电弧炉炼钢的时代特点及炉外精炼
炉外精炼

2) VD生产模拟
工部全景
生产模拟
19
3) VD生产工艺
基本原理
真空处理
吹Ar制度
20
真空脱气
原 理: 基于H、N在钢液 中溶解服从平方根定 律,当VD抽真空时, 真空室内压力降低, 使[H]、[N]随之降低, 达到去除目的。散而一起去除。
真空度→保持达到VD
处理要求→反抽气破
坏真空。
23
吹Ar制度
钢包到工位即吹Ar, 不吹破渣面,防止透气砖 堵塞; 加合金采用大流量吹 Ar,吹开渣面,使合金直 接进入钢液,提高收得率; 高真空处理时小流量 吹Ar,防喷溅; 喂丝时, 小流量吹 Ar , 防止增[N]和二次氧化。
24
10
1) LF概述
LF是日本大同制钢公司于1971年开发, 特点是将电弧炉炼钢还原期任务移到专用 的钢包内进行。在利用电弧加热钢水的同 时,向钢液内吹入惰性气体(Ar),以实 现在非氧化性气氛下精炼,从而达到钢液 脱硫、脱氧、去气、去夹杂物的效果。经 LF 处 理 的 钢 水 , 钢 中 [O]10-30ppm 、 [N]20ppm、[H]1.5-2.5ppm。
(MnO)、(Fe2O3)及[O]在钢 渣界面进行反应,使[O]降低,脱氧 产物直接溶于渣中,不污染钢液;
13
泡,将造成凝固组织不致密;
②脱
目
硫
的: S在钢中产生”热 脆”并降低钢的抗腐 蚀性、延展性和韧性; 原 理: (FeS)+(CaO)= (FeO)+(CaS) 条 件: 高碱度、还原气氛、 高温、大渣量
4) RH的主要功能
功 能:
① 脱 H: 对 完 全 脱 氧 钢 液 脱 氢 效 率 ≮60%,对未完全脱氧钢液,由于CO 反 应 剧 烈 , > 70%. 脱 气 时 间 15~20min,[H]<2ppm. ② 脱 N:N 易 形 成 N- 化 物 , 脱 氮 效 率 0~10%; ③脱O:∑[O]0.002~0.005% ④脱碳:对初始[C]有要求,处理15min, 可使[C]<0.002%; ⑤脱S:效率50~75%; ⑥减少非金属夹杂:改善钢水纯净度; ⑦成分微调:合金元素控制精度为 ±0.003~0.010%
RH-LF和 LF-VD 工艺生产管线钢洁净度的比较

RH-LF和LF-VD工艺生产管线钢洁净度的比较一、电弧炉炼钢的时代特点1、变为初炼炉进入20 世纪80年代后,随着炉外精炼技术、工艺、装备的快速发展,原冶炼工艺中在电弧炉内完成的合金钢、特殊钢的脱氧、合金化、除气、去夹杂的电炉“重头戏”移到炉外精炼炉去进行了。
电弧炉及转炉皆变为只须向炉外精炼炉提供含碳、硫、磷、温度、合金化合格或基本合格的钢水就算完成任务的炼钢初炼炉。
改变和结束了原电弧炉的熔时长(三个多小时)、老三期操作(熔化期、氧化期、还原期)以及产量低、渣量大、炉容小、成本高的状况。
2、炉容大型化随着电炉—炉外精炼—连铸—直接轧材工艺的发展,这种短流程(相对于焦化、烧结—高炉—转炉—炉外精炼炉—连铸—)轧材工艺而言的轧机产量要求电炉与之相匹配,例如长材年产50-80 万t、板材100-200 万t 、热轧卷年产200万t以上,因此单一匹配电炉的炉容量和生产率,生产速率必须与轧机相衔接.目前, 较多采用公称炉容量80-120万t 左右的电弧炉,从趋势看炉容量仍在提高。
