为I的无限长直导线

合集下载

大学物理习题册统稿

大学物理习题册统稿

ob ac d第7-1 洛伦兹力,安培力 一.选择题1. 一匀强磁场,其磁感强度方向垂直于纸面(指向如图),两带电粒子在该磁场中的运动轨迹如图所示,则( )(A )两粒子的电荷必然同号;(B )粒子的电荷可以同号也可以异号;B(C )粒子的动量必然不同;(D )粒子的运动周期必然不同。

2. 图为四个带电粒子在0点沿相同的方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是( )(A )oa(B )obB(C )oc (D )od 3.一段长为L 的导线被弯成一个单匝圆形线圈,通过此线圈的电流为I ,线圈放在磁感应线与线圈平面平行的均匀磁场B 中,则作用在线圈上的力矩( )(A)2/4BIL 2/8 (C)2/8BIL (D)2/(4)BIL π二.计算题4. 如图一无限长直导线通以电流1I ,与一个电流2I 的矩形刚性载流线圈共面,设长直导线固定不动,求矩形线圈受到的磁力大小。

5. 一质子以速度710 1.010m s υ-=⨯⋅射入 1.5B T =的匀强磁场中,其速度方向与磁场方向1I 2I h成30角,计算:(1)质子螺旋运动的半径;(2)螺距;(3)旋转频率。

(质子质量27191.6710, 1.610e m kg e C --=⨯=⨯)6. 如图在载流为1I 的长直导线旁,共面放置一载流为2I 的等腰直角三角形,线圈abc ,腰长ab=ac=L ,边长ab 平行于长直导线,相距L ,求线圈各边受的磁力。

7. 如图,半径为R 的半圆形线圈,通有电流I ,放在磁感强度为B 的匀强磁场中,B 的方向平行于线圈所在的平面,求此线圈在磁场中受到的磁力矩大小和方向。

第7-2毕—萨定律,磁场高斯定理1I Ic一. 选择题1. 一根载有电流I 的无限长直导线,在A 处弯成半径为R 的圆形,由于导线外层有绝缘层,在A 处两导线靠得很近但不短路,则在圆心处磁感应强度B 的大小是( ) (A )0(1)/(2)I R μπ+ (B)0/(2)I R μπ(C) 0(1)/(2)I R μππ- (D)0(1)/(2)I R μππ+2. 两根长直导线互相平行地放置在真空中,如图所示,其中电流1210I I A ==,已知120.5PI PI m ==,1PI 垂直于PI 则P 点的磁感应强度大小和方向是( )(A )65.6710T -⨯ 水平向右(B )65.6710T -⨯ 水平向左 (C )6410T -⨯ 水平向右 (D )6410T -⨯ 水平向左 3. 一载有电流I 的无限长直导线,弯成如图所示形状,则0点 的磁感应强度为( )(A )00/(4)/8I R I R μπμ+ (B )00/(2)/8I R I R μπμ+ (C )0/8I R μ (D )0/4I R μ二. 计算题4. 载有电流为I 的无限长导线,弯成如图形状,其中一段是半径为R 的半圆,则圆心处的磁感应强度B 的大小为多少?5. 如图所示,两根导线沿半径方向流到铁环上的A 、B 两点,并在很远处与电源相连,求环中心O 处的磁感应强度。

电磁学练习题

电磁学练习题

第六章 静电场1一、选择题1、下列几个叙述中哪一个是正确的? [ ](A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。

(B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。

(C )场强方向可由E =F /q 定出,其中q 为试验电荷的电量,q 可正、可负,F为试验电荷所受的电场力。

(D )以上说法都不正确。

2、一均匀带电球面,电荷面密度为 ,球面内电场强度处处为零,球面上面元dS 带有dS的电荷,该电荷在球面内各点产生的电场强度为 [ ] (A) 处处为零; (B) 不一定都为零; (C) 处处不为零; (D) 无法判断。

3、如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 [ ](A) 穿过S 面的电通量改变,O 点的场强大小不变;(B) 穿过S 面的电通量改变,O 点的场强大小改变;(C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。

4、 关于高斯定理的理解有下面几种说法,其中正确的是 [(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷;(C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。

5、 两个均匀带电的同心球面,半径分别为R 1、R2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布[ ](A) (B) (C) (D)12121221二、填空题1、 如图所示,边长分别为a 和b 的矩形,其A 、B 、C 三个顶点上分别放置三个电量均为q 的点电荷,则中心O 点的场强为方向 。

2、在场强为E的均匀电场中,有一半径为R 长为L 的圆柱面,其轴线与E的方向垂直,在通过轴线并垂直E方向将此柱面切去一半,如图所示,则穿过剩下的半圆柱面的电场强度通量等于 。

