和特点。
在这篇文章中,我们将探讨椭圆的一些简单几何性质,帮助读者更好地理解和应用椭圆。
一、椭圆的定义和基本元素椭圆是指平面上到两个固定点F1和F2的距离之和等于常数2a的点的轨迹。
这两个固定点称为焦点,连接两个焦点的线段称为主轴,主轴的中点称为椭圆的中心。
椭圆的两个焦点与中心之间的距离称为焦距,记为c。
椭圆的长轴长度为2a,短轴长度为2b,其中a大于b。
二、椭圆的离心率和焦半径椭圆的离心率是一个重要的参数,用e表示。
离心率的定义是焦距与长轴长度的比值,即e=c/a。
离心率可以用来描述椭圆的扁平程度,当离心率接近于0时,椭圆趋近于圆形;当离心率接近于1时,椭圆趋近于直线。
与离心率相关的概念是焦半径。
焦半径是指从椭圆上的任意一点到两个焦点的距离之和,记为r。
根据焦半径的定义,我们可以得到一个重要的结论:椭圆上的任意一点到两个焦点的距离之和等于2a,即r=2a。
三、椭圆的方程和参数方程椭圆的方程是描述椭圆上的点的数学表达式。
椭圆的标准方程是(x-h)^2/a^2+(y-k)^2/b^2=1,其中(h,k)是椭圆的中心坐标。
根据椭圆的定义,我们可以得到一个重要的性质:椭圆上的任意一点到中心的距离与椭圆的长轴、短轴长度之间存在一定的关系,即(x-h)^2/a^2+(y-k)^2/b^2=1。
除了标准方程,椭圆还可以用参数方程来表示。
参数方程是通过引入一个参数t,将椭圆上的点的坐标表示为x=a*cos(t)+h,y=b*sin(t)+k。
参数方程的优点是可以方便地描述椭圆上的点的运动和变化。
四、椭圆的性质和应用椭圆具有许多有趣的性质和应用。
首先,椭圆是一个闭合曲线,它的形状稳定且对称。
其次,椭圆上的点到两个焦点的距离之和是常数,这个性质可以应用于天文学中的行星轨道计算、卫星轨道设计等领域。
此外,椭圆还有许多与切线、法线、对称性等相关的性质。
椭圆的简单几何性质ppt课件

由 e 1 ,得 1 k 1 ,即 k 5 .
2
94
4
∴满足条件的 k 4 或 k 5 .
4
例3:酒泉卫星发射中心将一颗人造卫星送入到 距地球表面近地点(离地面 近的点)高度约200km, 远地点(离地面最远的点)高度约350km的椭圆轨 道(将地球看作一个球,其半径约为6371km),求 椭圆轨道的标准方程。(注:地心(地球的中心)位
2.椭圆的标准方程
标准方程 图形
焦点在x轴上
x2 + y2 = 1a > b > 0
a2 b2
y P
F1 O F2
x
焦点在y轴上
x2 + y2 = 1a > b > 0
b2 a2
y
F2
P
O
x
F1
焦点坐标 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
分别叫做椭圆的长轴和短轴。 A1
o
A2 x
B2(0,-b)
a、b分别叫做椭圆的长半轴长和短半轴长。
思考:椭圆的焦点与椭圆的长轴、短轴有什么关系? 焦点落在椭圆的长轴上
椭圆的简单几何性质
长轴:线段A1A2; 长轴长
短轴:线段B1B2; 短轴长
注意
焦距
|A1A2|=2a |B1B2|=2b |F1F2| =2c
y
B2(0,b)
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
A2 (a, 0)
长半轴长和短半轴长;
F1 a
o c F2 x
② a2=b2+c2,|B2F2|=a;
