第3章材料成形热过程
第三章粉末冶金

第三章成形 d.弹性后效
加载(或卸载)后经过一段时间应变才增加(或减小)到一定数值的 现象。压制过程中,当卸掉压制力并把坯块从模具内取出后,由于弹性 内应力的作用,坯块发生弹性膨胀,这种现象称为弹性后效。
a.粉末颗粒发生位移,填充孔隙,施加压力,密度增加很快; b.密度达到一定值后,粉末体出现一定压缩阻力,由于位移大大减少, 而变形尚未开始,压力增加,但密度增加很少; c.当压力超过粉末颗粒的临界应力时,粉末颗粒开始变形,使坯块密度 继续增大。
图3-10坯块密度的变化规律
第三章成形
(5)压制压力与坯块相对密度的关系 相对密度指物质的密度与参考物质的密度在各自规定的条件下之比,
第三章成形
退火温度: T退 (0.5 ~ 0.6)T熔
退火气氛: a.还原性气氛(氢、离解氨、转化天然气或煤气) b.惰性气氛 c.真空退火
第三章成形
(2)混合 a.混合:将两种或两种以上不同成分的粉末混合 b. 将相同成分而粒度不同的粉末混合(合批) 混合方法:机械法(干混、湿混)和化学法 机械法:干混用于生产铁基制品;湿混用于生产硬质合金。混料设备有
a.普通模压法:将粉末装在模具内,用压机将其成形; b.特殊方法:等静压成形、连续成形、无压成形等。
第三章成形
1.成形前原料准备 (1)退火
将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通 常是缓慢冷却,有时是控制冷却)的一种金属热处理工艺。
金属粉末退火的目的: a.氧化物还原,降低碳和其它杂质的含量,提高粉末的纯度; b.消除粉末的加工硬化,稳定粉末的晶体结构; c.防止超细粉末自燃,将其表面钝化。 加工产品退火的目的: a.降低硬度,改善切削加工性; b.消除残余应力,稳定尺寸,减少变形与裂纹倾向; c.细化晶粒,调整组织,消除组织缺陷。
材料成形基本原理课后习题答案

第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。
金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。
由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。
2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。
N1 表示参考原子周围最近邻(即第一壳层)原子数。
r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。
3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。
答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。
近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。
晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。
而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。
工程材料课后习题答案 (2)

参考答案第1章机械工程对材料性能的要求思考题与习题P201.3、机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用?p4工程构件与机械零件(以下简称零件或构件)在工作条件下可能受到力学负荷、热负荷或环境介质的作用。
有时只受到一种负荷作用,更多的时候将受到两种或三种负荷的同时作用。
在力学负荷作用条件下,零件将产生变形,甚至出现断裂;在热负荷作用下,将产生尺寸和体积的改变,并产生热应力,同时随温度的升高,零件的承载能力下降;环境介质的作用主要表现为环境对零件表面造成的化学腐蚀,电化学腐蚀及摩擦磨损等作用。