大物b课后题08-第八章电磁感应电磁场

大物b课后题08-第八章电磁感应电磁场

习题8-6 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。

解 建立如图所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为02m id B dS ldx xμφπ=⋅=通过矩形面积CDEF 的总磁通量为0000ln ln sin 222bm ai il I l b bldx t x a aμμμφωπππ===⎰由法拉第电磁感应定律有00ln cos 2m d I l bt dt aφμωεωπ=-=- 8-7 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt,球小线圈中感应的电动势。

解 无限长直螺线管内部的磁场为0B nI μ=通过N 匝圆形小线圈的磁通量为20m NBS N nI r φμπ==由法拉第电磁感应定律有20m d dIN n r dt dtφεμπ=-=- 8-8 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。

解 通过小线圈的磁通量为0m BS niS φμ==由法拉第电磁感应定律有000cos m d dinS nSi t dt dtφεμμωω=-=-=- 8-9 如图所示,矩形线圈ABCD 放在16.010B T -=⨯的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=︒,长为0.20m 的AB 边可左右滑动。

若令AB 边以速率15.0v m s -=•向右运动,试求线圈中感应电动势的大小及感应电流的方向。

解 利用动生电动势公式0.20()50.6sin(60)0.30()2B Av B dl dl V πε=⨯•=⨯⨯-︒=⎰⎰感应电流的方向从A B →.8-10 如图所示,两段导体AB 和BC 的长度均为10cm ,它们在B 处相接成角30︒;磁场方向垂直于纸面向里,其大小为22.510B T -=⨯。