B1(0,-b)
椭圆的定义课件(2023版ppt)

椭圆的离心率为e = c/a,
04 其中c为椭圆的焦距,a
为椭圆的长半轴
椭圆的图形表示
椭圆的图形特征
椭圆是一种封闭的曲线图形,由两个焦点和
01
一条长轴组成。
椭圆的形状可以根据长轴和短轴的长度比例来
02
变化,当长轴和短轴相等时,椭圆变为圆。
椭圆上任意一点到两个焦点的距离之和是常
03
数,这个常数叫做椭圆的焦距。
01
02
03
04
椭圆的性质与定理
椭圆的性质
椭圆的定义:平面 内到两个固定点的 距离之和等于常数 的点的轨迹
椭圆的焦点:椭圆 的两个固定点,决 定了椭圆的形状和 大小
椭圆的离心率:椭 圆焦点到椭圆中心 的距离与椭圆长轴 长度的比值,决定 了椭圆的扁平程度
椭圆的顶点:椭圆 与坐轴的交点, 决定了椭圆的位置 和方向
2
椭圆在物理学中 的应用:椭圆轨 道、椭圆振动等
3
椭圆在工程学中 的应用:椭圆形 建筑、椭圆形管
道等
4
椭圆在艺术设计 中的应用:椭圆 形构图、椭圆形
图案等
谢谢
椭圆的周长与面积可以通 过公式计算
椭圆的离心率决定了椭圆 的形状
椭圆的焦点决定了椭圆的 位置和方向
椭圆的方程
椭圆的标准方程:
x^2/a^2 + y^2/b^2 01
=1
椭圆的焦点在x轴和y轴
上的坐标分别为(a,0)和 03
(0,b)
椭圆的顶点坐标为(a,0) 05
和(0,b)
02
a和b分别表示椭圆的长 半轴和短半轴
椭圆的性质:椭圆具
2 有对称性、周期性、 可积性等性质,这些 性质在几何应用中具 有重要作用。
椭圆ppt课件

02
椭圆的绘制方法
几何法绘制椭圆
固定两点法
选取两个固定点,利用细线、笔 和画板,通过细线两端分别绕两 个固定点旋转绘制椭圆。
圆心与半径法
选取一个圆心,以不同半径分别 用圆规画出两个相交的圆,连接 两个交点得到椭圆的长短轴,再 绘制椭圆。
代数法绘制椭圆
标准方程法
根据椭圆的标准方程,确定长短轴长度和中心位置,利用坐标纸和直尺绘制椭圆 。
椭圆的几何性质
焦点
椭圆有两个焦点,它们位于长轴上,距离原点分别为c。
长轴和短轴
椭圆有两条对称轴,分别是长轴和短轴。长轴通过两个焦 点,短轴与长轴垂直。长轴长度为2a,短轴长度为2b。
离心率
椭圆的离心率e定义为c/a,它描述了椭圆的扁平程度。 0<e<1时,椭圆越扁平;e=0时,椭圆变为圆;e>1时, 椭圆不存在。
椭圆形储罐
椭圆形储罐结构受力均匀 ,节省材料,常用于石油 、化工等行业的聚焦于一点,应用于望 远镜、卫星天线等光学设 备中。
经济学中椭圆的应用
生产可能性边界
生产可能性边界呈椭圆形,表示 在一定资源和技术条件下,两种
产品最大可能产量的组合。
效用函数
在消费者选择理论中,效用函数常 用椭圆函数形式来描述消费者在无 差异曲线上的偏好。
参数方程法
根据椭圆的参数方程,设定参数范围和步长,利用计算器或计算机软件生成椭圆 上的离散点,再连接成椭圆。
电脑绘图软件绘制椭圆
绘图软件工具
使用绘图软件中的椭圆工具,通过鼠标点击和拖动直接在画 布上绘制椭圆。
自定义绘制
利用绘图软件的编程功能,编写自定义的椭圆绘制程序,实 现更复杂的椭圆绘制需求。
03
椭圆的应用举例
椭圆的性质课件

椭圆的性质课件椭圆的性质椭圆是数学中一种重要的几何图形,它具有许多独特的性质和特点。
在本文中,我们将探讨椭圆的性质,包括其定义、方程、焦点、直径和切线等方面。