变压器向超高功率发展(1000KV A/t)。
3 、电炉转炉化氧气顶吹转炉依靠铁水为原料,吹氧冶炼故冶炼周期短(20min左右),产量高,即获得了比电炉高的多的生产率和生产速率( 科技工作者在20 世纪50年代在电弧炉上吹氧(炉门和炉顶)兑入约30%~50%的铁水(EOF 炉),把转炉的工艺优势移植过来,电炉的冶炼周期大大缩短,目前均在45min 左右( 故电炉顶吹氧、热装铁水、电炉双炉壳很快得到推广。
4、电弧炉钢产量大幅增长在上述三项电炉自身工艺变化的同时,随着社会发电技术,能力的增长(核电站、水力发电等)及社会废钢量的增加,直接还原铁DRI、HBI、Fe3C 技术工艺的发展,都为电弧炉快速发展提供了条件. 因此,世界各国电弧炉钢产量由1950 年占世界总产钢量的6.5%增至1990 年的27.5% , 2003 年的36%.5、提质、降耗、防污染使电弧炉获得新的活力电弧炉使用废钢为原料与使用高炉铁水的转炉相比,总能耗是高炉-转炉工艺的1/2~1/3。
电炉炼钢及炉外精炼

●●:效果显著 ●:有效果
工艺类别
精炼方式 搅拌方式 加热方式
钢包喷 粉法
氩氧炉 (AOD)
真空循环 脱气法 (RH)
真空吹氧 脱碳法 (VOD)
喷粉 吹氩
稀释气体 真空 钢水循环 电加热
真空 吹氩 吹氧
钢包真空 脱气法 (VD)
钢包炉 (LF)
真空 吹氩
大气(真空) 吹氩
电弧
脱氢
脱氮
脱氧
冶 金
真空碳脱氧
法
铁反应进行脱氧
扩散脱氧:将脱氧剂加在炉渣中,使脱氧剂和炉渣的氧化亚铁反应, 使钢液中氧向渣中转移扩散
真空脱氧:钢包内钢液置于真空条件下,打破原有的碳氧平衡,促使 碳与氧反应。
转炉炼钢脱氧三种方法都有,电炉炼钢一般只使用沉淀脱氧和扩散脱氧
● 脱氧
1.3.1 炼钢的基本任务
碳脱氧: FeO + C → Fe + CO 能在钢液中进行,但通常是扩散脱氧时在渣中进行的主要反应
● 去非金属夹杂 来源
内因:脱氧脱硫产物;凝固过程因溶解度降低产物;固态钢相变产生 外因:带入钢液中的炉渣和耐火材料;钢液氧化物
成分:大多数氧化物+部分硫化物
降低夹杂物含量:炉外精炼 改变夹杂物类别:钙处理、稀土处理 改变夹杂物颗粒尺寸和分布:塑性加工、进行热处理 氧化物冶金:在钢中加入细小弥散的Ti2O3夹杂物,改善性能
● 提高生产能力,降低成本 可提高现有炼钢能力30%~50%,生产成本下降10%~40%
2
1.3.6 钢的连铸 概念 将成分、温度合格的钢液通过连铸机直接铸成钢坯的工艺 钢液成形方法:模注(获得钢锭)— 轧制或锻压 — 钢坯 连铸(获得钢坯)
流程
钢铁冶金概论炉外精炼

✓ 例如,电弧炉冶炼不锈钢的返回吹氧 法,在1873K下很难使[C]降至很 低的数值。而在AOD(氩氧精炼法 ) 法中,向钢液中吹入不断变换 Ar/O2比例的气体,可以降低碳氧 反应中产生的CO分压,从而使钢液 的[C]含量达到超低碳水平。
(4) 喷吹
喷吹法是用载气(Ar)将精炼粉剂流 态化,形成气固两相流,经过喷枪,直 接将精炼剂送入钢液内部的方法。 由于在喷吹法中精炼粉剂粒度小,进 入钢液后,与钢液的接触面积大大增 加。因此,可以显著提高精炼效果。
常用的加热方法有电加热和化学加热。