大学物理1期末考试复习试卷原题与答案

大学物理1期末考试复习试卷原题与答案

⼤学物理1期末考试复习试卷原题与答案⼤学物理1期末考试复习,试卷原题与答案⼒学8.A质量为m的⼩球,⽤轻绳AB、BC连接,如图,其中AB⽔平.剪断绳AB 前后的瞬间,绳BC中的张⼒⽐T : T′=____________________.9.⼀圆锥摆摆长为l、摆锤质量为m,在⽔平⾯上作匀速圆周运动,摆线与铅直线夹⾓θ,则(1) 摆线的张⼒T=_____________________;(2) 摆锤的速率v=_____________________.12.⼀光滑的内表⾯半径为10 cm的半球形碗,以匀⾓速度ω绕其对称OC 旋转.已知放在碗内表⾯上的⼀个⼩球P相对于碗静⽌,其位置⾼于碗底4cm,则由此可推知碗旋转的⾓速度约为(A) 10 rad/s.(B) 13 rad/s.(C) 17 rad/s (D) 18 rad/s.[]13.质量为m的⼩球,放在光滑的⽊板和光滑的墙壁之间,并保持平衡,如图所⽰.设⽊板和墙壁之间的夹⾓为α,当α逐渐增⼤时,⼩球对⽊板的压⼒将(A) 增加(B) 减少.(C) 不变.(D) 先是增加,后⼜减⼩.压⼒增减的分界⾓为α=45°.[ ]15.m m⼀圆盘正绕垂直于盘⾯的⽔平光滑固定轴O转动,如图射来两个质量相同,速度⼤⼩相同,⽅向相反并在⼀条直线上的⼦弹,⼦弹射⼊圆盘并且留在盘内,则⼦弹射⼊后的瞬间,圆盘的⾓速度ω(A) 增⼤.(B) 不变.(C) 减⼩.(D) 不能确定定.()16.如图所⽰,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂⼀质量为M的物体,B滑轮受拉⼒F,⽽且F=Mg.设A、B两滑轮的⾓加速度分别为βA和βB,不计滑轮轴的摩擦,则有(A) βA=βB.(B) βA>βB.(C) βA<βB.(D) 开始时βA=βB,以后βA<βB.18. 有两个半径相同,质量相等的细圆环A和B.A环的质量分布均匀,B环的质量分布不均匀.它们对通过环⼼并与环⾯垂直的轴的转动惯量分别为J A和J B,则(A) J A>J B(B) J A<J B.(C) J A =J B.(D) 不能确定J A、J B哪个⼤.22. ⼀⼈坐在转椅上,双⼿各持⼀哑铃,哑铃与转轴的距离各为0.6 m.先让⼈体以5 rad/s的⾓速度随转椅旋转.此后,⼈将哑铃拉回使与转轴距离为0.2 m.⼈体和转椅对轴的转动惯量为5 kg·m2,并视为不变.每⼀哑铃的质量为5 kg可视为质点.哑铃被拉回后,⼈体的⾓速度ω=__________________________.28.质量m=1.1 kg的匀质圆盘,可以绕通过其中⼼且垂直盘⾯的⽔平光滑固定轴转动,对轴的转动惯量J=221mr(r为盘的半径).圆盘边缘绕有绳⼦,绳⼦下端挂⼀质量m1=1.0 kg的物体,如图所⽰.起初在圆盘上加⼀恒⼒矩使物体以速率v0=0.6 m/s匀速上升,如撤去所加⼒矩,问经历多少时间圆盘开始作反⽅向转动.静电学1. 如图所⽰,两个同⼼球壳.内球壳半径为R 1,均匀带有电荷Q ;外球壳半径为R 2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在两球之间、距离球⼼为r 的P 点处电场强度的⼤⼩与电势分别为:(A) E =204r Q επ,U =r Q04επ.(B) E =204r Q επ,U =???? ??-πr R Q11410ε.(C) E =204r Qεπ,U =??-π20114R r Q ε.(D) E =0,U =204R Qεπ.[]10.E图中曲线表⽰⼀种轴对称性静电场的场强⼤⼩E 的分布,r 表⽰离对称轴的距离,这是由____________________________________产⽣的电场.14. ⼀半径为R 的均匀带电球⾯,其电荷⾯密度为σ.若规定⽆穷远处为电势零点,则该球⾯上的电势U =____________________.17.Lq如图所⽰,真空中⼀长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的⼀端距离为d 的P 点的电场强度.28. 关于⾼斯定理,下列说法中哪⼀个是正确的? (A) ⾼斯⾯内不包围⾃由电荷,则⾯上各点电位移⽮量D 为零.(B)⾼斯⾯上处处D为零,则⾯内必不存在⾃由电荷.(C)⾼斯⾯的D通量仅与⾯内⾃由电荷有关.(D) 以上说法都不正确. ( )q⼀空⼼导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所⽰.当球壳中⼼处再放⼀电荷为q 的点电荷时,则导体球壳的电势(设⽆穷远处为电势零点)为(A) 104R qεπ. (B) 204R qεπ. (C) 102R q επ . (D)20R q ε2π.[]35.如图所⽰,将⼀负电荷从⽆穷远处移到⼀个不带电的导体附近,则导体内的电场强度______________,导体的电势______________.(填增⼤、不变、减⼩)36. ⼀⾦属球壳的内、外半径分别为R1和R2,带电荷为Q.在球⼼处有⼀电荷为q的点电荷,则球壳内表⾯上的电荷⾯密度σ =______________.38. 地球表⾯附近的电场强度为100 N/C.如果把地球看作半径为6.4×105m的导体球,则地球表⾯的电荷Q=___________________.(2/CmN1094129=πε)40. 地球表⾯附近的电场强度约为100 N /C,⽅向垂直地⾯向下,假设地球上的电荷都均匀分布在地表⾯上,则地⾯带_____电,电荷⾯密度σ=__________.(真空介电常量ε 0 = 8.85×10-12 C2/(N·m2) )41. 12σda厚度为d的“⽆限⼤”均匀带电导体板两表⾯单位⾯积上电荷之和为σ.试求图⽰离左板⾯距离为a的⼀点与离右板⾯距离为b的⼀点之间的电势差.42. 半径分别为 1.0 cm与 2.0 cm的两个球形导体,各带电荷 1.0×10-8 C,两球相距很远.若⽤细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/CmN109419=πε)43.半径分别为R1和R2 (R2 > R1 )的两个同⼼导体薄球壳,分别带有电荷Q1和Q2,今将内球壳⽤细导线与远处半径为r的导体球相联,如图所⽰, 导体球原来不带电,试求相联后导体球所带电荷q.稳恒磁场习题1. 有⼀个圆形回路1及⼀个正⽅形回路2,圆直径和正⽅形的边长相等,⼆者中通有⼤⼩相等的电流,它们在各⾃中⼼产⽣的磁感强度的⼤⼩之⽐B 1 / B 2为(A) 0.90. (B) 1.00. (C)1.11.(D)1.22.[]2.边长为l 的正⽅形线圈中通有电流I ,此线圈在A 点(见图)产⽣的磁感强度B 为 (A) l I π420µ. (B) lI π220µ.(C)lI π02µ. (D) 以上均不对.[]3.通有电流I 的⽆限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的⼤⼩B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P . ( )4.⽆限长载流空⼼圆柱导体的内外半径分别为a、b,电流在导体截⾯上均匀分布,则空间各处的B的⼤⼩与场点到圆柱中⼼轴线的距离r的关系定性地如图所⽰.正确的图是[]11. ⼀质点带有电荷q =8.0×10-10 C,以速度v =3.0×105 m·s-1在半径为R =6.00×10-3 m的圆周上,作匀速圆周运动.该带电质点在轨道中⼼所产⽣的磁感强度B =__________________,该带电质点轨道运动的磁矩p m=___________________.(µ0 =4π×10-7 H·m-1) 12. 载有⼀定电流的圆线圈在周围空间产⽣的磁场与圆线圈半径R有关,当圆线圈半径增⼤时,(1)圆线圈中⼼点(即圆⼼)的磁场__________________________(2.)圆线圈轴线上各点的磁场__________________________________________________________________________________________________.14. ⼀条⽆限长直导线载有10 A的电流.在离它0.5 m远的地⽅它产⽣的磁感强度B为______________________.⼀条长直载流导线,在离它1 cm处产⽣的磁感强度是10-4T,它所载的电流为__________________________.两根长直导线通有电流I,图⽰有三种环路;在每种情况下,??lB等于:____________________________________(对环路a).___________________________________(对环路b).____________________________________(对环路c).16.设氢原⼦基态的电⼦轨道半径为a0,求由于电⼦的轨道运动(如图)在原⼦核处(圆⼼处)产⽣的磁感强度的⼤⼩和⽅向.19.⼀根半径为R的长直导线载有电流I,作⼀宽为R、长为l的假想平⾯S,如图所⽰。

