2019年安徽省合肥市高考数学二模试卷(理科)

合集下载

安徽省合肥市2019届高三第二次教学质量检测数学理试题(解析版)

安徽省合肥市2019届高三第二次教学质量检测数学理试题(解析版)
2

上单调递增,所以 g ( x) g 2 1 1 ,所以函数 g ( x) 在 0, 上 6 6 6
没有最大值,D 错.
7.已知椭圆
x2 y 2 1 ( a b 0 )的左右焦点分别为 F1,F2 ,右顶点为 A ,上顶点为 B ,以线段 F1 A 为直径的 a 2 b2
n
9 9 9 所以 S n 100 10( n 10) ,根据题意 100 10( n 10) 100 200 ,解得 n 10 . 10 10 10
12.函数 f x e x e1 x b 2 x 1 在(0,1)内有两个零点,则实数 b 的取值范围是
列说法正确的是
0 对称 A.函数 g x 的图象关于点 , 12
C.函数 g x 在 0, 上单调递增 6
B.函数 g x 的周期是

2
D.函数 g x 在 0, 上最大值是 1 6
答案:C 考点:三角函数函数图象的变换,图象的性质。
h( x) b 2 x 1 ,因为 g ( x) e x e1 x 0 恒成立,所以 g ( x) 单调递增,
且 g (1 x) e
1 x
1 1 y h( x) 在 ,1 内有一个交点,因为 g 2 e , g (1) e 1 , B (1, e 1) , k AB 2(e 1) ,所以 2 2 2 e 2b 2(e 1) ,所以 e b e 1 ,
①②
,得:
2 n 1
9 n 10
n 1
n 1
① 9 n 10

2019合肥二模理科数学试卷 含答案

2019合肥二模理科数学试卷  含答案
A ={x | −2 ≤ x < 1},又 B= {x | −1 < x < 2} ,所以 A B = (−1,1) .
3.答案:C
解析:由题意可知 b a
=
2,∴b =
2a
,故
x2 a2

y2 4a2
= 1,将 P(
6
,
4)
代入,得:
6 a2

16 4a2
= 1 ,解
得= a2 2= , b2 8 ,所以双曲线的方程是 x2 − y2 = 1.
sin
2x
+
π 6
−1

选项 A,当 x =
− π 时,2x + π
12
6
=0 , f

π 12
= −1 ,所以函数
g
(x)
的图象关于点

π 12
,
−1
对称,A
错;
选项 B,函数 g(x) 的周期=T 2=π π ,B 错; 2
选项
C,当
x

0,
π 6
时, 2 x
+
π 6

π 6
,
π 2
,所以函数
g
(x)

0,
π 6
上单调递增,C
正确;
选项
D,因为函数
g
(
x)

0,
π 6
上单调递增,所以
g
(
x)
<
g
π 6
=
2 −1 =
1,所以函数 g(x) 在 0,
π 6
上没
有最大值,D 错.
7.答案:D

安徽省合肥市2019届高三第二次教学质量检测数学理试题(全WORD版)

安徽省合肥市2019届高三第二次教学质量检测数学理试题(全WORD版)