1.4 整机性能、机械零件的性能和制造该零件所用材料的力学性能间是什么关系?p7机器的整机性能除与机器构造、加工与制造等因素有关外,主要取决于零部件的结构与性能,尤其是关键件的性能。
在合理而优质的设计与制造的基础上,机器的性能主要由其零部件的强度及其它相关性能来决定。
机械零件的强度是由结构因素、加工工艺因素、材料因素和使用因素等确定的。
在结构因素和加工工艺因素正确合理的条件下,大多数零件的体积、重量、性能和寿命主要由材料因素,即主要由材料的强度及其它力学性能所决定。
在设计机械产品时,主要是根据零件失效的方式正确选择的材料的强度等力学性能判据指标来进行定量计算,以确定产品的结构和零件的尺寸。
1.5常用机械工程材料按化学组成分为几个大类?各自的主要特征是什么?p17机械工程中使用的材料常按化学组成分为四大类:金属材料、高分子材料、陶瓷材料和复合材料。
1.7、常用哪几种硬度试验?如何选用P18?硬度试验的优点何在P11?硬度试验有以下优点:●试验设备简单,操作迅速方便;●试验时一般不破坏成品零件,因而无需加工专门的试样,试验对象可以是各类工程材料和各种尺寸的零件;●硬度作为一种综合的性能参量,与其它力学性能如强度、塑性、耐磨性之间的关系密切,由此可按硬度估算强度而免做复杂的拉伸实验(强韧性要求高时则例外);●材料的硬度还与工艺性能之间有联系,如塑性加工性能、切削加工性能和焊接性能等,因而可作为评定材料工艺性能的参考;●硬度能较敏感地反映材料的成分与组织结构的变化,故可用来检验原材料和控制冷、热加工质量。
材料成型技术基础第2版课后习题答案

第一章金属液态成形1.①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。
②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。
流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。
③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。
④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。
2.浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。
3.缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。
缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。
4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。
浇不足是沙型没有全部充满。
冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。
出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。
而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。
逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。
定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。
5.定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。
铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,称作同时凝固。
材料成型原理(材料成形热过程) 资料习题

材料成型原理(材料成形热过程) 资料习题1、与热处理相比,焊接热过程有哪些特点?答:(1)焊接过程热源集中,局部加热温度高(2)焊接热过程的瞬时性,加热速度快,高温停留时间短(3) 热源的运动性,加热区域不断变化,传热过程不稳定。
2、影响焊接温度场的因素有哪些?试举例分别加以说明。
