江西省抚州市临川第一中学2020届高三5月模拟考试数学(理)试题 (含答案)
江西省临川第一中学高三月月考数学理试题扫描含答案

答案1----6CDACCB 7----12 ADACDA13.14.15.16 5.17(解:(1)由题意得,解得,.又,,当时,的最小值是.(2)对恒成立,则,即恒成立,所以,解得,18(1)∵平面,又∵平面,平面平面.∴,同理,∵,,,∴,∴.同理. ∴,同理.又∵,是平面内的两相交直线.∴平面.(2)由(1)及异面直线,互相垂直知,直线,,两两垂直.作,以为原点,为轴,为轴,为轴,建立空间直角坐标系,如图所示,则,,,∵轴平面,∴平面的一个法向量可设为,∵,∴.得,即,又∵轴平面,∴平面的一个法向量可设为.∴,得,即,设锐二面角的大小为,那么,∴二面角的正切值为.19解:(Ⅰ)记“小球落入4号容器”为事件,若要小球落入4号容器,则在通过的四层中有三层需要向右,一层向左,∴理论上,小球落入4号容器的概率.(Ⅱ)落入4号容器的小球个数的可能取值为0,1,2,3,∴,,,,∴的分布列为:∴.20(1)设:,∴∴,∴∴(2)直线:∴即,∴,即直线:∴∴,∴三点共线∵∴∴. 21的极值点,又当时,,从而的极值点成立.(II)因为上为增函数,所以上恒成立.6分若,则,上为增函数不成产‘若所以上恒成立.令,其对称轴为因为从而上为增函数.所以只要即可,即所以又因为10分(III)若时,方程可得即上有解即求函数的值域.法一:令由,从而上为增函数;当,从而上为减函数.可以无穷小.15分法二:当,所以上递增;。
江西省临川一中高三数学5月模拟考试 理

江西省临川一中5月高考模拟试卷数学(理)一.选择题(每小题5分,共50分,答案唯一) 1.设复数i Z -=11,i Z +=32,21Z Z Z =则Z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.设全集U=R ,若集合M ={}3222+-=x x y y ,N =⎭⎬⎫⎩⎨⎧-+=x x y x 23lg,则N M C U )(=( ). A .(-3,2) B. (-3,0) C. (-∞,1)∪(4,+∞) D.(-3,1) 3. 已知A ⊆{0,1,2,3},且A 中至少有一个奇数,则这样的集合A 共有( )A 、11个B 、12个C 、15个D 、16个4.在△ABC 中,4=1=,S △ABC且∠A 是锐角,则AB ·的值为( ) A -2 B ±2 C 2 D 45.设x x x f sin cos )(-=把)(x f y =的图象按向量)0,(ϕ= (ϕ>0)平移后,恰好得到函数y =f '(x )的图象,则ϕ的值可以为( )A 、2πB 、43πC 、πD 、23π6.已知数列{}n a 满足431=++n n a a (1≥n )且91=a ,其前n 项之和为S n ,则满足不等式6--n S n 1251<的最小整数n 是( ) A .5B .6C .7D .87.按如图1所示的程序框图运算,若输出2k =, 则输入x 的取值范围是( ) A. 20072009,42⎛⎤⎥⎝⎦ B.⎥⎦⎤ ⎝⎛22011,42009 C .⎥⎦⎤ ⎝⎛22011,502 D.⎥⎦⎤⎝⎛505,420098. 点P 从O 点出发,按逆时针方向沿周长为l 的图 形运动一周,O ,P 两点连线的距离y 与点P 走过的 路程x 的函数关系如下图,那么点P 所走的图形是( )9.已知点A (2,2),点M 是椭圆222235y x +=1上的动点,F 2是椭圆的右焦点,则|MA|+|MF 2|的最大值是( )A.10+102B.10-102C. 22D. 10+2210.若⎩⎨⎧212212<-+->+x y x x y (y x ,Z ∈)则x 2+y 的最大值为( ) A 、1 B 、2 C 、3 D 、4 二.填空题:(每小题5分,共25分,请将答案填在题中横线上.) 11.nxx )1(23+的展开式中只有第6项的系数最大,则展开式中不含x 的项是 .(填具体数).12.设函数⎪⎩⎪⎨⎧≥<<-≤=)2(0)23(4)3(1)(2x x x x x f ,则dx x x f ])([21+⎰-的值为 .13.在四面体ABC O -中,若点O处的三条棱两两垂,且其三视图均是底边长为的全等的等腰直角三角形,则在该四面体表面上与点A 距离为2的点形成的曲线长度之和为 .14.给出下列命题:①函数f (x )=x -12x +1(x ≠-12)的对称中心是(-12,-12);②已知S n 是等差数列{a n }(n ∈N *)的前n 项和,若S 7>S 5则S 9>S 3;③函数f (x )=x |x |+px +q (x ∈R)为奇函数的充要条件是q =0; ④已知a 、b 、m 均是正数,且a <b ,则a +mb +m >ab; 其中真命题的序号是 (将所有真命题的序号都填上).15.(注意:本小题为选做题,A ,B 两题选做其中一题,若都做了,则按A 题答案给分) A.当21,1|1||1|,--=<++-y x u y x y x 变量时满足条件的取值范围是 . B .以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位。
江西省名校(临川一中、南昌二中)2020届高三数学5月联合考试题 理(含解析)