合肥市2019届高三第二次教学质量检测数学试题(理科)(考试时间:120分钟 满分:150分)第Ⅰ卷一、选择题:本大题共 小题,每小题 分 在每小题给出的四个选项中,只有一项是符合题目要求的设复数z 满足41iz i=+,则z 在复平面内的对应点位于 ✌第一象限 第二象限 第三象限 第四象限若集合201x A x x +⎧⎫=≤⎨⎬-⎩⎭,{}12B x x =-<<,则A B =✌[)22-,(]11-, ☎, ✆ ☎, ✆.已知双曲线22221x y a b-=☎00a b >>,✆的一条渐近线方程为2y x =,且经过点P ✆,则双曲线的方程是✌221432x y -= 22134x y -= 22128x y -=2214y x -=在ABC ∆中,12BD DC =,则AD = ✌ 1344AB AC +  2133AB AC +  1233AB AC + 1233AB AC - 下表是某电器销售公司 年度各类电器营业收入占比和净利润占比统计表:...✌该公司 年度冰箱类电器销售亏损该公司 年度小家电类电器营业收入和净利润相同 该公司 年度净利润主要由空调类电器销售提供剔除冰箱类电器销售数据后,该公司 年度空调类电器销售净利润占比将会降低将函数()2sin 16f x x π⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12☎纵坐标不变✆得到函数()g x 的图象,则下列说法正确的是✌函数()g x 的图象关于点 012π⎛⎫- ⎪⎝⎭,对称 函数()g x 的周期是2π函数()g x 在0 6π⎛⎫ ⎪⎝⎭,上单调递增 函数()g x 在0 6π⎛⎫⎪⎝⎭,上最大值是已知椭圆22221x y a b+=☎0a b >>✆的左右焦点分别为12F F ,,右顶点为A ,上顶点为B ,以线段1F A 为直径的圆交线段1F B 的延长线于点P ,若2//F B AP ,则该椭圆离心率是✌ 33  23  3222某部队在一次军演中要先后执行六项不同的任务,要求是:任务A 必须排在前三项执行,且执行任务A 之后需立即执行任务E ,任务B 、任务C 不能相邻,则不同的执行方案共有✌种∙∙∙∙∙∙∙ 种∙∙∙∙∙∙ 种∙∙∙∙∙ ∙ 种 函数()2sin f x x x x =+的图象大致为如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有✌对 对 对 对❽垛积术❾☎隙积术✆是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等 某仓库中部分货物堆放成如图所示的❽茭草垛❾:自上而下,第一层 件,以后每一层比上一层多 件,最后一层是n 件.已知第一层货物单价 万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是910020010n⎛⎫- ⎪⎝⎭万元,则n 的值为✌  函数()121x x f x e e b x -=---在☎, ✆内有两个零点,则实数b 的取值范围是✌()()11 e ee e---,, ()()1 00 1e e --,, ()()1 00 1e e --,,()()1 1e e e e ---,,第♋卷本卷包括必考题和选考题两部分 第 题 第 题为必考题,每个试题考生都必须作答 第 题、第 题为选考题,考生根据要求作答二、填空题:本大题共 小题,每小题 分 把答案填在答题卡上的相应位置设等差数列{}n a 的前n 项和为n S ,若23a =,416S =, 则数列{}n a 的公差d =♉♉♉♉♉♉♉♉♉♉ 若1sin 23πα⎛⎫+= ⎪⎝⎭,则cos2cos αα+=♉♉♉♉♉♉♉♉♉♉♉♉♉若0a b +≠,则()2221a b a b +++的最小值为♉♉♉♉♉♉♉♉♉已知半径为 的球面上有两点A B ,,42AB =,球心为O ,若球面上的动点C 满足二面角C AB O --的大小为60o ,则四面体OABC 的外接球的半径为♉♉♉♉♉♉♉♉♉♉♉♉三、解答题:解答应写出文字说明、证明过程或演算步骤. ☎本小题满分 分✆在ABC ∆中,角A B C ,,所对的边分别为a b c ,,,22sin sin sin sin 2sin A B A B c C ++=,ABC ∆的面积S abc =☎♊✆求角C ;☎♋✆求ABC ∆周长的取值范围☎本小题满分 分✆如图,三棱台ABC EFG==,BF CF-的底面是正三角形,平面ABC⊥平面BCGF,2CB GF ☎♊✆求证:AB CG⊥;☎♋✆若BC CF=,求直线AE与平面BEG所成角的正弦值☎本小题满分 分✆某种大型医疗检查机器生产商,对一次性购买 台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金 元,在延保的两年内可免费维修 次,超过 次每次收取维修费 元;方案二:交纳延保金 元,在延保的两年内可免费维修 次,超过 次每次收取维修费 元某医院准备一次性购买 台这种机器。

【市级联考】安徽省合肥市2019届高三第二次教学质量检测数学(理)试题(解析版)

【市级联考】安徽省合肥市2019届高三第二次教学质量检测数学(理)试题(解析版)

合肥市2019年高三第二次教学质量检测数学试题(理科)注意事项:1.答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2. 答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚,必须在题号所指示的答题区域作答,超出答题区域书写的答案无.....................效,在试题卷、草稿纸上答题无效.......一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数满足,则在复平面内的对应点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】先对复数进行化简,进而可得到它在复平面内对应点的坐标,从而可得到答案。