一、椭圆的定义和方程椭圆可以通过一对焦点和到焦点距离之和等于常数的点的集合来定义。
具体而言,给定两个焦点F1和F2,以及一个正常数2a(a>0),椭圆是满足以下条件的点P的集合:PF1 + PF2 = 2a。
椭圆的方程可以通过焦点和到焦点距离之和的定义来推导。
假设椭圆的焦点分别为F1(c,0)和F2(-c,0),其中c为正常数。
椭圆上的任意一点P(x,y)到焦点F1和F2的距离分别为PF1和PF2,根据定义,我们有PF1 + PF2 = 2a。
根据距离公式,我们可以得到椭圆的方程:√[(x-c)²+y²] + √[(x+c)²+y²] = 2a二、椭圆的焦点和直径椭圆的焦点是椭圆上特殊的点,它们对于椭圆的性质起着重要的作用。
根据椭圆的定义,焦点F1和F2分别位于椭圆的长轴上,并且到焦点距离之和等于常数2a。
椭圆的中点O为焦点F1和F2连线的中点,也是椭圆的对称中心。
椭圆的直径是椭圆上通过中心点O的线段,且两端点都在椭圆上。
椭圆的长轴是通过焦点F1和F2的直径,而短轴是与长轴垂直的直径。
椭圆的长轴长度为2a,短轴长度为2b。
三、椭圆的切线和法线椭圆上的切线是与椭圆相切的直线,它与椭圆的曲线只有一个交点。
椭圆上的任意一点P处的切线可以通过求解椭圆的方程和切线的斜率来确定。
根据导数的定义,我们可以得到椭圆上任意一点P(x,y)处的切线的斜率为:dy/dx = -x/√[(a²-x²)/b²]椭圆上的法线是与切线垂直的直线,它与切线的交点为切点。
椭圆上任意一点P处的法线可以通过求解椭圆的方程和法线的斜率来确定。
根据切线的斜率和法线的斜率的关系,我们可以得到椭圆上任意一点P(x,y)处的法线的斜率为:dy/dx = √[(a²-x²)/b²]/x四、椭圆的性质和应用椭圆具有许多重要的性质和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o
x
F1
a2 b2
看分母大小
2a>2c,a2=b2+c2,a>0,b>0,c>0
三.椭圆的几何性质
让我们一起研究标准方程为:标准方程
为x :2
a2
y2 b2
的椭圆的性质 1(a b 0) 的椭圆的性质
首先,我们有: 2a>2c,a2=b2+c2, a>0,b>0,c>0
y
F1
F2
x
条件
标准方程
2a>2c,a2=b2+c2,a>0,b>0,c>0
x2
y2
a 2 b2 1(a b 0)
y2 x2 a2 b2 1(a b 0)
图形
范围 对称性
顶点 焦点 焦距
离心率
a x a, b y b
曲线关于x轴、 y轴、原点对称
长轴顶点(±a,0) 短轴顶点(0,±b)
因此 焦点F1 (-c,0)、 F2 (c,0)
y
O
x
把椭圆的焦距与长轴长的比叫作椭圆 的离心率,用e表示,即 e c a
y x
O
所以 e∈(0,1) e越接近于0,椭圆越圆;e越接近于1,椭圆越扁.
椭圆的标准方程及其简单几何性质
条件
标准方程
2a>2c,a2=b2+c2,a>0,b>0,c>0
那么 k 等于
(A)-1
(B)1
( B)
(C) 5
(D)- 5
y2
解析:椭圆方程化为 x2+ 5 =1, k
由题意知
5 k 5
1, 1
22 ,
解得
k=1.
k
4.已知方程 x2 y2 =1 表示焦点在 x 轴上的椭圆, m2 2 m
D 则 m 的取值范围是( )
椭圆的一个顶点,则椭圆的方程为
.