江西省名校(临川一中、南昌二中)2020届高三数学5月联合考试题理(含解析)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟2.答题前,考生务必将自己的姓名,准考证号填图在答题卡相应的位置。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2230,2A x x x B x x =+-≤=<,则A B ⋂=( )A. {}31x x -≤≤B. {}01x x ≤≤C. {}31x x -≤<D.{}10x x -≤≤【答案】B 【解析】 【分析】先化简集合A,B ,再求得解.【详解】{}{}31,04A x x B x x =-≤≤=≤<, 所以A B ⋂={}01x x ≤≤. 故选:B【点睛】本题主要考查集合的化简和交集运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.复数12z i =+,若复数1z , 2z 在复平面内的对应点关于虚轴对称,则12z z =( ) A. 5- B. 5C. 34i -+D. 34i -【答案】A 【解析】 【分析】由题意可知22z i =-+,据此结合复数的乘法运算法则计算21z z 的值即可.【详解】由题意可知22z i =-+,所以212(2i)(2i)4i 5z z =+-+=-+=-,故选A .【点睛】本题主要考查复数的乘法运算,复数的对称性,属于基础题.3.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不正确的是( )注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A. 互联网行业从业人员中90后占一半以上B. 互联网行业中从事技术岗位的人数超过总人数的20%C. 互联网行业中从事产品岗位的90后人数超过总人数的5%D. 互联网行业中从事运营岗位的90后人数比80前人数多 【答案】D 【解析】 【分析】本道题分别将各个群体的比例代入,即可。
江西省抚州市抚州一中2020届高三第一次模拟测试卷理科数学试题(附答案解析)

江西省抚州市抚州一中第一次模拟测试卷理科数学本试卷共4页,23小题,满分150分.考试时间120分钟 注意事项:答卷前,考生务必将自已的姓名、准考证号填涂在答题卡上,并在相应位置贴好条形码; 2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案信息涂黑:如 需改动,用橡皮擦干净后,再选涂其它答案;3.非选择题必须用黑色水笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改 动,先划掉原来答案,然后再写上新答案,不准使用铅笔和涂改液,不按以上要求作答无效;4.考生必须保证答题卡整洁.考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.)已知集合A ={x ∈N |0≤x ≤4},则下列说法正确的是( ) A .0∉A B .1⊆A C.2⊆A D .3∈A2.设z =1-i1+i +2i ,则|z |等于( )A.0B.12C.1D.23.设命题p :函数y =log 2(x 2-2x )的单调增区间是[1,+∞),命题q :函数y =13x +1的值域为(0,1),则下列命题是真命题的为( ) A .p ∧q B .p ∨q C .p ∧(¬q ) D .¬q4.函数y =212log (231)x x -+的单调递减区间为( )A .(1,+∞)B.⎝⎛⎦⎤-∞,34C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 5.函数y =x 2ln|x ||x |的图象大致是( )6.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )7.如图,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是( )A .1 B.43C. 3 D .28.已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}9.已知△ABC 外接圆的圆心为O ,AB =23,AC =22,A 为钝角,M 是BC 边的中点,则AM →·AO →等于( )A.3B.4C.5D.6 10.下图是某几何体的三视图,则此几何体的表面积为( )A.42+23+2 B .43+4 C.22+43+2 D.82+411.如图,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠P AB =30°,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支12.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1D.⎣⎡⎭⎫34,1二、填空题:本题共4小题,每小题5分,共20分。
临川一中2020届高三模拟考试理科数学答案

2020届临川一中暨临川一中实验学校高三理科数学月考答案一、单选题1-5.ACCCA 6-10.DBBDB 11-12.DB 二、填空题13.2 14.120- 15. π41 16.4 三、解答题17.【答案】(1)3-(2)38法一:解:(1)在BCD ∆中,由正弦定理得sin sin CD BC CBD BDC=∠∠,∴sin6sin 22CBD π∠== ∴0CBD π<∠<,∴3CBD π∠=或23CBD π∠= ………………3分当23CBD π∠=时,此时A B C 、、三点共线,矛盾 ∴3CBD π∠= ………………4分∴()2tan tan tan tan 333ABC ABD CBD πππ⎛⎫∠=∠+∠=+==⎪⎝⎭………………6分法二:由余弦定理222cos 242BD CD BC BDC BD BD BD CD +-∠====⋅或………………3分若2BD =时,此时23CBD π∠=,即A B C 、、三点共线,矛盾………………4分 ∴4BD =,此时3CBD π∠=∴()tan tan tan 33ABC ABD CBD ππ⎛⎫∠=∠+∠=+=⎪⎝⎭6分 (2)设BCD θ∠=,在BCD ∆中,由余弦定理得2222cos BD BC CD BC CD θ=+-⋅(2222216θθ=+-⨯⨯=-……8分∴2111sin sin sin 222ABC BCD BAD D S S BC CD BA BD BC CD S θθθ∆∆=+=⋅+⋅=⋅四边形6cos 3πθθθ⎛⎫=+=-+ ⎪⎝⎭……………………11分当56πθ=时,四边形ABCD面积的最大值 ……………………12分 备注:(1)若第1问用正弦定理没写出23CBD π∠=,扣1分(2)若第1问用余弦定理没写出2BD =,并且排除2BD =,扣1分18.【答案】(1)见详细答案(2)25(1)如图,作EF PC ∥,交BC 于F ,连接AF .