•热源的性质•焊接工艺参数•被焊金属的热物理性质•焊件的板厚和形状3、何谓焊接热循环?答:焊接热循环:在焊接热源的作用下,焊件上某点的温度随时间的变化过程,即焊接过程中热源沿焊件移动时,焊件上某点温度由低而高,达到最高值后,又由高而低随时间的变化。
焊接热循环具有加热速度快、峰值温度高、冷却速度大和相变温度以上停留时间不易控制的特点3、焊接热循环的主要参数有哪些?它们对焊接有何影响?•加热速度•峰值温度•高温停留时间•冷却速度 或 冷却时间决定焊接热循环特征的主要参数有以下四个:(1)加热速度ωH 焊接热源的集中程度较高,引起焊接时的加热速度增加,较快的加热速度将使相变过程进行的程度不充分,从而影响接头的组织和力学性能。
(2)峰值温度Tmax 。
距焊缝远近不同的点,加热的最高温度不同。
焊接过程中的高温使焊缝附近的金属发生晶粒长大和重结晶,从而改变母材的组织与性能。
(3)相变温度以上的停留时间t H 在相变温度T H 以上停留时间越长,越有利于奥氏体的均匀化过程,增加奥氏体的稳定性,但同时易使晶粒长大,引起接头脆化现象,从而降低接头的质量。
(4)冷却速度ωC (或冷却时间t 8 / 5) 冷却速度是决定焊接热影响区组织和性能的重要参数之一。
对低合金钢来说,熔合线附近冷却到540℃左右的瞬时冷却速度是最重要的参数。
也可采用某一温度范围内的冷却时间来表征冷却的快慢,如800~500℃的冷却时间t 8 / 5,800~300℃的冷却时间t 8/3,以及从峰值温度冷至100℃的冷却时间t 100。
5、焊接热循环中冷却时间5/8t 、3/8t 、100t 的含义是什么?焊接热循环中的冷却时间5/8t 表示从800︒C 冷却到500︒C 的冷却时间。
第三章 材料的力学行为习题参考答案

第三章材料的力学行为习题参考答案一、解释下列名词1、加工硬化2、回复3、再结晶4、热加工5、冷加工答:1、加工硬化:随着塑性变形的增加,金属的强度、硬度迅速增加;塑性、韧性迅速下降的现象。
2、回复:加热温度较低时,变形金属中的一些点缺陷和位错,在某些晶内发生迁移变化的过程。
3、再结晶:被加热到较高的温度时,原子也具有较大的活动能力,使晶粒的外形开始变化。
从破碎拉长的晶粒变成新的等轴晶粒。
和变形前的晶粒形状相似,晶格类型相同,把这一阶段称为“再结晶”。
4、热加工:将金属加热到再结晶温度以上一定温度进行压力加工。
5、冷加工:在再结晶温度以下进行的压力加工。
二、填空题1、塑性变形的方式主要有滑移和孪生,而大多数情况下是滑移。
2、滑移常沿晶体中原子密度最大的晶面及晶向发生。
3、在体心立方晶格中, 原子密度最大的晶面是{110},有 6 个,原子密度最大的晶向是<111>,有2个;在面心立方晶格中, 原子密度最大的晶面是{111},有 4 个,原子密度最大的晶向是<111>,有3个。
两者比较,具有面心立方晶格的金属塑性较好,其原因是滑移系和滑移方向多。
4、多晶体金属的塑性变形由于受到晶界和晶粒位向的影响,与单晶体金属相比,塑性变形抗力增大。
5、金属在塑性变形时,随变形量的增加,变形抗力迅速增大,即强度、硬度升高,塑性、韧性下降,产生所谓加工硬化现象。
这种现象可通过再结晶加以消除。
6、变形金属在加热时,会发生回复、再结晶和晶粒长大三个阶段的变化。
7、冷绕成形的钢质弹簧,成形后应进行回复退火,温度约为250~300℃。
8、回复退火也称去应力退火。
9、冷拉拔钢丝, 如变形量大, 拉拔工序间应穿插再结晶退火,目的是消除加工硬化。
10、热加工与冷加工的划分应以再结晶温度为界线。
在再结晶温度以下的塑性变形称为冷加工;在再结晶温度以上的塑性变形称为热加工。
三、简答题1、产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊?答:⑴随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。
焊接成型技术

第三章焊接成型技术☆定义:用加热或加压等手段,借助金属原子的结合与扩散作用,使分离的金属材料牢固地连接起来的方法。
☆分类:☆特点:1.接头牢固密封性好2。