【详解】由题意,,故在复平面内对应点为,在第一象限,故选A.【点睛】本题考查了复数的四则运算,及复数的几何意义,属于基础题。

2.若集合,,则()A. B. C. D.【答案】C【解析】【分析】求出集合,然后与集合取交集即可。

【详解】由题意,,,则,故答案为C.【点睛】本题考查了分式不等式的解法,考查了集合的交集,考查了计算能力,属于基础题。

3.已知双曲线的一条渐近线方程为,且经过点,则双曲线的方程是()A. B.C. D.【答案】C【解析】【分析】由双曲线的渐近线为,可得到,又点在双曲线上,可得到,联立可求出双曲线的方程。

【详解】双曲线的渐近线为,则,又点在双曲线上,则,解得,故双曲线方程为,故答案为C.【点睛】本题考查了双曲线的渐近线,考查了双曲线的方程的求法,考查了计算能力,属于基础题。

4.在中,,则()A. B.C. D.【答案】B【解析】【分析】在上分别取点,使得,可知为平行四边形,从而可得到,即可得到答案。

2019合肥市二模试卷及答案(理)

2019合肥市二模试卷及答案(理)

合肥市2019年高三第二次教学质量检测数学试题(理)【考试时间:120分钟满分150分)第I卷(满分50分)一、选择题(共10个小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知Z=1 +i(其中i为虚数单位),则z的模是()A. 3B.2C.D.2、双曲线的焦点坐标为()A. (3,0)和(一3,0)B. (2,0)和(一2,0)C. (0,3)和(0,-3)D. (0,2)和(0,一2)3、已知命题P:所有的素数都是奇数,则是()A、所有的素数都不是奇数B、有些素数是奇数C、存在一个素数不是奇数D、存在一个素数是奇数4、△ABC中,AB=4,∠ABC=30O D是边BC上的一点,且则的值等于()A、0B、4C、8D、-45、若正四棱锥的正视图如右图所示.则该正四梭锥体积是A、B、C、D、6、执行如图所示程序框图,则输出的结果为()A、-1B、1C、-2D、27、已知集合A=集合,若集合A、B恒满足,则集合B中的点所形成的几何图形面积的最小值是()A、B、C、D、8、在△ABC中,a,b,c分别是角A、B、C的对边,若A=,b=1,△ABC的面积为,则a的值为()A、1B、2C、D、9、中小学校车安全引起社会的强烈关注,为了彻底消除校车的安全隐患,某市购买了50台完全相同的校车,准备发放给10所学校,每所学校至少2台,则不同的发放方案的种数有()A、B、C、D、10、定义域为R的偶函数f(x)满足对,有f(x+2)=f(x)-f(1),且当时,若函数在上至少有三个零点,则a 得到取值范围是()A、B、\C、D、第II卷(满分100分)二.填空题(共5小题,每题5分,满分25分)11、已知集合,则所有满足题意的集合B的个数有_;12.,在极坐标系中,点到直线的距离为_;13、若,则=_;14、设函数,的最大值和最小值分别为a n和b n,且15、函数y=f(x)的定义域为其图像上任一点P(x,y)满足①函数y=f(x)一定是偶函数;②函数y=f(x)可能既不是偶函数,也不是奇函数;③函数y=f(x)可以是奇函数;④函数y=f(x)如果是偶函数,则值域是或;⑤函数y=f(x)值域是(-1,1),则一定是奇函数其中正确命题的序号是()(填上所有正确的序号)三、解答题(共6小题,满分75分)16、将函数的图像上各点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移个单位,得到函数y=f(x)的图像,若函数y=f(x)的图像过点(,0),且相邻两对称轴间的距离为。