➢ 电加热方式主要有电弧加热和感应加 热。
➢ 电弧加热原理与电弧炉相似,采用石 墨电极,通电后,在电极与钢液间产 生电弧,依靠电弧的高温加热钢液。
✓ 由于电弧温度高,在加热过程中, 需控制电弧长度及造好发泡渣进行 埋弧加热,以防止电弧对耐火材料 产生高温侵蚀。
第五章 炉外精炼(Secondary Refining)
炉外精炼的定义及特点
炉外精炼S.R. (Secondary Refining) : 按传统工艺,将常规炼钢炉(转、电)中完成 的精炼任务(四脱(S、P、C、O),二去 (气体、夹杂),两调整(温度、成分)), 部分或全部地转移到钢包或其它容器中进行精 炼的过程。
钢液搅拌可改善冶金反应动力学条件,强化 反应体系的传质和传热,加速冶金反应,均 匀钢液成分和温度,有利于夹杂物聚合长大 和上浮排除。
a 气体搅拌
气体搅拌主要用氩气,故又称氩气搅拌。 向钢液吹入氩气可以用顶枪插入法,也可 以用底部透气砖法。 ➢ 实践证明,从底部通过透气砖吹入氩气, 可充分发挥其搅拌作用,氩气利用率高 ➢ 目前,大多数的吹氩搅拌均采用透气砖 底吹法。
➢ 在精炼中,钢包内的搅拌是由真空室内 钢液注流进入钢包中引起的。
1.炉外精炼概述

2 创造良好的冶炼反应的热力学和 动力学条件。
通过各种加热精炼手段补偿精炼过程中的温度 损失,使得需要在高温下的脱硫等反应得以顺利进 行。 炼钢过程中的各种冶金反应,多数是在高温下 进行的多相反应,通常化学反应本身进行较快,而 反应物传递到反应界面和生成物脱离反应界面较慢, 成为限制冶金反应速率的因素。通过搅拌、喷吹等 手段提高浓度梯度,增大反应界面,使各种冶金反 应得以顺利进行。
五 炉外精炼的手段
目前炉外精炼的手段有渣洗、真空、搅拌、喷吹和加热 五种。采用一种或几种不同手段的不同组合,就形成了某 一种精炼方法。 1 渣洗:获得洁净钢液并能适当进行脱氧、脱硫和去除 夹杂物的最简便的精炼手段。它是将事先配好的合成渣倒 入钢包内,借出钢时钢流的冲击作用,使钢液与合成渣混 合,从而完成脱氧、脱硫和去除夹杂等精炼任务。 2 真空:将钢液置于真空室内,由于真空作用使反应向 生成气相方向移动,达到脱气、脱氧、脱碳等目的。 3 搅拌:通过搅拌扩大反应界面,加速反应物质的传递 过程,提高反应速度。分为吹气搅拌和电磁搅拌。 4 加热:调节钢液温度的一项重要手段,使炼钢与连铸 更好地衔接。分为电弧加热法和化学加热法。 5 喷吹:用气体作载体将反应剂加入金属液内的一种手 段。喷吹的冶金功能取决于精炼剂的各类,它能完成不同 程度的脱硫、脱氧、合金化和控制夹杂物形态等精炼任务。
钢水炉外精炼概述
一 炉外精炼的产生原因
1 普通炼钢炉(转炉、电炉)冶炼出来 的钢液难以满足对钢的质量(如钢的纯净度 等)越来越高的要求。 2 为了提高生产率,缩短冶炼时间,把 炼钢的一部分任务移到炉外完成。 3 连铸技术的发展,对钢液的成分、温 度和气体的含量等也提出了严格的要求。
二 炉外精炼的概念
3 炉外精炼在炼钢生产中的重要地 位和作用
电炉冶炼

1.2 电弧炉炼钢的特点电弧炉是靠电弧进行加热的,其温度可以高达2000℃以上,超过了其它炼钢炉用一般燃料燃烧加热时所能达到的最高温度。