可化大为小,以小拼大 3.可实现异种金属的连接4.重量轻加工装配简单 5.焊接结构不可拆卸6.焊接应力变形的,接头易产生裂纹、夹渣、气孔等缺陷一、焊接成形的理论基础1.电弧焊过程加热→融化→冶金反应→结晶→固态相变→形成接头2焊接电弧1)形成焊接电弧:焊接电源供给的,是具有一定电压的两极间或电极与焊件间,在气体介质中产生的强烈而持久的放电现象.电弧实质是一种气体放电现象。
a)当焊条与焊件间有足够电压时,接触时,相当于电弧焊电源短路,接触点及短路电流很大,产生大量的电阻热,使金属熔化,汽化,引起强烈的电子发射和气体电离。
b)焊条与焊件拉开一点距离,由于电源电压的作用,在这段距离内会形成很强的电场,促使产生的电子发射,同时加速气体的电离,使带电粒子在电场力作用下定向运动.c)电弧焊电源不断共给电能,新的带电粒子不断得到补充,形成连续燃烧的电弧。
2)电弧的组成及热量分布阴极区:发射大量电子消耗一定能量,36% ,2400k阳极区:高速电子的撞击,传入较多能量,42%,2600k弧柱区:21% ,5000—8000k3)电弧的极性直流电源:①正接极:焊接较厚材料,将焊件接正极;②反接极:焊接较薄材料,将焊件接负极。
交流电源:极性交替变化,阴阳极区的温度和热量分布基本相等。
3.焊接电弧热过程特点及影响1)特点①焊接时的加热不是焊件的整体受热,而是加热局部区域,因此,对于整个焊件来说,受热极不均匀。
②焊接热过程是一个瞬时进行的过程,由于在高度集中的热源作用下,加热速度极快。
③焊接热过程中的热源是相对运动着的,由于焊接时焊件受热的区域不断变化,使得其传热过程不稳定。
2)焊接热过程对焊接质量和焊接生产率的影响①焊接时,熔池金属会与气体发生反应,从而改变金属的化学成分,而在冷却凝固时得到不同的组织,使焊缝金属产生缺陷进而使其性能发生很大变化。
工程材料与材料成型技术教案

教案(理论课)2010~2011学年第2学期课程名称工程材料与成形技术基础教学系机械工程系授课班级焊接091主讲教师晏丽琴职称讲师培黎工程技术学院二○一一年二月课程基本情况系主任:年月日目录第一章绪论第一节材料加工概述一、材料加工概述二、材料加工的基本要素和流程第二节材料成形的一些基本问题和发展概况一、凝固成形的基本问题和发展概况二、塑性成形的基本问题和发展概况三、焊接成形的基本问题和发展概况四、表面成形的基本问题和发展概况第三节本课程的性质和任务绪论学习思考问题·材料加工的基本要素和流程是什么?·材料成形存在的基本问题是什么?·本课程的性质和基本任务是什么?一、材料加工概述任何机器或设备,都是由许许多多的零件装配而成的。
这些零件所用材料有金属材料,也有非金属材料。
零件或材料的加工方法多种多样,归纳起来有以下4类:(1)成形加工:用来改变材料的形状尺寸,或兼有改变材料的性能。
主要有凝固成形、塑性成形、焊接成形、粉末压制和塑料成形等。
(2)切除加工:用于改变材料的形状尺寸,主要有车、铣、刨、钻、磨等传统的切削加工,以及直接利用电能、化学能、声能、光能进行的特殊加工,如电火花加:[、电解加工、超声加工和激光加工等。
(3)表面成形加工:用来改变零件的表面状态和(或)性能,如表面形变及淬火强化、化学热处理、表面涂(镀)层和气相沉积镀膜等。
(4)热处理加工:用来改变材料或零件的性能,如退火、正火、淬火和回火等。
根据零件的形状尺寸特征、工作条件及使用要求、生产批量和制造成本等多种因素,选择零件的加工方法,以达到技术上可行、质量可靠和经济上合理。
零件制成后再经过检验、装配、调试,最终得到整机产品。
二、材料加工的基本要素和流程材料加工方法的种类虽然繁多,但通过对每种材料加工方法的过程分析表明,它们都可以用建立在少数几个基本参数基础上的统一模式来描述。
该模式便于对各种加工方法进行综合分析和横向比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3-4 焊接成形热过程 焊接热循环 800500℃冷却时间τ8/5实测值与计算值对比(低合金钢埋弧焊)
防止氧 化和脱 碳的措 施
采用快速加热
电感应加热 接触加热