磁场习题课——24(1)

磁场习题课——24(1)

·
a
B大 0
B0 B小
2a ( R R )
2 1 2 2
0 IR22
B小 0
B B大
2 2 ( R12 R2 )
0 Ia
3.如图,电流I均匀地自下而上通过宽度为 a的无限长导体 薄平板,求薄板所在平面上距板的一边为 d 的 P 点的磁感 dx 应强度。 0 I 解 : 利用结果 B p 2a x o x 任取一细长条电流 x ~ x dx d
ห้องสมุดไป่ตู้
i
B B'
2.如图一半径为R1的无限长圆柱形导体,其内空心部分 半径为R2,空心部分的轴与圆柱的轴平行但不重合,两轴 距离为 a且 a> R2,现有电流 I均匀地流过导体横截面,且 电流方向与导体轴线平行,求: (1)导体轴线上的磁感应强度 (2)空心部分轴线上的磁感强度
R2 · o o
dI idx i I /a
dB
2 a d x
a
0dI
I
B dB 0
2aa d x 0 I a d ln 方向 : 垂直纸面向里 。 2a d
0 Idx
a
4.如图所示,一根长直导线载有电流I1=30A,矩 形回路载有电流I2=20A,试计算作用在回路上的 合力。已知d=1.0cm,a=8.0cm,L=0.12m。 0 I1 解: B B C 2πx 0 I 2 I1 L F1 I 2 LB1 向左 2 d L I1 I2 0 I 2 I1 L F3 I 2 LB3 2 (d a ) 向右 A D 由dF=IdL×B , d a 可得F2= F4 , F2向上, F4向下 0 I 2 I1 La F F1 F3 I 2 LB3 2 d (d a ) 3 1.28 10 N 方向向左。

复旦大学大学物理A电磁学期末试卷及问题详解

复旦大学大学物理A电磁学期末试卷及问题详解

复旦大学 大学物理A 电磁学一、选择题:(每题3分,共30分)1. 关于高斯定理的理解有下面几种说法,其中正确的是:(A)如果高斯面上E处处为零,则该面内必无电荷。

(B)如果高斯面内无电荷,则高斯面上E处处为零。

(C)如果高斯面上E处处不为零,则该面内必有电荷。

(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零(E )高斯定理仅适用于具有高度对称性的电场。

[ ]2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于:(A)1P 和2P 两点的位置。

(B)1P 和2P 两点处的电场强度的大小和方向。

(C)试验电荷所带电荷的正负。

(D)试验电荷的电荷量。

[ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出:(A)C B A E E E >>,C B A U U U >> (B)C B A E E E <<,C B A U U U << (C)C B A E E E >>,C B A U U U <<(D)C B A E E E <<,C B A U U U >> [ ]4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质,则两种介质内:(A)场强不等,电位移相等。

(B)场强相等,电位移相等。

(C)场强相等,电位移不等。

(D)场强、电位移均不等。

[ ] 5. 图中,Ua-Ub 为:(A)IR -ε (B)ε+IR(C)IR +-ε (D)ε--IR [ ]6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于:(A)BI a 221 (B)BI a 2341 (C)BI a2 (D)0 [ ]7. 如图,两个线圈P 和Q 并联地接到一电动势恒定的电源上,线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计,当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是:(A)4; (B)2; (C)1; (D)1/2 [ ] 8. 在如图所示的电路中,自感线圈的电阻为Ω10,自感系数为H 4.0,电阻R为Ω90,电源电动势为V 40,电源内阻可忽略。