因为3PB BE =,所以E 是PB 的三等分点,可得23BF =. 因为2AB AD ==,23BC CD ==,AC AC =,所以ABC ADC △≌△, 因为BC ⊥AB ,所以90ABC ∠=︒,…………………1分 因为3tan 23AB ACB BC ∠===,所以30ACB ACD ∠=∠=︒,所以60BCD ∠=︒,(2分) 因为tan 323AB AFB BF ∠===,所以60AFB ∠=︒,所以AF CD ∥,……3分 因为AF ⊄平面PCD ,CD ⊂平面PCD ,所以AF ∥平面PCD .……4分又EF PC ∥,EF ⊄平面PCD ,PC ⊂平面PCD ,所以EF ∥平面PCD .……………5分因为AF EF F =,AF 、EF ⊂平面AEF ,所以平面AEF ∥平面PCD ,所以AE ∥平面PCD .…6分 (2)因为PAB △是等边三角形,2AB =,所以2PB =.又因为4PC =,23BC =,所以222PC PB BC =+,所以BC PB ⊥.又BC ⊥AB ,,AB PB ⊂平面PAB ,AB PB B =,所以BC ⊥平面PAB .因为BC ⊂平面ABCD ,所以平面PAB ⊥平面ABCD .在平面PAB 内作Bz ⊥平面ABCD .………7分 以B 点为坐标原点,分别以,,BC BA Bz 所在直线为,,x y z 轴,建立如图所示的空间直角坐标系B xyz -, 则(23,0,0)C ,(0,2,0)A ,(0,1,3)P ,所以(23,0,0)BC =,(0,1,3)BP =,(23,2,0)AC =-,(0,1,3)AP =-.………8分设111(,,)x y z =m 为平面BPC 的法向量,则00BC BP ⎧⎪⎨⎪⎩⋅=⋅=m m ,即11123030x y z ⎧=+=⎪⎨⎪⎩, 令11z =-,可得(0,3,1)=-m .………………9分设222(,,)x y z =n 为平面APC 的法向量,则00AC AP ⎧⎪⎨⎪⎩⋅=⋅=n n ,即2222232030x y y z -=-+=⎧⎪⎨⎪⎩,令21z =,可得(1,3,1)=n .………………10分 所以5,25cos ==⨯m n ………………11分 则25251()n s ,5i =-=m n ,所以二面角A PC B --的正弦值为25.……………………12分 备注:若第2问用几何法做对也给满分.19.【答案】(1)83107340340y x =+(2)分布列见详解,数学期望为1310. 解:解:(1)由题意可知2361021131518118x +++++++==,112 2.56 3.5 3.5 4.538y +++++++==,………………2分由公式12221ˆ34781138313088b11340ni ii ni i x y nx yx nx==-⨯⨯==-⨯-=-∑∑………………3分83107ˆˆ311340340ay bx =-=-⨯=………………4分 ∴83107340340y x =+……………5分 (2)药品A 的三类剂型123A A A 、、经过两次检测后合格分别为事件123B B B 、、,则()()()123142321322,,255432535p B P B P B =⨯==⨯==⨯=……………7分由题意,0,1,2,3X 可取()()()()()()()()2123212312312321231231231232190115250212212111112525525021221821125255225235p X p B B B p X p B B B B B B B B B p X p B B B B B B B B B p X p B B B ⎛⎫⎛⎫===--= ⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫==++=-⋅+-⋅⋅-⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫==++=⋅-+-⋅⋅⋅=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫=== ⎝212225⋅=⎪⎭………10分X ∴的分布列为9218213123.5050255010X ∴⨯+⨯+⨯+⨯=的期望为:EX=0…………12分20.【答案】(1) 椭圆方程为22163x y +=,准圆方程为229x y +=;①12l l ,方程为33y x y x =+=-+, ②见详解 【解析】(1)3c a b ==∴=,2分∴椭圆方程为22163x y +=, ………………3分 准圆方程为229x y +=.………………4分(2)(ⅰ)因为准圆229x y +=与y 轴正半轴的交点为(03)P ,, 设过点(03)P ,且与椭圆相切的直线为3y kx =+, 所以由223{163y kx x y =++=,,得22(12)12120k x kx +++=.……………5分 因为直线3y kx =+与椭圆相切,所以22144412(12)0k k ∆=-⨯+=,解得1k =±,……………6分所以12l l ,方程为33y x y x =+=-+,.……………7分 121l l k k ⋅=-,12l l ∴⊥.……………8分(ⅱ)①当直线12l l ,中有一条斜率不存在时,不妨设直线1l斜率不存在, 则1l :x =当1l :6x =时,与准圆交于点(63)(63)-,,,, 此时2l 为y =y =,显然直线12l l ,垂直; 同理可证当1l :x =12l l ,垂直……………9分 ②当12l l ,斜率存在时,设点00(,)P x y ,其中22009x y +=. 设经过点00()P x y ,与椭圆相切的直线为00()y t x x y =-+, 所以由0022(){163y t x x y x y =-++=,,得2220000(12)4()2()60t x t y tx x y tx ++-+--=.……………10分由0∆=化简整理得()22200006230x t x y t y -++-=因为22009x y +=,所以有2220000(6)2(6)0x t x y t x -++-=.