合肥市2019届高三第二次教学质量检测理科数学

合肥市2019届高三第二次教学质量检测理科数学
2 2 2 2
1 4. 在△ABC中, BD DC , 则 AD ( B ) 2 1 3 2 1 A. AB AC B. AB AC 4 4 3 3 1 2 1 2 C . AB AC D. AB AC 3 3 3 3
1 AD AB BD AB BC 3 1 AB AC AB 3 2 1 AB AC B 3 3
A.36种 B.44种 C.48种 D.54种
若任务A排在第一位, 则B, C可以选择的位置组合有3种,
2 2 此时共有排列方法3 A2 A2 12 A
E
若任务A排在第二位, 则B, C可以选择的位置组合有4种,
2 2 此时共有排列方法4 A2 A2 16
A
E
若任务A排在第三位, 则B, C可以选择的位置组合有4种, 此时共有排列方法4 A A 16
P B
2 D. 2
所以F2 B BF1 , 所以△F1 F2 B是 等腰直角三角形, 所以椭圆的 c OF2 2 离心率e a BF2 2
F1 O F2 A
8.某部队在一次军演中要先后执行六项不同的任务, 要求是:任务A必须排在前三项执行,且执行任务A之 后需立即执行任务E,任务B、任务C不能相邻,则不 B 同的执行方案共有( )
合肥市2019届高三第二次教学质量检测
数学试题(理科)
一、选择题:本大题共12小题,每小题5分.在每小 题给出的四个选项中,只有一项是符合题目要求的.
4i 1. 设复数z满足z , 则z在复平面内对应的点位于 1 i ( A ) A.第一象限 B. 第二象限 C . 第三象限 D. 第四象限
x2 由 ≤ 0, 可得( x 2)( x 1) ≤ 0且x 1 0, x 1 解得 2 ≤ x 1, 所以A { x | 2 ≤ x 1}, 又B { x | 1 x 2}, 所以A B ( 1,1)

安徽省合肥市2019届高三第二次教学质量检测数学理试题(全WORD版)

安徽省合肥市2019届高三第二次教学质量检测数学理试题(全WORD版)

合肥市2019届高三第二次教学质量检测数学试题(理科)(考试时间:120分钟 满分:150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足41iz i=+,则z 在复平面内的对应点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.若集合201x A x x +⎧⎫=≤⎨⎬-⎩⎭,{}12B x x =-<<,则A B =A.[)22-,B.(]11-,C.(-1,1)D.(-1,2)3.已知双曲线22221x y a b-=(00a b >>,)的一条渐近线方程为2y x =,且经过点P 4),则双曲线的方程是A.221432x y -=B.22134x y -=C.22128x y -=D.2214y x -= 4.在ABC ∆中,12BD DC =,则AD = A.1344AB AC + B. 2133AB AC + C. 1233AB AC + D. 1233AB AC - 5.下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:...A.该公司2018年度冰箱类电器销售亏损B.该公司2018年度小家电类电器营业收入和净利润相同C.该公司2018年度净利润主要由空调类电器销售提供D.剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低6.将函数()2sin 16f x x π⎛⎫=+- ⎪⎝⎭的图象上各点横坐标缩短到原来的12(纵坐标不变)得到函数()g x 的图象,则下列说法正确的是A.函数()g x 的图象关于点 012π⎛⎫- ⎪⎝⎭,对称 B.函数()g x 的周期是2πC.函数()g x 在0 6π⎛⎫ ⎪⎝⎭,上单调递增D.函数()g x 在0 6π⎛⎫⎪⎝⎭,上最大值是17.已知椭圆22221x y a b+=(0a b >>)的左右焦点分别为12F F ,,右顶点为A ,上顶点为B ,以线段1F A为直径的圆交线段1F B 的延长线于点P ,若2//F B AP ,则该椭圆离心率是A.33 B. 23 C. 32D. 228.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A 必须排在前三项执行,且执行任务A 之后需立即执行任务E ,任务B 、任务C 不能相邻,则不同的执行方案共有A.36种B.44种C.48种D.54种 9.函数()2sin f x x x x =+的图象大致为10.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有A.2对B.3对C.4对D.5对11.“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是910020010n⎛⎫- ⎪⎝⎭万元,则n 的值为A.7B.8C.9D.1012.函数()121x x f x e e b x -=---在(0,1)内有两个零点,则实数b 的取值范围是A.()()11 e e e e ---,, B.()()1 00 1e e --,,C.()()1 00 1e e --,,D.()()1 1e e e e ---,,第Ⅱ卷本卷包括必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须作答.第22题、第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.把答案填在答题卡上的相应位置.13.设等差数列{}n a 的前n 项和为n S ,若23a =,416S =, 则数列{}n a 的公差d =__________. 14.若1sin 23πα⎛⎫+= ⎪⎝⎭,则cos2cos αα+=_____________.15.若0a b +≠,则()2221a b a b +++的最小值为_________.16.已知半径为4的球面上有两点A B ,,42AB =,球心为O ,若球面上的动点C 满足二面角C AB O --的大小为60o ,则四面体OABC 的外接球的半径为____________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在ABC ∆中,角A B C ,,所对的边分别为a b c ,,,22sin sin sin sin 2sin A B A B c C ++=,ABC ∆的面积S abc =.(Ⅰ)求角C ;(Ⅱ)求ABC ∆周长的取值范围.18.(本小题满分12分)如图,三棱台ABC EFG -的底面是正三角形,平面ABC ⊥平面BCGF ,2CB GF =,BF CF =.(Ⅰ)求证:AB CG ⊥;(Ⅱ)若BC CF =,求直线AE 与平面BEG 所成角的正弦值.19.(本小题满分12分)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。