解析:设椭圆的方程为
x2 a2
y2 b2
c
a
3 5
=1(a>b>0),则已知 b 4,
a2 b2
c2,
a 5, 解得 b 4,
c 3,
所以椭圆方程为 x2 y2 =1. 25 16
小结:椭圆的标准方程及其简单几何性质
a y a, b x b
(0,-c)和(0,c)
基础自测
1. 已知椭圆 x2 + y 2 =1 上一点 P 到一个焦点的距离为 2,则 P 到 95
B 另一个焦点的距离为( )
(A)1
(B)4
(C)2
(D)2 5 -2
解析: 由椭圆方程得 a=3, 由椭圆定义知 PF1 PF2 2a
5
则椭圆的方程为 45 36 .
解析:由题意可设椭圆方程为 x2 y2 =1, a2 b2
则
1
b2 a2
5, 5
25 a2
16 b2
1,
解方程组得
a2
b
2
45, 即椭圆方程为
36.
x2 45
y2 36
=1.
=1. 6.已知椭圆的焦点在 x 轴上,离心率为 3 ,直线 x+y-4=0 与 y 轴的交点为 5
(-c,0)和(c,0)
a y a, b x b
曲线关于x轴、 y轴、原点对称 长轴顶点(0,±a) 短轴顶点(±b,0)
(0,-c)和(0,c)
2.当2a=2c时,轨迹是一条线段, 是以 F1、F2为端点的线段. 3.当2a<2c时,无轨迹,图形不存在. 4.当c=0时,轨迹为圆.
二.椭圆的标准方程
(1)焦点在x轴
x2 a2
y2 b2
=1(a
b
0)
y
P
F1 o
F2 x
(2)焦点在y轴
ห้องสมุดไป่ตู้
y
F2
P
y2 x2 =1(a b 0)
椭圆
一.椭圆的定义
平面内与两个定点F1、F2的距离 之和等于常数2a(大于∣F1F2∣)的 点的轨迹叫椭圆. 这两个定点F1、F2叫椭圆的焦点. 两焦点的距离∣F1F2∣叫椭圆的焦距 (2c).
1.动画演示
2.椭圆定义的符号表述:
PF1 PF2 2a
(2a>2c)
注意:1.当2a>2c时,轨迹是椭圆
y
横坐标的范围:
B2
-a x a
A1 F1 O
A2
F2
x
纵坐标的范围:
B1
-b y b
由式子 x 2 y 2 1 知 a2 b2
x2 a2 1
所以 x2 a2 从而:-a x a
我们把两焦点F1、F2 的距离叫椭圆的焦距
∣F1F2∣=2c
所以∣OF1∣= ∣OF2∣=c
(A)(-∞,-1)∪(2,+∞)
(B)(-2,+∞)
(C)(-1,2)
(D)(-2,-1)∪(2,+∞)
解析:由题意得
m2
2
m,
2 m 0,
解得 m>2 或-2<m<-1.
5.已知椭圆中心在原点,焦点在 x 轴上,离心率为 5 ,且过点 P(-5,4),
x2 y2 =1
椭圆关于x轴、y轴、原点对称.
yy B2
AA11
AA2 2
O O
x
在
x2 a2
y2 b2
BB11
1中令y=0, 可得x= a
从而:A1(-a,0),A2(a,0)
同理:B1(0, -b),B2(0, b)
y
B2
A1
A2
O
x
B1
线段A1A2叫椭圆的长轴: 长为2a 线段B1B2叫椭圆的短轴: 长为2b
所以P到另一个焦点的距离 为6-2=4.
D 2.椭圆 x2 y2 =1 的离心率为( )
16 8
(A) 1 3
(B) 1 2
(C) 3 (D) 2
3
2
解析:由椭圆方程知 a2=16,b2=8,
∴c2= a2 - b2=16-8=8, ∴e= c 2 2 2 .
a4 2
3.已知椭圆 5x2+ky2=5 的一个焦点坐标为(0,2),
x2
y2
a 2 b2 1(a b 0)
y2 x2 a2 b2 1(a b 0)
图形
对称性 顶点
范围
焦点 焦距
离心率
曲线关于x轴、 y轴、原点对称 长轴顶点(±a,0) 短轴顶点(0,±b)
a x a, b y b
(-c,0)和(c,0)
曲线关于x轴、 y轴、原点对称 长轴顶点(0,±a) 短轴顶点(±b,0)