设12l l ,的斜率分别为12t t ,,因为12l l ,与椭圆相切, 所以12t t ,满足上述方程2220000(6)2(6)0x t x y t x -++-=, 所以20122616x t t x -⋅==--,即12l l ,垂直.……………11分 综合①②知:因为12l l ,经过点00()P x y ,,又分别交其准圆于点M N ,,且12l l ,垂直. 所以线段MN 为准圆229x y +=的直径,6MN =,所以线段MN 的长为定值6.……………12分 21.【答案】(1)()∞(2)22e π-解:(1)由()sin axf x e x =,得()()'sin cos axf x e a x x =+,……………1分由()f x 在63x ππ⎡⎤∈⎢⎥⎣⎦,上存在单调递增区间,可得()'0f x >在,63ππ⎡⎤⎢⎥⎣⎦上有解,……………2分即sin cos 0a x x +>在,63ππ⎡⎤⎢⎥⎣⎦上有解,则min 1tan a x ⎛⎫>- ⎪⎝⎭,∴a >∴a的取值范围为()∞.……………4分 (2)设()()sin axbx e x g x f x b x =-=-,0,2x π⎡⎤∈⎢⎥⎣⎦, 则()()'sin cos axg x e a x x b =+-.设()()sin cos axh x ea x xb =+-,则()()2'1sin 2cos 0ax h x e a x a x ⎡⎤=-+≥⎣⎦, ……………5分∴()h x 单调递增,即()'g x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增 ∴()2'1,a g x b ae b π⎡⎤∈--⎢⎥⎣⎦.……………6分当1b ≤时,()'0g x ≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增,∴()()00g x g ≥=,不符合题意;当2a b ae π≥时,()'0g x ≤,()g x 在0,2π⎡⎤⎢⎥⎣⎦上单调递减,()()00g x g ≤=,符合题意;当21a b ae π<<时,由于()'g x 为一个单调递增的函数,而()'010g b =-<,2'02a g ae b ππ⎛⎫=-> ⎪⎝⎭,由零点存在性定理,必存在一个零点0x ,使得()0'0g x =, 从而()g x 在[]00,x x ∈上单调递减,在0,2x π⎛⎤⎥⎝⎦上单调递增, ……………9分因此只需02g π⎛⎫≤ ⎪⎝⎭,∴22a e b ππ≤,∴22a b e ππ≥,从而222a a eb ae πππ≤<,综上,b 的取值范围为22,a e ππ⎡⎫+∞⎪⎢⎣⎭,……………10分因此2222ab e a ee a ππ-≥-. 设()222aG a ee a ππ=-,则()22'ae a e G π=-,令()'0G a =,则41a π=>,∴()G a 在41,π⎡⎤⎢⎥⎣⎦上单调递减,在4,π⎛⎫+∞ ⎪⎝⎭上单调递增,……………11分 从而()242e G a G ππ⎛⎫≥=- ⎪⎝⎭,∴2b e a -的最小值为22e π-.……………12分备注:第1问写)⎡+∞⎣扣1分22.(1):40(0)l x y x +-=≠,22:20C x y y +-=(2【解析】(1)由82x t=+可得0x ≠, 由8242x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩,消去参数t ,可得直线l 的普通方程为40(0)x y x +-=≠.………………2分由2sin ρθ=可得22sin ρρθ=,将sin y ρθ=,222x y ρ=+代入上式,可得2220x y y +-=, 所以曲线C 的直角坐标方程为2220x y y +-=.…………………………5分(2)由(1)得,l 的普通方程为40(0)x y x +-=≠,将其化为极坐标方程可得cos sin 40()2ρθρθθπ+-=≠,…………………………7分当()04θρπ=>时,A ρ=B ρ=|||||A B AB ρρ=-==.………………10分 备注:第1问没写0x ≠扣1分23.(1)(,0)(3,)-∞+∞ (2)见详解 【解析】(1)当0x <时,|4|()x f x x>等价于|||2|4x x +->-,该不等式恒成立; 当02x <≤时,|4|()x f x x>等价于24>,该不等式不成立; 当2x >时,|4|()x f x x >等价于2224x x >⎧⎨->⎩,解得3x >,…………………………3分 所以不等式|4|()x f x x>的解集为(,0)(3,)-∞+∞.…………………………5分 (2)因为()|||2||(2)|2f x x x x x =+-≥--=,当02x ≤≤时取等号,所以2M =,222a b c ++=,……7分由柯西不等式可得22222222224(22)(122)()9()a b c a b c a b c =++≤++++=++,当且仅当244,,999a b c ===时等号成立,所以22249a b c ++≥.…………………………10分备注:第1问结果没用集合或区间表示扣1分。
抚州市临川一中2020届高三上学期数学(理)期中试题卷附答案解析

4
A. 1 2
B. 1 2
C. 3 2
D. 3 2
【答案】D
【解析】根据题意,结合 所在象限,得到 sin 和 cos 的值,再根据公式,求得答案.
【详解】
由角 终边上一点 M 的坐标为 1, 3 ,
B.[1, )
C. (, 2]
D.[2, )
7.已知非零向量 a
与b
的夹角为
,
tan
b
2,
a 2b
ab
,则
a
(
)
A. 1 3
B.3
C. 3
D. 3 3
8.设
0
,将函数
y
sin(
x
3
)
的图象向左平移
6
个单位长度后与函数
2
2
所以
(sin os
1
1 2
3 2
,
又
2
,
0
,所以
sin
cos
,
所以得到 sin cos 6 . 2
5
故选:D.
【点睛】
本题考查诱导公式,二倍角的正弦公式,同角三角函数关系,属于简单题.
4.函数
f
(x)
a 2
1
,
a a2 0
a 2 解得 a 0或a 1
所以 a 2 .
故选:D.