2019年安徽省合肥市高考数学二模试卷(理科)-含详细解析

2019年安徽省合肥市高考数学二模试卷(理科)-含详细解析

2019年安徽省合肥市高考数学二模试卷(理科)副标题一、选择题(本大题共12小题,共60.0分)1.设复数z满足,则z在复平面内的对应点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.若集合,B={x|-1<x<2},则A∩B=()A. B. C. D.3.已知双曲线(a>0,b>0)的一条渐近线方程为y=2x,且经过点P(,4),则双曲线的方程是()A. B. C. D.4.在△ABC中,,则=()A. B. C. D.5.则下列判断中不正确的是()A. 该公司2018年度冰箱类电器销售亏损B. 该公司2018年度小家电类电器营业收入和净利润相同C. 该公司2018年度净利润主要由空调类电器销售提供D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低6.将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数g(x)的图象,则下列说法正确的是()A. 函数的图象关于点对称B. 函数的周期是C. 函数在上单调递增D. 函数在上最大值是17.已知椭圆(a>b>0)的左右焦点分别为F1,F2,右顶点为A,上顶点为B,以线段F1A为直径的圆交线段F1B的延长线于点P,若F2B∥AP,则该椭圆离心率是()A. B. C. D.8.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有()A. 36种B. 44种C. 48种D. 54种9.函数f(x)=x2+x sinx的图象大致为()A. B.C. D.10.如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A. 2对B. 3对C. 4对D. 5对11.“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的.若这堆货物总价是万元,则n的值为()A. 7B. 8C. 9D. 1012.函数f(x)=e x-e1-x-b|2x-1|在(0,1)内有两个零点,则实数b的取值范围是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)13.设等差数列{a n}的前n项和为S n,若a2=3,S4=16,则数列{a n}的公差d=______.14.若,则cos2α+cosα=______.15.若a+b≠0,则的最小值为______.16.已知半径为4的球面上有两点A,B,,球心为O,若球面上的动点C满足二面角C-AB-O的大小为60o,则四面体OABC的外接球的半径为______.三、解答题(本大题共7小题,共82.0分)17.在△ABC中,角A,B,C所对的边分别为a,b,c,sin2A+sin2B+sin A sin B=2c sin C,△ABC的面积S=abc.(Ⅰ)求角C;(Ⅱ)求△ABC周长的取值范围.18.如图,三棱台ABC-EFG的底面是正三角形,平面ABC⊥平面BCGF,CB=2GF,BF=CF.(Ⅰ)求证:AB⊥CG;(Ⅱ)若BC=CF,求直线AE与平面BEG所成角的正弦值.19.某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率.记X表示这2台机器超过质保期后延保的两年内共需维修的次数.(Ⅰ)求X的分布列;(Ⅱ)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?20.已知抛物线C:x2=2py(p>0)上一点M(m,9)到其焦点F的距离为10.(Ⅰ)求抛物线C的方程;(Ⅱ)设过焦点F的直线l与抛物线C交于A,B两点,且抛物线在A,B两点处的切线分别交x轴于P,Q两点,求|AP|•|BQ|的取值范围.21.已知函数f(x)=a(x+1)ln(x+1)-x2-ax(a>0)是减函数.(Ⅰ)试确定a的值;(Ⅱ)已知数列{a n},,T n=a1a2a3•…•a n(n∈N*),求证:<.22.在直角坐标系xOy中,曲线C1的参数方程为(θ为参数).在以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2极坐标方程为ρ2=4ρsinθ-3.