同时熔化炉料时热量大部分是在被加热的炉料包围中产生的,而且无大量高温废气带走的热损失,所以热效率比平炉、转炉炼钢法要高。
还能精确的控制温度,因为炉内没有可燃烧的气体,所以可以根据工艺要求在各种不同的气氛中进行加热,也可在任何压力或真空中进行加热。
能保证冶炼含磷、硫、氧低的优质钢,能使用各种元素(包括铝、钛等容易被氧化的元素)来使钢合金化,冶炼出各种类型的优质钢和合金钢。
1.3 碱性电弧炉与酸性电弧炉1.4 传统碱性电弧炉炼钢过程介绍碱性电弧炉炼钢的工艺方法,一般分为:氧化法、不氧化法(又称装入法)及返回吹氧法。
氧化法冶炼操作由扒补炉、装料、熔化期、氧化期、还原期、出钢等6个阶段组成。
其特点是在氧化期,用加矿石或吹氧进行脱磷和脱碳,使熔池沸腾,以降低钢中气体和杂质,再经过脱氧还原和调整钢液的化学成分及温度,然后出钢。
用这种方法冶炼,可以得到含磷量及气体、夹杂物含量都很低的钢,还可以利用廉价废钢为原料,因此一般钢种大多采用氧化法冶炼。
其缺点是如果炉料中有合金返回料,则其中的某些合金元素会被氧化而损失于炉渣中。
不氧化法在冶炼过程中没有氧化期,能充分回收原料中的合金元素。
因此,可在炉料中配入大量的合金钢切头、切尾、废锭、注余钢、切屑和汤道钢等,减少铁合金的消耗,降低钢的成本。
炉料熔清后,经过还原调整钢液成分和温度后即可出钢。
冶炼时间较短,低合金钢、不锈钢、高速工具钢等均可以用此法冶炼。
其缺点是不能去磷、去夹杂物和除气,因此对炉料要求高,须配入清洁无锈、含磷低的钢铁料,并在冶炼过程中要求采取各种措施防止吸气。
同时钢液的化学成分基本上取决于配料的成分,这就要求炉料配料的化学成分和称量力求准确,致使这种冶炼方法用的比较少。
返回吹氧法是在炉料中配入大量的合金钢返回料。
依据碳和氧的亲和力在一定的温度条件下比某些合金元素和氧的亲和力大的理论,当钢液升到一定温度以后,向钢液进行吹氧,强化冶炼过程,达到在脱碳、去气、去夹杂物的同时,又回收大量合金元素的目的。
电炉炼钢的特点

电炉炼钢的特点电炉炼钢主要利用电弧热,在电弧作用区,温度高达4000℃。
冶炼过程一般分为熔化期、氧化期和还原期,在炉内不仅能造成氧化气氛,还能造成还原气氛,因此脱磷、脱硫的效率很高。
所用含铁原料主要为废钢,约占70%以上,另外可以加入铁水、生铁、直接还原铁、热压块等。
冶炼时间较长,一般至少是转炉冶炼时间的两倍。
电炉熔炼温度高且容易控制调节,电弧炉弧光区温度高达3000—6000℃,炉温高达2000℃以上,远高于冶炼一般钢种所需的温度,可以用于冶炼转炉不能冶炼的合金钢和不锈钢炉内气氛易于控制调节。
在冶炼的不同阶段,炉内不仅能造成氧化性气氛,还能造成还原性气氛,前者有利于脱碳和去磷,后者有利于脱氧、去硫、易氧化合金的加入、回收金属元素和控制钢液成分。
电炉设备比较简单,投资少,建厂快,占地少,且容易控制污染。
但由于所需能源由电极在短路时产生的高温来提供,耗电量较大,冶炼1吨钢所消耗的电能约350-600kwh;成品钢中氢、氮含量偏高。
因为在电弧作用下,炉内空气的水汽大量离解,生成的氢和氮,如进入钢水,将影响钢的质量。
电弧是“点”热源,炉内温度分布不均匀,熔池平静时,各部分钢水温度相差较大。
炭质电极的存在会使钢液增碳,给冶炼低碳钢带来困难。