【点睛】
2020届临川一中高三模拟考试 理数试卷Word版含答案

23322233⎩⎨⎧≥+-≤-05302y x y x nx x ⎪⎭⎫ ⎝⎛+1)(21OF OP OQ +=2020届临川一中高三模拟考试 理数试卷第一卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数,2i z -=则zz 10+等于( ) A. i -2 B. i +2 C.i 24+ D.i 36+2.设全集U = R ,A = {x |x - 2x + 1<0},B = {y | y = cos x ,x ∈A },则A ∩B =( ) A.( cos2,1] C.(- 1,2 )B.[cos2,1] D.(- 1,cos2 ]3.已知 | a | = 5,| b | = 5,a ·b = - 3,则 | a + b | =( )A.23B.35C.2 11D.354.对任意非零实数b a ,,若b a *的运算原理如图所示,那么=*⎰πsin 2xdx ( )A. B.C. D.5.某项测量中,测量结果X ~)0)(,1(2>σσN ,若X 在)1,0(内取的概率为4.0,则X 在)2,0(內取值的概率为( )A. 8.0B. 4.0C. 3.0D.2.06. ,0,0>>b a 设则“122≥+b a ”是“1+≥+ab b a ”的( )条件 A. 充分不必要 B. 必要不充分 C. 充要 D.既不充分也不必要7.已知的展开式中的第五项为常数项,则展开式中各项的二项式系数之和为( ) A.128 B.64 C. 32 D.168.已知正数y x ,满足,则1log log 22++=y x z 的最大值为( ) A.8 B.4 C. 2 D. 19.已知双曲线 上一点P 到F (3,0)的距离为6,O 为坐标原点,则15422=-y x=OQ ( )A. 1B. 2C. 2或5D.1或5 10.已知函数)0)(sin(2)(>+=ωϕωx x f 的图像关于直线对称,且,则ω的最小值是( )A. 1B. 2C. 3D. 4 11.12. 已知x xxx f ln 1ln )(-+=,)(x f 在0x x =处取得最大值,以下各式正确的序号为( ) ①00)(x x f <;②00)(x x f =;③00)(x x f >;④ 21)(0<x f ;⑤21)(0>x f .A .①④B .②④C . ②⑤D .③⑤第二卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡上.13.若焦点在x 轴上的椭圆 的离心率为 ,则 .14.已知△ABC 的三个内角A 、B 、C 成等差数列,且AB = 2,AC = 3,则cos C 的值是 .15.在矩形ABCD 中,AB = 4,BC = 3,沿对角线AC 把矩形折成二面角D -AC -B 的平面角为060时,则=BD .16.已知数列{}n a 的通项公式为,15+=n n a 数列{}n c 的通项公式为nn n a c )2(-+=λ,若数列{}n c 递增,则λ的取值范围是 .三、解答题:(共计70分,解答题应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选做题,考生根据要求作答) (一)必考题:共60分.17.(本小题满分12分)已知函数f (x ) = cos 2(x + π12),g (x ) = 1 + 12 sin 2x .(1) 设x = x 0是函数y = f (x )图像的一条对称轴,求g (2x 0)的值; (2) 求函数h (x ) = f (x ) + g (x ),x ∈[ 0 , π4]的值域.1222=+my x 213π=x 0)12(=πf18.(本小题满分12分)某名校从2008年到2017年考入清华,北大的人数可以通过以下表格反映出来。
临川一中2020届高三5月模拟考试理综化学参考答案

化学参考答案7C 8D 9C 10B 11D 12B 13C26.(15分)(1)过滤(1分),三颈烧瓶(1分);(2)A(1分)CO(NH 2)2+H 2O 2=CO(NH 2)2·H 2O 2(1分)(3)铁、铜离子等会催化过氧化氢分解(2分)(4)①滴入最后一滴KMnO 4标准溶液时,溶液恰好变为浅红色,且半分钟内不褪色(2分)②不合格(1分)12.80%(2分)(5)以防由于分解速度过快使反应液喷溅到试管外(2分)(6)NaOH +H 2O 2=NaHO 2+H 2O (2分)27.(14分)(1)+2(1分),A (1分)(2)Fe 2(SO 4)3+3H 2SO 4+6CaCO 3=2Fe(OH)3+6CaSO 4+6CO 2↑(2分)Mg(OH)2CaSO 4(2分)(3)减小Li 2CO 3的溶解损失(1分)(4)Li 2CO 3+H 2C 2O 4+2FePO 4 煅烧 2LiFePO 4+3CO 2↑+H 2O↑(2分)(5)由K sp (FePO 4)可知c(PO 43-)=2251.310110--⨯⨯=1.3×10-17mol/L ,(1分)Q c [Mg 3(PO 4)2]=c 3(Mg 2+)·c 2(PO 43-)=×(1.3×10-17mol/L)2=1.69×10-37<K sp ,因此不会生成Mg 3(PO 4)2沉淀。
(2分)(共3分)(6)FePO 4+Li ++e -=LiFePO 4(2分)28.(14分)(1)11:12(2分)(2)①CO 2(g)+3H 2(g)CH 3OH(g)+H 2O(g)ΔH =-49.5kJ·mol -1(2分)②d (2分)a 点催化效率高,反应快,所以相同时间的2CO 的转化率大(2分)③2CH O (1分)B (2分)(3)①<(1分)②2(2分)35.(15分)(1)锌失去4s 1电子,而铜失去3d 10电子,后者全充满较稳定,更难失去(2分)(2)正四面体(1分);sp 3(1分);σ(1分)(3)10(1分)CN -(1分)(4)D (2分)(5)六方最密堆积(1分)c (1分)12(2分)12N A aρ(2分)32/0.2mol ⎪⎭⎫ ⎝⎛L36.(15分)(1)对羟基苯甲酸(或4-羟基苯甲酸)(1分);取代反应(1分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届临川一中暨临川一中实验学校高三理科数学月考试卷(满分:150分考试时间:120分钟)审题人:临川一中高三数学备课组一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. 已知i 为虚数单位,若复数1z ,2z 在复平面内对应的点分别为(2,1),(1,2)-,则复数12z z i⋅=( ) A .34i -- B .34i -+C .43i --D .3-2.已知集合{|20}A x x =-≥,{|ln(1)}B x y x =∈=+Z ,则A B =I ( )A .