(Ⅰ)写出曲线C1和C2的直角坐标方程;(Ⅱ)若P,Q分别为曲线C1,C2上的动点,求|PQ|的最大值.23.已知f(x)=|3x+2|.(Ⅰ)求f(x)≤1的解集;(Ⅱ)若f(x2)≥a|x|恒成立,求实数a的最大值.答案和解析1.【答案】A【解析】解:∵=,∴z在复平面内的对应点为(2,2),位于第一象限.故选:A.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.【答案】C【解析】解:A={x|-2≤x<1},B={x|-1<x<2};∴A∩B=(-1,1).故选:C.可求出集合A,然后进行交集的运算即可.考查描述法、区间的定义,分式不等式的解法,以及交集的运算.3.【答案】C【解析】解:双曲线(a>0,b>0)的一条渐近线方程为y=2x,可得=2,由双曲线经过点P(,4),可得-=1,解得a=,b=2,则双曲线的方程为-=1.故选:C.求得双曲线的渐近线方程可得=2,代入点P的坐标,可得a,b的方程组,解方程即可得到所求双曲线的方程.本题考查双曲线的方程和性质,主要是渐近线方程的运用,考查方程思想和运算能力,属于基础题.4.【答案】B【解析】解:∵;∴;∴.故选:B.根据即可得出:,解出向量即可.考查向量减法的几何意义,以及向量的数乘运算.5.【答案】B【解析】解:根据表中数据知,该公司2018年度冰箱类电器销售净利润所占比为-0.48,是亏损的,A正确;小家电类电器营业收入所占比和净利润所占比是相同的,但收入与净利润不一定相同,B错误;该公司2018年度净利润空调类电器销售所占比为95.80%,是主要利润来源,C正确;所以剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低,D正确.故选:B.根据题意,分析表中数据,即可得出正确的选项.本题考查了数据分析与统计知识的应用问题,是基础题.6.【答案】C【解析】解:函数的图象上各点横坐标缩短到原来的(纵坐标不变),得到函数g(x)=2sin(2x+)-1的图象,故:①函数g(x)的图象关于点对称,故选项A错误.②函数的最小正周期为π,故选项B错误.③当时,,所以函数的最大值取不到1.故选项D错误.故选:C.直接利用函数的图象的伸缩变换的应用求出函数的关系式,进一步利用正弦型函数的性质的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变变换,正弦型函数的性质的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.【答案】D【解析】解:如图所示,以线段F1A为直径的圆的方程为:+y2=,化为:x2-(a-c)x+y2-ac0.直线F1B的方程为:bx-cy+bc=0,联立,解得P.k AP=,=-.∵F2B∥AP,∴=-,化为:e2=,e∈(0,1).解得.另解:F1A为圆的直径,∴∠F1PA=90°.∵F2B∥AP,∴∠F1BF2=90°.∴2a2=(2c)2,解得e=.故选:D.如图所示,以线段F1A为直径的圆的方程为:+y2=,化为:x2-(a-c)x+y2-ac0.直线F1B的方程为:bx-cy+bc=0,联立解得P点坐标,利用F2B∥AP,及其斜率计算公式、离心率计算公式即可得出.本题考查了椭圆的标准方程及其性质、斜率与离心率计算公式、圆的标准方程,考查了推理能力与计算能力,属于中档题.8.【答案】B【解析】解:根据题意,任务A必须排在前三项执行,分3种情况讨论:①,任务A排在第一位,则E排在第二位,将剩下的2项任务全排列,排好后有3个空位,将B、C安排在3个空位中,有A22A32=12种不同的执行方案,②,任务A排在第二位,则E排在第三位,BC的安排方法有4×A22=8种,将剩下的2项任务全排列安排在剩下位置,有A22=2种安排方法,则有8×2=16种安排方法,③,任务A排在第三位,则E排在第四位,BC的安排方法有4×A22=8种,将剩下的2项任务全排列安排在剩下位置,有A22=2种安排方法,则有8×2=16种安排方法,则不同的执行方案共有12+16+16=44种;故选:B.根据题意,分3种情况讨论:①,任务A排在第一位,则E排在第二位,②,任务A排在第二位,则E排在第三位,③,任务A排在第三位,则E排在第四位,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类计数原理的应用,注意优先分析受到限制的元素,属于基础题.9.