废钢铁是一种载能资源,用废钢铁炼钢可以节约大量能源。
在大型钢铁联合企业,从采矿、选矿、烧结、焦化、炼铁到炼钢、轧钢,能源消耗和污染排放主要集中在炼钢工序之前。
研究表明,用废钢直接炼钢和用矿石炼铁后再炼钢相比,可节约能源60%,节水40%。
废钢铁也是一种环保资源,用废钢直接炼钢和用矿石炼铁后再炼钢相比,可减少废气86%、废水76%和废渣97%,有利于清洁生产和排废减量化。
炉外精炼介绍

炉外精炼介绍炉外精炼技术20 世纪炼钢技术中的革新,主要是纯氧顶吹转炉炼钢法和连续铸钢法。
由于这些实用技术的采用,炼钢生产率飞速提高。
炉外精炼技术是设置在转炉和连续铸钢间的连接工序,这一技术的实用化,大大提高并完善亨利贝塞麦发明的液态炼钢法。
要提高铸钢生产的质量和产量,同样离不开冶金冶炼技术的发展。
炉外精炼技术就是铸件生产中的适用技术之一。
1炉外精炼技术的功能①脱氢、②脱氧、③脱碳、④脱硫、⑤非金属夹杂物的形态控制、⑥成分调整(添加合金)、⑦钢液成分及温度的微调及均匀化、⑧脱氮、⑨脱磷。
针对上述功能,衍生出LF 法、VD法、VOD法、RH法、SKF'法等炉外精炼设备。
但对于各生产厂家具体使用哪种精炼设备,他们会综合考虑冶炼的钢种、生产量、粗/ 精炼的组合等,选择最适合的炉外精练法。
2电炉加钢包精炼炉双联工艺法简介目前,电弧炉炼钢是铸钢件生产中最广泛的炼钢方法之一。
这种方法是利用电弧产生的高温和热能熔化固体炉料,实现冶炼的目的。
在电弧炉炼钢中为了清除钢液中的气体和夹杂物,通常通过脱碳反应形成钢液沸腾,对钢液激烈氧化。
在下一步为了去除钢液中残余的氧,又需要对钢液进行脱氧,因此产生大量的夹杂物,这是电弧炉炼钢难以解决的矛盾。
为了解决这一问题,经过冶金工作者多年努力,摸索出双联工艺法方案。
即将原电弧炉炼钢的两大期-- 氧化期及还原期分别放在电弧炉和钢包精炼中进行,各自独立操作,以达到提高钢液的冶炼质量,提高生产率的目的。
下面是双联工艺法的工艺流程:电炉加料-- 熔化-- 氧化-- 升温-- 出钢--LF 炉接钢液-- 精炼还原-- 微调成分,调整温度-- 出钢-- 喂丝-- 钢液测温-- 钢液浇注。
3双联工艺法的产品质量0.0l%对几个采用双联工艺法的铸钢厂产品质量跟踪:①气体含量:[H]3.5ppm ,[O]40ppm,[N]80ppm;②杂质含量:内。
4材料性能屈服强度增加7%~1l%;抗拉强度增加3%~6%,冲击韧度增加20%一45%;断面收缩率、伸长率基本无变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢铁冶炼新技术讲座-----电弧炉炼钢的时代特点及炉外精炼主讲人: 王国宣2005年7月一、电弧炉炼钢的时代特点1、变为初炼炉进入20 世纪80年代后,随着炉外精炼技术、工艺、装备的快速发展,原冶炼工艺中在电弧炉内完成的合金钢、特殊钢的脱氧、合金化、除气、去夹杂的电炉“重头戏”移到炉外精炼炉去进行了。
电弧炉及转炉皆变为只须向炉外精炼炉提供含碳、硫、磷、温度、合金化合格或基本合格的钢水就算完成任务的炼钢初炼炉。
改变和结束了原电弧炉的熔时长(三个多小时)、老三期操作(熔化期、氧化期、还原期)以及产量低、渣量大、炉容小、成本高的状况。