[1,2]-B .(1,2]-C .{0,1,2}D .{1,0,1,2}-3.设n S 为等差数列{}n a 的前n 项和,若41012222a a a ++=,则14S =( )A .56B .66C .77D .784.已知定义在R 上的偶函数()f x 满足(2)()f x f x +=-,且在区间[]1,2上是减函数,令2log 3a =,12211,log 162b c -⎛⎫== ⎪⎝⎭,则()()(),,f a f b f c 的大小关系为( )A.()()()f a f b f c << B.()()()f a f c f b << C.()()()f b f a f c <<D.()()()f c f a f b <<5.若点()x y P 2sin ,cos -=在直线αα上,则sin 22πα⎛⎫+⎪⎝⎭的值等于( ) A .53-B .53C .54-D .546. 在统计学中,同比增长率一般是指和去年同期相比较的增长率,环比增长率一般是指和前一时期相比较的增长率.2020年2月29日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据2019年居民消费价格月度涨跌幅度统计折线图,下列说法正确的是( )A .2019年我国居民每月消费价格与2018年同期相比有涨有跌B .2019年我国居民每月消费价格中2月消费价格最高C .2019年我国居民每月消费价格逐月递增D .2019年我国居民每月消费价格3月份较2月份有所下降7.已知1111114357941π≈-+-+-+L ,如图是求π的近似值的一个程序框图,则图中空白框中应填入( )A .()n+1121i n -=+ B .(1)21n i n -=+ C .()n+112i i -=+ D .(1)2n i i -=+8.已知实数,x y 满足约束条件2202201,1x y x y x y -+≥⎧⎪--≤⎨⎪≥-≥-⎩,则2x y +的取值范围是( ) A .(3,6]-B .[3,6]-C .3(,6]2-D .3[,6]2-9.函数1()ln ||1xf x x+=-的图象大致为( )10.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为( ) A .72B .84C .96D .12011.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,过2F 的直线交椭圆于,P Q 两点.若2211||,||,||,||QF PF PF QF 依次构成等差数列,且1||PQ PF =,则椭圆C 的离心率为( )A .23B .34CD12.已知是函数的极大值点,则的取值范围是( )A .(]1,-∞-B .(,1]-∞C .[0,)+∞D .[1,)+∞二、填空题(本大题共4小题,每小题5分,共20分)13.设向量a v 与b v 的夹角为θ,定义a v 与b v 的“向量积”:a b ⨯v v是一个向量,它的模sin a b a b θ⨯=⋅⋅v v v v .若()1,a b =-=r r ,,则a b ⨯=v v____________.14. 若2a xdx =⎰,则()51-+ay x 的展开式中22x y 的系数为___________.15.在棱长为4的正方体1111ABCD A B C D -中,P 为线段11A D 的中点,若三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为 .16.已知1(3,0)A -,2(3,0)A 为双曲线2222:1(0,0)x y C a b a b-=>>的左、右顶点,双曲线C 的渐近线上存在一点P 满足122||||PA PA =,则b 的最大值为________.0x =()()tan f x x ax x =-a三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)如图,在平面四边形ABCD 中,2BC =,23CD =,且AB BD DA ==.(1)若6CDB π∠=,求tan ABC ∠的值;(2)求四边形ABCD 面积的最大值.18.(本小题满分12分)如图,在四棱锥P ABCD -中,PAB ∆是正三角形,BC AB ⊥,BC CD=23=,AB AD 2==. (1)若3PB BE =,求证:AE ∥平面PCD ; (2)若4PC =,求二面角A PCB --的正弦值.19.(本小题满分12分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品A 的研发费用x (百万元)和销量y (万盒)的统计数据如下:研发费用x (百万元)2 3 6 10 13 15 18 21销量y (万盒)1 12 2.5 3.5 3.5 4.5 6(1)根据数据用最小二乘法求出y 与x 的线性回归方程ˆˆy bxa =+(系数用分数表示,不能用小数);(2)该药企准备生产药品A 的三类不同的剂型1A ,2A ,3A ,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型1A ,2A ,3A 合格的概率分别为12,34,35,第二次检测时,三类剂型1A ,2A ,3A 合格的概率分别为45,23,23.两次检测过程相互独立,设经过两次检测后1A ,2A ,3A 三类剂型合格的种类数为X ,求X 的分布列与数学期望.附:(1)1221ˆˆˆbni ii nii x y nx ya y bx xnx==-==--∑∑,(2)882113471308i i i i i x y x ====∑∑,.20.(本小题满分12分)给定椭圆:C 22221(0)x y a b a b+=>>,称圆心在原点O ,半径为22a b +的圆是椭圆C 的“准圆”.若椭圆C 的一个焦点为(30)F ,,其短轴上的一个端点到F 的距离为6.(1)求椭圆C 的方程和其“准圆”方程;(2)点P 是椭圆C 的“准圆”上的动点,过点P 作椭圆的切线12,l l 交“准圆”于点,M N .①当点P 为“准圆”与y 轴正半轴的交点时,求直线12,l l 的方程并证明12l l ⊥; ②求证:线段MN 的长为定值.21.(本小题满分12分)已知函数.(1)若在63x ππ⎡⎤∈⎢⎥⎣⎦,上存在单调递增区间,求实数的取值范围;(2)设,若,恒有成立,求的最小值.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为8242x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩(t为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θρsin 2=. (1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若射线(0)4θρπ=>与l 和C 分别交于点,A B ,求||AB .