控制炉气的性质 减少空气过剩量 减少水分
采用介质保护加热
气体保护介质 液体保护介质 固体保护介质
3-3 焊接成形热过程
§3-3 焊接成形热过程---焊接温度场
• 根据焊件的厚度和尺寸形状,传热的 方式可以简化为: 1) 厚大焊件—点状热源—三维温度 场
高温阶段,各种钢的 热扩散率基本趋于一 致,都较低。但高温 阶段钢具有良好的塑 形,加热引起的应力 并无危险,此时均可 快速加热。
§3-2 塑性成形热过程
2.钢在加热过程中的氧化及脱碳
氧化铁皮形成过程
§3-2 塑性成形热过程
影响氧化 的因素
炉气性质 加热温度 加热时间 钢的化学成分
§3-2 塑性成形热过程
冲天炉热 效率 30%50%
预热区 20% 熔化区 60% 过热区7%
§3-1 凝固成形热过程
二、冷却凝固的热过程特点及效率
铸件成形温度场的简化 一维导热铸件凝固过程,将铸件和铸 型的温度分布用直线近似: 铸件中的导热热流密度: q1=△T1λs/x1 铸件与铸型界面换热热流密度: q2=αi △T2 铸型中的导热热流密度: q3= △T3λM/x2
钢种
相变点
平衡状 态/ ℃
45号
AC1
730
AC3
770
40Cr
AC1
740
AC3
780
23Mn
AC1
735
AC3
830
AC1
740
30CrMnSi
AC3
820
AC1
710
18Cr2WV
AC3
810
加热速度ωH/( ℃ /s)
6-8
40-50
250300
14001700
770
775
790
840
820
§3-4 焊接成形热过程---焊接热循环
离焊缝不同距离各点的焊接热循环
焊接的加热不均匀性是导致焊接接头组织不均匀性 和性能不均匀性的重要原因
§3-4 焊接成形热过程---焊接热循环
回顾:铁碳合金相图
A
B
H
L
1400 N J
1200
L+A
A
E
C
1000 G A+F
800
Acm线
A+Fe3C
FP S
600
Q
A3线
400
A1线
F+Fe3C
200
Fe
1
2
3 w(c)% 4
5
D L+Fe3C
F
K
Fe3C
6 6.69
§3-4 焊接成形热过程---焊接热循环
单层电弧焊和电渣焊低合金钢时近缝区热循环参数
焊接方 法
钨极氩 弧焊
埋弧自 动焊
电渣焊
板厚 /mm
1 2
3 5 10 15 25
50 100 100 220
脱碳 钢在高温加热时,其表层的碳和炉气中的氧化性气 体,氧、一氧化碳、水以及还原性气体氢气,发生 化学反应,造成钢表层含碳量减少,这种现象称为 脱碳。
影响 脱碳 因素
炉气成分 加热温度 加热时间
§3-2 塑性成形热过程 表面变软
脱碳的危害
强度降低
耐磨性降低
脱碳层厚度与机械加工余量的关系 精密锻造
§3-2 塑性成形热过程
二、多层焊接热循环
1.长段多层焊接热循环 长段焊道差不多在1m以上,这样焊完第一层再焊第二层时, 第一层焊缝基本上冷却到100℃~200℃以下
§3-4 焊接成形热过程 焊接热循环
低合金钢V形坡口三层焊时1点的冷却曲线
§3-4 焊接成形热过程 焊接热循环
2.短段多层焊接热循环 短段焊道一般约50~400mm左右,在这种情况下,前层焊缝 还未冷却到较低温度(如Ms点)时,就开始焊接下一层焊缝。
835
860
950
735
750
770
840
775
800
850
940
750
770
785
830
810
850
890
940
740
775
825
920
790
835
890
980
800
860
930
1000
860
930
1020 1120
AC1和AC3的温度/ ℃
40-50
250300
14001700
45
60
110
65
5
1
有焊剂垫
1.0
0.3
2.3
0.7
0.83 0.28
0.8
0.25
双丝 三丝 板极 双丝
§3-4 焊接成形热过程---焊接热循环
§3-4 焊接成形热过程---焊接热循环
一、焊接热循环的主要参数
§3-4 焊接成形热过程---焊接热循环
1.加热速度 ωH
加热速度对相变点Ac1和Ac3及其温差的影响
§3-3 焊接成形热过程---焊接温度场