2、炉容大型化随着电炉—炉外精炼—连铸—直接轧材工艺的发展,这种短流程(相对于焦化、烧结—高炉—转炉—炉外精炼炉—连铸—)轧材工艺而言的轧机产量要求电炉与之相匹配,例如长材年产50-80 万t、板材100-200 万t 、热轧卷年产200万t以上,因此单一匹配电炉的炉容量和生产率,生产速率必须与轧机相衔接.目前, 较多采用公称炉容量80-120万t 左右的电弧炉,从趋势看炉容量仍在提高。
变压器向超高功率发展(1000KV A/t)。
3 、电炉转炉化氧气顶吹转炉依靠铁水为原料,吹氧冶炼故冶炼周期短(20min左右),产量高,即获得了比电炉高的多的生产率和生产速率( 科技工作者在20 世纪50年代在电弧炉上吹氧(炉门和炉顶)兑入约30%~50%的铁水(EOF 炉),把转炉的工艺优势移植过来,电炉的冶炼周期大大缩短,目前均在45min 左右( 故电炉顶吹氧、热装铁水、电炉双炉壳很快得到推广。
4、电弧炉钢产量大幅增长在上述三项电炉自身工艺变化的同时,随着社会发电技术,能力的增长(核电站、水力发电等)及社会废钢量的增加,直接还原铁DRI、HBI、Fe3C 技术工艺的发展,都为电弧炉快速发展提供了条件. 因此,世界各国电弧炉钢产量由1950 年占世界总产钢量的6.5%增至1990 年的27.5% , 2003 年的36%.5、提质、降耗、防污染使电弧炉获得新的活力电弧炉使用废钢为原料与使用高炉铁水的转炉相比,总能耗是高炉-转炉工艺的1/2~1/3。
从两种工艺排放出的CO2气体污染源的数量看,电弧炉为641kg/t钢, 高炉-转炉工艺为1922kg/t钢,是高炉-转炉工艺的1/3.电弧炉在上述优势的基础上,近几年加之采用的钢水搅拌(电磁搅拌、底吹Ar 气、直流炉等)、炉底出钢(EBT和RBT)等新技术,使电弧炉终点钢水的气体含量(N.H.O)、非金属夹杂物含量也大幅下降,无疑提高了钢水的质量。
新的电弧炉废钢预热技术(SSF 坚式电炉、con-steel 康钢电炉、danieei丹尼利电炉)降低电炉电极消耗的直流炉、高阻抗交流炉及泡沫渣等技术、氧焰烧嘴技术、超高功率等技术的投入使电弧炉冶炼电耗一般降至400Kh/t 左右, 电极消耗从原4-5Kg/t 降至1-2Kg/t、冶炼周期一般在50min 以下.随着环保治理从控制污染排放总量和末端治理阶段已进入实施清洁生产阶段,要求电弧炉采取措施使废气、烟尘、燥声达标之外,还应减少污染源及对CO、NOX、二恶英、SO2的治理措施( 在采用直流电弧炉和高阻抗低电流的技术后使电弧炉闪烁、高次谐波的电网污染也大大减少。
二、电弧炉近期目标及技术措施1、目标:生产率达7000 炉次/年,通电时间缩短到20~25min,冶炼周期≤45min ,冶炼电耗(全废钢) ≤350KWh/t, 电极消耗≤1Kg/t.2、措施:超高功率供电,比功率达到1000KV A/t,强化冶炼,供O2强度达到0.8-1.0Nm3/t.min,提高化学能输入。
废钢预热,平均预热温度≥600℃。
连续加料,缩短加料时间。
提高炉龄,缩短补炉时间。
炉外精炼炉外精炼概述炉外精炼是指在电弧炉、转炉之外的钢包内完成对钢水的精炼提纯任务(AOD 炉不是在钢包内进行) ,故又可将电弧炉、转炉成为初炼炉。