大学物理电磁场练习题含答案

大学物理电磁场练习题含答案

前面是答案和后面是题目,大家认真对对. 三、稳恒磁场答案1-5 CADBC 6-8 CBC 三、稳恒磁场习题1. 有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ ]2.边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为(A) l I π420μ. (B) l Iπ220μ.(C)l Iπ02μ. (D) 以上均不对. [ ]3.通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .[ ]4.无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示.正确的图是 [ ]5.电流I 由长直导线1沿平行bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B和3B表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 2 = 0、B 3= 0,但B 1≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但B 3≠ 0. [ ]6.电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B 、2B及3B,则O 点的磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B,B 3= 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ ] v7.电流由长直导线1沿切向经a 点流入一个电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上.设长直载流导线1、2和圆环中的电流分别在O 点产生的磁感强度为1B 、2B、3B,则圆心处磁感强度的大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B ,B 3 = 0. (C) B ≠ 0,因为B 1≠ 0、B 2≠ 0,B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B . [ ]8.a R r OO ′I在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为(A) 2202R a a I ⋅πμ (B)22202R r a a I -⋅πμ(C) 22202r R a a I-⋅πμ (D) )(222220a r Ra a I -πμ [ ]参考解:导体中电流密度)(/22r R I J -π=.设想在导体的挖空部分同时有电流密度为J 和-J 的流向相反的电流.这样,空心部分轴线上的磁感强度可以看成是电流密度为J 的实心圆柱体在挖空部分轴线上的磁感强度1B 和占据挖空部分的电流密度-J 的实心圆柱在轴线上的磁感强度2B 的矢量和.由安培环路定理可以求得02=B , )(222201r R a Ia B -π=μ 所以挖空部分轴线上一点的磁感强度的大小就等于)(22201r R IaB -π=μ 9. πR 2c3分10.221R B π-3分11. 6.67×10-7 T 3分7.20×10-7 A ·m 2 2分12. 减小 2分在2/R x <区域减小;在2/R x >区域增大.(x 为离圆心的距离) 3分13. 0 1分I 0μ- 2分14. 4×10-6 T 2分 5 A 2分15. I0μ 1分 0 2分2I0μ 2分16. 解:①电子绕原子核运动的向心力是库仑力提供的.即∶ 02202041a m a e v =πε,由此得 002a m e επ=v 2分②电子单位时间绕原子核的周数即频率000142a m a e a ενππ=π=v 2分 由于电子的运动所形成的圆电流00214a m a e e i ενππ== 因为电子带负电,电流i 的流向与 v方向相反 2分 ③i 在圆心处产生的磁感强度002a i B μ=00202018a m a eεμππ= 其方向垂直纸面向外 2分17.1 234 R ROI a β2解:将导线分成1、2、3、4四部份,各部分在O 点产生的磁感强度设为B 1、B 2、B 3、B 4.根据叠加原理O 点的磁感强度为:4321B B B B B +++= ∵ 1B 、4B 均为0,故32B B B+= 2分)2(4102R I B μ= 方向⊗ 2分 242)sin (sin 401203R I a I B π=-π=μββμ)2/(0R I π=μ 方向 ⊗ 2分其中 2/R a =, 2/2)4/sin(sin 2=π=β 2/2)4/sin(sin 1-=π-=β∴ R I R I B π+=2800μμ)141(20π+=R I μ 方向 ⊗ 2分 18. 解:电流元1d l I 在O 点产生1d B 的方向为↓(-z 方向) 电流元2d l I 在O 点产生2d B 的方向为⊗(-x 方向) 电流元3d l I 在O 点产生3d B 的方向为⊗ (-x 方向) 3分kR I i R IB π-+ππ-=4)1(400μμ 2分 19. 解:设x 为假想平面里面的一边与对称中心轴线距离,⎰⎰⎰++==Rx RRxrl B r l B S B d d d 21Φ, 2分d S = l d r2012R IrB π=μ (导线内) 2分r I B π=202μ (导线外) 2分)(42220x R R Il -π=μΦR R x Il +π+ln20μ 2分 令 d Φ / d x = 0, 得Φ 最大时 Rx )15(21-= 2分20. 解:洛伦兹力的大小 B q f v = 1分对质子:1211/R m B q v v = 1分 对电子: 2222/R m B q v v = 1分∵ 21q q = 1分 ∴ 2121//m m R R = 1分21.解:电子在磁场中作半径为)/(eB m R v =的圆周运动. 2分连接入射和出射点的线段将是圆周的一条弦,如图所示.所以入射和出射点间的距离为:)/(3360sin 2eB m R R l v ==︒= 3分2解:在任一根导线上(例如导线2)取一线元d l ,该线元距O 点为l .该处的磁感强度为θμsin 20l I B π=2分 方向垂直于纸面向里. 1分电流元I d l 受到的磁力为 B l I F⨯=d d 2分其大小θμsin 2d d d 20l lI l IB F π== 2分 方向垂直于导线2,如图所示.该力对O 点的力矩为 1分θμsin 2d d d 20π==lI F l M 2分 任一段单位长度导线所受磁力对O 点的力矩⎰⎰+π==120d sin 2d l l l I M M θμθμsin 220π=I 2分 导线2所受力矩方向垂直图面向上,导线1所受力矩方向与此相反.23. (C) 24. (B)25. 解: ===l NI nI H /200 A/m3分===H H B r μμμ0 1.06 T 2分26. 解: B = Φ /S=2.0×10-2 T 2分===l NI nI H /32 A/m 2分 ==H B /μ 6.25×10-4 T ·m/A 2分=-=1/0μμχm 496 2分9. 一磁场的磁感强度为k c j b i a B++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为____________Wb .10.任意曲面在匀强磁场B 中,取一半径为R 的圆,圆面的法线n与B 成60°角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量==⎰⎰⋅Sm S Bd Φ_______________________.11. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__________________,该带电质点轨道运动的磁矩p m =___________________.(μ0 =4π×10-7 H ·m -1)12. 载有一定电流的圆线圈在周围空间产生的磁场与圆线圈半径R 有关,当圆线圈半径增大时,(1) 圆线圈中心点(即圆心)的磁场__________________________.(2) 圆线圈轴线上各点的磁场________如图,平行的无限长直载流导线A 和B ,电流强度均为I ,垂直纸面向外,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度=p B_____________.(2) 磁感强度B沿图中环路L 的线积分 =⎰⋅L l B d ______________________.14. 一条无限长直导线载有10 A 的电流.在离它 0.5 m 远的地方它产生的磁感强度B 为______________________.一条长直载流导线,在离它 1 cm 处产生的磁感强度是10-4 T ,它所载的电流为__________________________.两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅lB d 等于:____________________________________(对环路a ).____________________________________(对环路b ).____________________________________(对环路c ).设氢原子基态的电子轨道半径为a 0,求由于电子的轨道运动(如图)在原子核处(圆心处)产生的磁感强度的大小和方向.17.一根无限长导线弯成如图形状,设各线段都在同一平面内(纸面内),其中第二段是半径为R 的四分之一圆弧,其余为直线.导线中通有电流I ,求图中O 点处的磁感强度.18.z y xR 1 321d l I2d l I 3d l IO如图,1、3为半无限长直载流导线,它们与半圆形载流导线2相连.导线1在xOy平面内,导线2、3在Oyz 平面内.试指出电流元1d l I 、2d l I 、3d l I 在O 点产生的Bd 的方向,并写出此载流导线在O 点总磁感强度(包括大小与方向).19.一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