()sin axf x e x =()f x a 1a ≥0,2x π⎡⎤∀∈⎢⎥⎣⎦()f x bx ≤2b e a -23.(本小题满分10分)选修4-5:不等式选讲已知()|||2|f x x x =+-.(1)求不等式|4|()x f x x >的解集;(2)若()f x 的最小值为M ,且22(,,)a b c M a b c ++=∈R ,求证:22249a b c ++≥.2020届临川一中暨临川一中实验学校高三理科数学月考答案一、单选题1-5.ACCCA 6-10.DBBDB 11-12.DB 二、填空题13.2 14.120- 15. π41 16.4 三、解答题17.【答案】(1)3-(2)38法一:解:(1)在BCD ∆中,由正弦定理得sin sin CD BCCBD BDC=∠∠,∴sin6sin 22CBD π∠==∵0CBD π<∠<,∴3CBD π∠=或23CBD π∠=………………3分 当23CBD π∠=时,此时A B C 、、三点共线,矛盾 ∴3CBD π∠= ………………4分 ∴()2tan tan tan tan 333ABC ABD CBD πππ⎛⎫∠=∠+∠=+==⎪⎝⎭………………6分法二:由余弦定理222cos 242BD CD BC BDC BD BD BD CD +-∠====⋅或 (3)分若2BD =时,此时23CBD π∠=,即A B C 、、三点共线,矛盾………………4分 ∴4BD =,此时3CBD π∠=∴()tan tan tan 33ABC ABD CBD ππ⎛⎫∠=∠+∠=+=⎪⎝⎭6分(2)设BCD θ∠=,在BCD ∆中,由余弦定理得2222cos BD BC CD BC CD θ=+-⋅()222232223cos 1683cos θθ=+-⨯⨯=-……8分 ∴21113sin sin sin 222ABC BCD BAD D S S BC CD BA BD BC CD BD S θθθ∆∆=+=⋅+⋅=⋅+四边形 23sin 436cos 43sin 433πθθθ⎛⎫=+-=-+ ⎪⎝⎭.……………………11分当56πθ=时,四边形ABCD 面积的最大值83. ……………………12分 备注:(1)若第1问用正弦定理没写出23CBD π∠=,扣1分 (2)若第1问用余弦定理没写出2BD =,并且排除2BD =,扣1分 18.【答案】(1)见详细答案(2)25(1)如图,作EF PC ∥,交BC 于F ,连接AF . 因为3PB BE =,所以E 是PB 的三等分点,可得23BF =. 因为2AB AD ==,23BC CD ==,AC AC =,所以ABC ADC △≌△, 因为BC ⊥AB ,所以90ABC ∠=︒,…………………1分因为3tan 23AB ACB BC ∠===,所以30ACB ACD ∠=∠=︒,所以60BCD ∠=︒,(2分) 因为tan 323AB AFB BF ∠===,所以60AFB ∠=︒,所以AF CD ∥,……3分 因为AF ⊄平面PCD ,CD ⊂平面PCD ,所以AF ∥平面PCD .……4分又EF PC ∥,EF ⊄平面PCD ,PC ⊂平面PCD ,所以EF ∥平面PCD .……………5分 因为AF EF F =I ,AF 、EF ⊂平面AEF ,所以平面AEF ∥平面PCD ,所以AE ∥平面PCD .…6分(2)因为PAB △是等边三角形,2AB =,所以2PB =.又因为4PC =,BC =,所以222PC PB BC =+,所以BC PB ⊥. 又BC ⊥AB ,,AB PB ⊂平面PAB ,AB PB B =I ,所以BC ⊥平面PAB .因为BC ⊂平面ABCD ,所以平面PAB ⊥平面ABCD .在平面PAB 内作Bz ⊥平面ABCD .………7分以B 点为坐标原点,分别以,,BC BA Bz 所在直线为,,x y z 轴,建立如图所示的空间直角坐标系B xyz -,则C ,(0,2,0)A,P ,所以BC =u u u r,BP =u u u r,2,0)AC =-u u u r,(0,AP =-u u u r.………8分设111(,,)x y z =m 为平面BPC 的法向量,则00BC BP ⎧⎪⎨⎪⎩⋅=⋅=u u u ru u u r m m,即1110y ⎧==⎪⎨⎪⎩, 令11z =-,可得1)=-m .………………9分设222(,,)x y z =n 为平面APC 的法向量,则00AC AP ⎧⎪⎨⎪⎩⋅=⋅=u u u ru u u r n n,即2222200y y -=-+=⎧⎪⎨⎪⎩, 令21z =,可得=n .………………10分所以,cos ==m n ………………11分则n s ,i =m n ,所以二面角A PC B --的正弦值为.……………………12分 备注:若第2问用几何法做对也给满分. 19.【答案】(1)83107340340y x =+(2)分布列见详解,数学期望为1310. 解:解:(1)由题意可知2361021131518118x +++++++==,112 2.56 3.5 3.5 4.538y +++++++==,………………2分 由公式12221ˆ34781138313088b 11340ni ii n i i x y nx y x nx==-⨯⨯==-⨯-=-∑∑………………3分 83107ˆˆ311340340ay bx =-=-⨯=………………4分 ∴83107340340y x =+……………5分 (2)药品A 的三类剂型123A A A 、、经过两次检测后合格分别为事件123B B B 、、,则()()()123142321322,,255432535p B P B P B =⨯==⨯==⨯=……………7分 由题意,0,1,2,3X 可取()()()()()()()()2123212312312321231231231232190115250212212111112525525021221821125255225235p X p B B B p X p B B B B B B B B B p X p B B B B B B B B B p X p B B B ⎛⎫⎛⎫===--= ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫==++=-⋅+-⋅⋅-⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫==++=⋅-+-⋅⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫=== ⎝212225⋅=⎪⎭………10分X ∴的分布列为9218213123.5050255010X ∴⨯+⨯+⨯+⨯=的期望为:EX=0…………12分20.