精炼炉始于电弧炉外的钢包精炼炉, 20 世纪90 年代推广于氧气顶吹转炉的钢包精炼炉。
近20 年工业发达国家要求提高钢材的纯净度改善钢材的性能, 例如: 为提高轴承钢的疲劳寿命, 要求控制钢中T[O]≤10×10- 6;为保证深冲钢的深冲性,要求控制钢中C+N≤50×10- 6; 为提高输油管抗H2S腐蚀能力, 要求控制钢中[S]≤5×10- 6 等。
大量生产这些高附加值纯净钢仅依靠电弧炉、转炉是非常困难的。
因此, 炉外精炼工艺与装备迅速普及推广。
在日本、欧洲先进的钢铁生产国家, 炉外精炼比超过90%,其中真空精炼比超过50%, 有些钢厂已达到100%。
近十多年我国的钢铁企业已基本装备了各种不同类型的精炼炉。
一、炉外精炼的冶金功能及精炼技术1 、冶金功能(1) 熔池搅拌功能, 均匀钢水成分和温度, 保证钢材质量均匀。
可通过惰性气体、电磁、机械等方法搅拌。
(2) 提纯精炼功能, 通过钢渣反应, 真空冶炼以及喷射冶金等方法, 去除钢中S、P、C、N、H、O 等杂质和夹杂物, 提高钢水纯净度。
(3) 钢水升温和控温功能, 精确控制钢水温度。
(4) 合金化功能, 对钢水实现窄成分控制。
(5) 生产调节功能, 均衡、衔接炼钢———连铸的节奏。
见表1。
2 、精炼技术(1) 渣洗精炼: 精确控制炉渣成分, 通过渣—钢反应实现对钢水的提纯精炼。
主要用于钢水脱氧、脱硫和去除钢中夹杂物。
渣洗精炼可分为炉渣改质( 加入炉渣改质剂, 如CaO- Al 系或CaO- CaC2- Al 系) 及合成渣洗。
可使钢水[S]%控制在10×10- 6 以下。
(2) 真空精炼, 在真空条件下实现钢水的提纯精炼。
通常工作压力≥50 Pa, 适用于对钢液脱气、脱碳和用碳脱氧等反应过程。
(3) 喷射冶金, 通过载气将固体颗粒反应物喷入熔池深处, 造成熔池的强烈搅拌并增大反应面积。
固体颗粒上浮过程中发生熔化、熔解, 完成固—液反应, 提高精炼效果。
当渣中Fe<0.5%, 炉渣碱度R≥8 时,钢—渣间硫的分配比可达500, 脱硫率达80%以上, 处理终点硫可<10×10- 6。
二、炉外精炼设备的选型及配置条件1 选型原则1.1 以钢种为中心, 正确选择精炼设备CAS- OB 是最简单的非真空精炼设备, 多适用于普碳钢、低合金钢等以化学成分交货的钢种。
LF有很强的清洗精炼和加热功能, 适宜冶炼低氧钢、低硫钢和高合金钢。
VD脱碳能力弱( 受钢包净高度的限制) , 具备一定的钢渣精炼功能, 适宜生产重轨、轴承、齿轮等气体含量和夹杂物要求严格的优质钢种。
RH脱碳能力强, 适宜大量生产超低碳钢、IF 钢( 低N 无间隙钢) 。
VOD、AOD 等门用于生产不锈钢。
此外, 经常采用不同功能的精炼炉组合使用, 如CAS- RH LF- RH LF- VD AOD- VOD。
1.2 初炼炉———精炼炉———连铸生产能力匹配转炉因生产周期短、节奏快、适宜选用CAS 或RH电炉冶炼, 周期一般60 min, 可选用LF 或VD。
1.3 提高炉外精炼比针对目前多数钢厂增设了炉外精炼设备后使用率不高的问题, 因此对非真空精炼的LF 炉、CAS- OB炉设备日历作业率应>90%, 真空精炼设备的RH、VD等设备作业率应>60%。