大学物理第8章磁场题库2(含答案)

大学物理第8章磁场题库2(含答案)

10题图第八章 磁场 填空题 (简单)1、将通有电流为I 的无限长直导线折成1/4圆环形状,已知半圆环的半径为R ,则圆心O 点的磁感应强度大小为08IRμ 。

2、磁场的高斯定理表明磁场是 无源场 。

3、只要有运动电荷,其周围就有 磁场 产生;4、(如图)无限长直导线载有电流I 1,矩形回路载有电流I 2,I 2回路的AB 边与长直导线平行。

电 流I 1产生的磁场作用在I 2回路上的合力F 的大小为01201222()I I L I I La ab μμππ-+,F 的方向 水平向左 。

(综合)5、有一圆形线圈,通有电流I ,放在均匀磁场B 中,线圈平面与B 垂直,则线圈上P 点将受到 安培 力的作用,其方向为 指向圆心 ,线圈所受合力大小为 0 。

(综合)6、∑⎰==⋅n i i lI l d B 00μ是 磁场中的安培环路定理 ,它所反映的物理意义是 在真空的稳恒磁场中,磁感强度B 沿任一闭合路径的积分等于0μ乘以该闭合路径所包围的各电流的代数和。

7、磁场的高斯定理表明通过任意闭合曲面的磁通量必等于 0 。

8、电荷在磁场中 不一定 (填一定或不一定)受磁场力的作用。

9、磁场最基本的性质是对 运动电荷、载流导线 有力的作用。

10、如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α。

求通过该半球面的磁通量为2cos B R πα-。

(综合) 12、一电荷以速度v 运动,它既 产生 电场,又 产生 磁场。

(填“产生”或4题图5题图“不产生”)13、一电荷为+q ,质量为m ,初速度为0υ的粒子垂直进入磁感应强度为B 的均匀磁场中,粒子将作 匀速圆周运动,其回旋半径R=0m Bq υ,回旋周期T=2mBqπ 。

14、把长直导线与半径为R 的半圆形铁环与圆形铁环相连接(如图a 、b 所示),若通以电流为I ,则 a 圆心O 的磁感应强度为___0__________; 图b 圆心O 的磁感应强度为04IRμ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逆时针方向