【答案】(1) 椭圆方程为22163x y +=,准圆方程为229x y +=; ①12l l ,方程为33y x y x =+=-+, ②见详解 【解析】(1)c a b ==∴=Q 2分∴椭圆方程为22163x y +=, ………………3分 准圆方程为229x y +=.………………4分(2)(ⅰ)因为准圆229x y +=与y 轴正半轴的交点为(03)P ,, 设过点(03)P ,且与椭圆相切的直线为3y kx =+, 所以由223{163y kx x y =++=,,得22(12)12120k x kx +++=.……………5分 因为直线3y kx =+与椭圆相切,所以22144412(12)0k k ∆=-⨯+=,解得1k =±,……………6分 所以12l l ,方程为33y x y x =+=-+,.……………7分 121l l k k ⋅=-Q ,12l l ∴⊥.……………8分(ⅱ)①当直线12l l ,中有一条斜率不存在时,不妨设直线1l 斜率不存在, 则1l:x =当1l :6x =时,与准圆交于点(63)(63)-,,,,此时2l 为y =y =,显然直线12l l ,垂直;同理可证当1l:x =12l l ,垂直……………9分 ②当12l l ,斜率存在时,设点00(,)P x y ,其中22009x y +=. 设经过点00()P x y ,与椭圆相切的直线为00()y t x x y =-+, 所以由0022(){163y t x x y x y =-++=,,得2220000(12)4()2()60t x t y tx x y tx ++-+--=.……………10分由0∆=化简整理得()22200006230x t x y t y -++-=因为22009x y +=,所以有2220000(6)2(6)0x t x y t x -++-=. 设12l l ,的斜率分别为12t t ,,因为12l l ,与椭圆相切, 所以12t t ,满足上述方程2220000(6)2(6)0x t x y t x -++-=, 所以201220616x t t x -⋅==--,即12l l ,垂直.……………11分 综合①②知:因为12l l ,经过点00()P x y ,,又分别交其准圆于点M N ,,且12l l ,垂直. 所以线段MN 为准圆229x y +=的直径,6MN =,所以线段MN 的长为定值6.……………12分21.【答案】(1)()∞(2)22e π-解:(1)由()sin ax f x e x =,得()()'sin cos ax f x e a x x =+,……………1分由()f x 在63x ππ⎡⎤∈⎢⎥⎣⎦,上存在单调递增区间,可得()'0f x >在,63ππ⎡⎤⎢⎥⎣⎦上有解,……………2分即sin cos 0a x x +>在,63ππ⎡⎤⎢⎥⎣⎦上有解,则min 1tan a x ⎛⎫>- ⎪⎝⎭,∴a > ∴a的取值范围为()∞.……………4分 (2)设()()sin ax bx e x g x f x b x =-=-,0,2x π⎡⎤∈⎢⎥⎣⎦, 则()()'sin cos ax g x e a x x b =+-.设()()sin cos ax h x e a x x b =+-,则()()2'1sin 2cos 0ax h x e a x a x ⎡⎤=-+≥⎣⎦, ……………5分∴()h x 单调递增,即()'g x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增 ∴()2'1,a g x b ae b π⎡⎤∈--⎢⎥⎣⎦.……………6分当1b ≤时,()'0g x ≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增,∴()()00g x g ≥=,不符合题意; 当2a b ae π≥时,()'0g x ≤,()g x 在0,2π⎡⎤⎢⎥⎣⎦上单调递减,()()00g x g ≤=,符合题意; 当21a b ae π<<时,由于()'g x 为一个单调递增的函数,而()'010g b =-<,2'02a g ae b ππ⎛⎫=-> ⎪⎝⎭, 由零点存在性定理,必存在一个零点0x ,使得()0'0g x =,从而()g x 在[]00,x x ∈上单调递减,在0,2x π⎛⎤ ⎥⎝⎦上单调递增, ……………9分 因此只需02g π⎛⎫≤ ⎪⎝⎭,∴22a e b ππ≤,∴22a b e ππ≥,从而222a a e b ae πππ≤<, 综上,b 的取值范围为22,a e ππ⎡⎫+∞⎪⎢⎣⎭,……………10分 因此2222a b e a e e a ππ-≥-. 设()222a G a e e a ππ=-,则()22'ae a e G π=-, 令()'0G a =,则41a π=>,∴()G a 在41,π⎡⎤⎢⎥⎣⎦上单调递减,在4,π⎛⎫+∞ ⎪⎝⎭上单调递增,……………11分 从而()242e G a G ππ⎛⎫≥=- ⎪⎝⎭,∴2b e a -的最小值为22e π-.……………12分 备注:第1问写)⎡+∞⎣扣1分22.(1):40(0)l x y x +-=≠,22:20C x y y +-=(2【解析】(1)由82x t =+可得0x ≠, 由8242x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩,消去参数t ,可得直线l 的普通方程为40(0)x y x +-=≠.………………2分由2sin ρθ=可得22sin ρρθ=,将sin y ρθ=,222x y ρ=+代入上式,可得2220x y y +-=,所以曲线C 的直角坐标方程为2220x y y +-=.…………………………5分(2)由(1)得,l 的普通方程为40(0)x y x +-=≠, 将其化为极坐标方程可得cos sin 40()2ρθρθθπ+-=≠,…………………………7分当()04θρπ=>时,A ρ=,B ρ,所以|||||A B AB ρρ=-==10分备注:第1问没写0x ≠扣1分23.(1)(,0)(3,)-∞+∞U (2)见详解【解析】(1)当0x <时,|4|()x f x x>等价于|||2|4x x +->-,该不等式恒成立; 当02x <≤时,|4|()x f x x>等价于24>,该不等式不成立; 当2x >时,|4|()x f x x >等价于2224x x >⎧⎨->⎩,解得3x >,…………………………3分 所以不等式|4|()x f x x>的解集为(,0)(3,)-∞+∞U .…………………………5分 (2)因为()|||2||(2)|2f x x x x x =+-≥--=,当02x ≤≤时取等号,所以2M =,222a b c ++=,……7分由柯西不等式可得22222222224(22)(122)()9()a b c a b c a b c =++≤++++=++, 当且仅当244,,999a b c ===时等号成立,所以22249a b c ++≥.…………………………10分备注:第1问结果没用集合或区间表示扣1分。