而整个炼钢厂炉外精炼比应>95%, 当然应注意钢种适路、生产节奏匹配, 设备维修和生产成本。
2 炉外精炼设备的配套条件2.1 出钢挡渣工艺, 要求钢包下渣量<30 mm 厚。
2.2 出钢时钢包渣改质技术, 要求炉渣改质后包渣碱度R≥2.5, ( FeO+MnO) ≤3%, 注意Al2O3 夹杂物的数量、颗粒度。
2.3 钢包全程保护浇注技术, 防止钢水二次氧化、吸N2。
2.4 钢水保温技术, 大包、中包高温烘烤, 加盖加保温剂。
2.5 大包自动开浇, 一次开浇率≥90%, 底吹Ar 开吹率≥95%。
2.6 耐火材料、保护渣配套, 防止钢水吸O2, 吸N2 和增碳。
三、洁净钢精炼1 低氧钢精炼1.1 硬线钢丝、钢轨、轴承钢、弹簧钢等中、高碳合金钢、优质钢, 对钢中夹杂物有严格的要求, 为保证钢材质量, 必须采用低氧钢精炼工艺, 要求;(1) 严格控制钢中总氧含量T[O]≤25×10- 6, 对轴承钢为提高钢材的疲劳寿命, 要求T[O]≤10×10- 6。
(2) 严格控制夹杂物形态, 避免出现脆性Al2O3 夹杂物。
如, 硬线钢要求控制钢中Al2O3≤25%, 为此需控制钢水含Al 量≤4×10- 6, 即采用无铝脱氧工艺。
(3) 严格控制夹杂物的粒度, 避免大型夹杂物出现。
1.2 低氧钢精炼工艺。
(1) 精确控制炼钢终点, 实现高碳出钢, 防止钢水过氧化。
(2) 严格控制出钢下渣量, 碱度R≥3.5, 渣中Al2O3为25%~30%, ( FeO+MnO) ≤1.0%( 最好<0.5%) , 实现炉渣对钢水的扩散脱氧, 同时完成脱硫任务。
(3) 白渣精炼后, 喂入Si- Ca 线。
(4) 冶炼轴承钢等超低氧钢( T[O]<10×10-6) 时, LF 炉白渣精炼后应采用VD炉真空脱气, 脱硫之后加Al 深脱氧, 喂Si-Ca线变性处理。
(5) 连铸钢水过热度≤20℃, 波动在≤±10℃, 防止中心疏松和成分偏析。
(6) 连铸全程保护浇注, 使用低粘度保温性能好的速溶保护渣, 控制液面高度, 防止卷渣。
2 超低氮钢精炼氮在钢中的作用具有二重性: 做为固溶强化元素提高钢材的强度; 做为间隙原子显著降低钢的塑性。
对于深冲钢, 一般要求控制[N]≤25×10- 6。
冶炼超低N 钢主要依靠真空脱气, 但真空脱N 效率不高。
对于RH 生产[N]≤30×10- 6 的超低N 钢有很大困难, 采用以下措施有利于提高真空脱N 效率;(1) 提高钢水纯净度, 降低钢中S、O 含量, 因表面活性元素S、O 的存在会明显降低脱N 效率。
(2) 改善RH 真空密封结构, 防止大气中N2 向钢中渗透、扩散。
(3) 喷吹还原气体如H2, 有利于提高脱N 速度。
(4) 喷吹细小Fe2O3 粉末, 有利于真空脱N。
由于真空脱N 的效率不高, 因此超低N 钢的冶炼必须通过炼钢全流程进行控制, 特别是生产[N]≤20×10-6 的超低N 钢应综合采取下述措施:(1) 提高转炉脱碳强度, 保持炉内微正压, 用CO 洗涤钢水, 实现脱N。
(2) 改善终点操作, 提高终点脱碳速度和终点命中率, 减少倒炉次数。
(3) 沸腾出钢, 防止出钢时钢水吸N2。
(4) 真空下进一步降低钢水S、O 含量, 采取措施提高真空脱N 的效率。