前页 后页 目录
10
13-5 13要从真空仪器的金属部件上清除出气体, 5. 要从真空仪器的金属部件上清除出气体,可以利 用感应加热的方法。如图所示,设线圈长l=20cm,匝 用感应加热的方法。如图所示,设线圈长 , 数N=30匝(把线圈近似看作是无限长密绕的),线圈中 匝 把线圈近似看作是无限长密绕的) 的高频电流为I=I0sin2πft,其中I0=25A,频率f=105Hz, 的高频电流为 , 其中 , 频率 , 被加热的是电子管阳极,它是半径r=4mm而管壁极薄 被加热的是电子管阳极,它是半径 而管壁极薄 的空圆筒,高度h<<l,其电阻 的空圆筒,高度 ,其电阻R=5×10-3Ω,求 × 阳极中的感应电流最大值; (1)阳极中的感应电流最大值; (2)阳极内每秒产生的热量; 阳极内每秒产生的热量; (3)当频率f增加 倍时,热量增至几倍? 当频率 增加1倍时,热量增至几倍? 增加 倍时 解:(1)
× ×
ε1 = Blυ1 = 2 × 1× 4 = 8(V) ×
υ1
r
× ×
A
× ×
× O1 ×
B
υ2
r
× ×
C
× ×
6
×O 2 ×
D
前页 后页 目录
13-3 13-
ε 2 = Blυ2 = 2 × 1× 2 = 4(V)
方向C→ 方向 →D (2)
8−4 I= = = 0.5(A) 2R 2× 4 UAB = −ε1 + IR = −8 + 0.5 × 4 = −6(V) × × × × × r C r A UCD = UAB = −6(V) υ2 υ1 × × O × ×O 2 ×
前页 后页 目录
12
13-5 13(2)
Im 2 Q=I R = ( ) R 2 29.7 2 −3 =( ) × 5 × 10 = 2.2(J) 2
2
(3)频率增加 倍时 热量增加到原来的4倍 (3)频率增加1倍时,热量增加到原来的 倍。 频率增加 倍时,
Q∝ f
2

前页 后页 目录
13
13-6 13如图所示,在半径为R的无限长直圆柱形空间内 的无限长直圆柱形空间内, 6 . 如图所示 , 在半径为 的无限长直圆柱形空间内 , 存在磁感应强度为B的均匀磁场 的均匀磁场, 的方向平行于圆柱 存在磁感应强度为 的均匀磁场,B的方向平行于圆柱 轴线,在垂直于圆柱轴线的平面内有一根无限长直导 轴线, 线 , 直 导 线 与 圆 柱 轴 线 相 距 为 d , 且 d>R , 已 知 dB/dt=k,k为大于零的常量, 求长直导线中的感应电 为大于零的常量, , 为大于零的常量 动势的大小和方向。 动势的大小和方向。
1
ε1 − ε 2
×
×
B
×
×
D
×
7
前页 后页 目录
13-3 13(3)
1 1 1 UO1B = − ε1 + IR = U AB = −3(V) 2 2 2 1 UO2B = UCD = −3(V) 2
UO1O2 = UO1B − UO2B = 0(V) ×
× ×
υ1
r
× ×
A
× ×
× O1 ×
B
13-1 13在纸面所在平面内有一根通有电流为I的无限长 1 . 在纸面所在平面内有一根通有电流为 的无限长 直导线, 其旁边有一个边长为l的等边三角形线圈 直导线 , 其旁边有一个边长为 的等边三角形线圈 ACD,该线圈的 边与长直导线距离最近且相互平 ,该线圈的AC边与长直导线距离最近且相互平 行,今使线圈ACD在纸面内以匀速υ远离长直导线运 今使线圈 在纸面内以匀速 长直导线相垂直。 求当线圈AC边与长直 动 , 且 υ 与 长直导线相垂直 。 求当线圈 边与长直 导线相距为a时 线圈ACD内的动生电动势ε。 导线相距为 时,线圈 内的动生电动势 通过线圈ACD的磁通量 解:通过线圈 的磁通量
前页 后页 目录

5
13-3 13如图所示, 为两根金属棒, 3 . 如图所示 , AB和 CD为两根金属棒 , 长度 都是 和 为两根金属棒 长度l都是 1m,电阻 都是 Ω,放置在均匀磁场中,已知磁场的 都是4Ω 放置在均匀磁场中, ,电阻R都是 磁感应强度B=2T, 方向垂直于纸面向里 。 当两根金 磁感应强度 , 方向垂直于纸面向里。 属棒在导轨上分别以 υ1=4m/s和υ2=2m/s的速度向左运 和 的速度向左运 动时,忽略导轨的电阻, 动时,忽略导轨的电阻,试求 两金属棒中各自的动生电动势的大小和方向, (1) 两金属棒中各自的动生电动势的大小和方向 , 并 在图上标出方向; 在图上标出方向; 金属棒两端的电势差U (2)金属棒两端的电势差 AB和UCD; 之间的电势差。 (3)金属棒中点O1和O2之间的电势差。 金属棒中点 解:(1) 方向A→ 方向 →B
反时针方向 由对称性可知CD中的电动势 由对称性可知 中的电动势
1 1 2 εCD = ε i = −k ⋅ πR 2 2
方向由D指向 。 方向由 指向C。 指向