影响焊接温度场的因素
(2)焊接规范(焊速与能量,即焊接热输入) 当速度v=常数时,随q的增加,某一温度的等 温线所包围的面积增大
§3-3 焊接成形热过程---焊接温度场
(3) 被焊金属的热物理性质(热导率,体积热容,热扩散 率,比焓,表面传热系数等)
金属热物理性能对温度分布的影响 E=21 kJ/cm(q=4200J/s,v=0.2 cm/s ),h=1 cm
焊接线能量/ (J/cm)
840 1680
3750 7140 19320 42000 105000
504000 672000 117600 966000
900oC时加 热速度/ (℃/s)
900oC以上停留时间/ s
加热时t’ 冷却时t’’
1700
0.4
1.2
1200
0.6
1.8
700
2.0
5.5
400
§3-4 焊接成形热过程---焊接热循环
3. 高温停留时间 τH •对于钢来说tH越长,越有利于奥氏体的均 匀化 •温度太高,将会使奥氏体晶粒严重长大, 造成晶粒脆化。
§3-4 焊接成形热过程---焊接热循环
4. 冷却速度ω(或冷却时间τ8/5,τ8/3) 冷却速度,特别是在固态相变温度范围
内冷却速度,即800~500℃及800~300℃ 时的冷却速度是焊接热循环中极其重要的 参数,它将决定焊接接头的组织、性能及 接头质量。
§3-1 凝固成形热过程
一、加热熔化的热过程特点及效率 1.凝固成形热过程特点
预热区 熔化区 过热区 炉缸区
§3-1 凝固成形热过程
(1)预热区的 热交换特点
1)炉气给热以 对流方式为主。
2)传递热量大 3)温度变化大
§3-1 凝固成形热过程
(2)熔化区的 热交换特点
1)炉气给热以 对流传热为主。
§3-3 焊接成形热过程---焊接温度场
影响焊接温度场的因素
(1)热源的性质(热源能量的集中性) 以电弧焊为例,电弧能量越集中,温度 场范围越小,温度梯度越大
§3-3 焊接成形热过程---焊接温度场
影响焊接温度场的因素 (2)焊接规范(焊速与能量,即焊接热输入)
当热源能量(功率)q=常数,随焊接速度v的增加, 某一温度的等温线的宽度和长度都变小,用等温线 表示的温度场的形状变的细长
感谢您的听课!
§3-4 焊接成形热过程---焊接热循环
5. 冷却时间τc(τ8/5或τ8/3及τ100)
对于一般碳钢及低合金钢常采用固态相 变温度范围的800~500℃冷却时间τ8/5;而对 于 淬 硬 倾 向 比 较 大 的 钢 种 有 时 采 用 800 ~ 300℃冷却时间τ8/3或由峰值温度冷至100℃的 冷却时间τ100。
§3-1 凝固成形热过程
3.厚壁金属型中凝固温度的分布特点 凝固金属和铸型热阻较大,涂层薄,热阻小 热扩散过程取决于铸件和铸型的热物理性质
△T1 :△T2:△T3 = x1/λs:1/αi : x2/λM
厚壁金属型时凝固的温度分布
§3-1 凝固成形热过程
4.水冷金属型中凝固温度分布特点 传热主要热阻是凝固金属
焊件及热源形式
§3-3 焊接成形热过程---焊接温度场
• 根据焊件的厚度和尺寸形状,传热的方式 可以简化为: 2) 薄板焊件—线状热源—二维温度场
焊件及热源形式
§3-3 焊接成形热过程---焊接温度场
• 根据焊件的厚度和尺寸形状,传热的方式 可以简化为: 3) 细棒对接—面状热源—一维温度场
焊件及热源形式
为了方便,在理论计算的基础上建立了 不同条件下从线算图上直接获取τ8/5或τ8/3的图 解法。
§3-4 焊接成形热过程---焊接热循环
a)τ8/5
b)τ8/3
手弧焊线算图
§3-4 焊接成形热过程---焊接热循环
冷却时间τ100与E,h,T0的关系(B-预热宽度)
§3-4 焊接成形热过程---焊接热循环
§3-3 焊接成形热过程---焊接温度场
(4)焊件的板厚及形状
薄板焊接的温度场分布
Review
材料成形热过程 凝固 塑性 焊接
§3-4 焊接成形热过程---焊接热循环
3.4 焊接热循环
焊接时焊件在加热和冷却过程中温度随时间的变化。 即焊件上某点的温度是随时间由低到高达到最大值后 又由高到低的变化。称为焊接热循环。