前页 后页 目录
15
r r b b− x Φm = ∫S B ⋅ dS = ∫0 ∫0 Bdydx
= ∫0 ∫0
b
b b− x
b
B0 x ye dydx
2
2
− at
dy x dx y x o b
1 2 − at = ∫0 B0 x ⋅ (b − x ) e dx 2
前页 后页 目录
9
13-4 13-
1 1 2 3 1 4 1 5 −at b = B0 ( b x − bx + x )e |0 2 3 2 5 1 5 −at = B0b e 60 dΦ dΦm 1 5 −at εab = − = B0b ae dt 60
A
B
解:在垂直于圆柱轴线的无限 长直导线所在平面内作矩形回 路ABCD,AB与圆柱轴线相距 , 与圆柱轴线相距 为d 。回路的感应电动势
dΦm εi = − dt
× d × × o × × × d
× R × × × × ×
D
C
前页 后页 目录
14
13-6 13-
dB 2 ε i = − S = −k ⋅ πR dt
C dr r r r D Φm = ∫S B ⋅ dS = ∫S BdS I l υ A dS = 2[a + l cos 30° − r ]tg 30° ⋅ dr a
前页 后页 目录
1
13-1 13-
µ0 I = ∫a 2[a + l cos 30° − r ]tg 30° ⋅ dr 2πr 3 a+ l 3 3 µ0 I 2 − µ0 I 3 (a + l ) ⋅ ln = 2 3 a π π 3
A
r r Φm = ∫S B ⋅ dS = ∫S BdS
a
υ
r
b
r dr l 2 d µ0i l0 + l1 l 0 + l1 µ 0 i c l2 ln = ∫l0 l 2 dr = B l0 l1 2πr 2π l0
前页 后页 目录
3
i
13-2 13-
dl 2 dΦm =υ εab = − dt dt d µ0 I 0 l0 + l1 =− ( l 2 ln ) dt 2π l0 l0 + l1 µ0 I0 =− υ ln 2π l0
感应电动势方向由b指向 , 点为高电势。 感应电动势方向由 指向a,即a点为高电势。 指向 点为高电势
前页 后页 目录
4
13-2 13(2)

dΦm εab = − dt d µ0i l0 + l1 = ( l2 ln ) dt 2π l0
µ0 i dl 2 l0 + l1 µ0 di l0 + l1 =− ln − l 2 ln 2π dt l0 2π dt l0 l0 + l1 µ0 I0 =− υ(cosωt − ωt sin ωt ) ln 2π l0
υ2
r
× ×
C
× ×
8
×O 2 ×
D

前页 后页 目录
13-4 13有一个三角形闭合导线, 如图放置。 4 . 有一个三角形闭合导线 , 如图放置 。 在这三角 r r 2 −a t 式中B 形区域中的磁感应强度为 B = B0 x ye k ,式中 0 r 是常量, 轴方向单位矢量, 和a是常量, k 为z轴方向单位矢量,求导线中的感生 是常量 轴方向单位矢量 电动势。 电动势。 y 解:
a + l cos 30°
dΦm εi = − dt
da =υ dt
3l 3l µ0 I 3 ] =− )− υ [ln(1+ 3 2a 2a π

前页 后页 目录
2
13-2 13如图所示, 无限长直导线AB中电流为 中电流为i, 2 . 如图所示 , 无限长直导线 中电流为 , 矩形导 线框abcd与长直导线共面,且ad//AB,dc边固定,ab 与长直导线共面, 边固定, 线框 与长直导线共面 , 边固定 边沿da及 以速度无摩擦地匀速平动 以速度无摩擦地匀速平动, 边沿 及cb以速度无摩擦地匀速平动,设线框自感忽 略不计,t=0时,ab边与 边重合。(1)如i=I0,I0为常 略不计, 时 边与dc边重合。 边与 边重合 中的感应电动势, 两点哪点电势高 两点哪点电势高? 量,求ab中的感应电动势,ab两点哪点电势高? 中的感应电动势 (2)如i=I0cosωt,求线框中的总感应电动势。 ,求线框中的总感应电动势。 通过线圈abcd的磁通量 解:通过线圈 的磁通量
1 dΦm i= = R R dt
相关文档
最新文档