【答案】A【解析】解:函数f(x)=x2+xsinx是偶函数,关于y轴对称,故排除B,令g(x)=x+sinx,∴g′(x)=1+cosx≥0恒成立,∴g(x)在R上单调递增,∵g(0)=0,∴f(x)=xg(x)≥0,故排除D,当x>0时,f(x)=xg(x)单调递增,故当x<0时,f(x)=xg(x)单调递减,故排除C.故选:A.根据函数的奇偶性排除B,再根据函数的单调性排除C,D,问题得以解决.本题考查了函数图象识别和应用,考查了导数和函数单调性的关系,属于中档题.10.【答案】C【解析】解:根据几何体的三视图转换为几何体为:根据几何体得到:平面SAD⊥平面SCD,平面SBC⊥平面SCD,平面SCD⊥平面ABCD,平面SAD⊥平面SBC.故选:C.首先把三视图转换为几何体,进一步利用面面垂直的判定的应用求出结果.本题考查的知识要点:三视图和几何体的转换,面面垂直的判定定理的应用,主要考查学生的运算能力和转化能力,属于基础题型.11.【答案】D【解析】解:由题意可得第n层的货物的价格为a n=n•()n-1,设这堆货物总价是S n=1•()0+2•()1+3•()2+…+n•()n-1,①,由①×可得S n=1•()1+2•()2+3•()3+…+n•()n,②,由①-②可得S n=1+()1+()2+()3+…+()n-1-n•()n=-n•()n=10-(10+n)•()n,∴S n=100-10(10+n)•()n,∵这堆货物总价是万元,∴n=10,故选:D.由题意可得第n层的货物的价格为a n=n•()n-1,根据错位相减法求和即可求出.本题考查了错位相减法求和,考查了运算能力,以及分析问题解决问题的能力,属于中档题.12.【答案】D【解析】解:f(x)=e x-e1-x-2b|x-|,设t=x-,则x=t+,∵0<x<1,∴-<t<,则函数f(x)等价为y=--2b|t|,即等价为y=--2b|t|在-<t<上有两个零点,即-=2b|t|有两个根,设h(t)=-,则h(-t)=-=-(-)=-h(t),即函数h(t)是奇函数,则h′(t)=+>0,即函数h(t)在-≤t≤上是增函数,h(0)=0,h()=e-1,h(-)=1-e,当0≤t≤,若b=0,则函数f(x)只有一个零点,不满足条件.若b>0,则g(t)=2bx,设过原点的直线g(t)与h(t)相切,切点为(a,-),h′(t)=+,即h′(a)=+,则切线方程为y-(-)=(+)(x-a),切线过原点,则-(-)=-a(+),即-+=-a-a,则(a+1)=(-a+1),得a=0,即切点为(0,0),此时切线斜率k=h′(0)==2若2=2b,则b==,此时切线y=2x与h(t)相切,只有一个交点,不满足条件.当直线过点(,e-1)时,e-1=2b×=b,此时直线g(t)=2(e-1)x,要使g(t)与h(t)有两个交点,则<b<e-1,当b<0时,t<0时,g(t)=-2bx,由-2b=2得b=-,当直线过点(-,1-e)时,1-e=-2b(-)=b,要使g(t)与h(t)有两个交点,则1-e<b<-,综上1-e<b<-或<b<e-1,即实数b的取值范围是,故选:D.利用换元法设t=x-,则函数等价为y=--2b|t|,条件转化为-=2b|t|,研究函数的单调性结合绝对值的应用,利用数形结合进行求解即可.本题主要考查函数与方程的应用,利用条件转化为两个函数图象问题是解决本题的关键.综合性较强,难度较大.13.【答案】2【解析】解:由a2=3,S4=16,∴a1+d=3,4a1+6d=16,联立解得a1=1,d=2,故答案为:2.利用等差数列的通项公式及其求和公式即可得出.本题考查了等差数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.14.【答案】【解析】解:∵,∴cosα=,则cos2α+cosα=2cos2α-1+cosα=2×-1+=-,故答案为:-.根据三角函数的诱导公式求出cosα的值,结合二倍角公式进行转化求解即可.本题主要考查三角函数值的化简和求值,利用诱导公式以及二倍角公式是解决本题的关键.15.【答案】【解析】解:根据题意,若a+b≠0,即a≠-b,则有a2+b2≥,则≥+≥2=,即的最小值为;故答案为:根据题意,由基本不等式的性质可得a2+b2≥,进而可得≥+,结合基本不等式的性质分析可得答案.本题考查基本不等式的性质以及应用,关键是构造基本不等式成立的条件.16.【答案】【解析】解:如图,设A,B,C所在球小圆为圆O′,取AB中点E,连接OE,O′E,则∠OEO′即为二面角C-AB-O的平面角,为60°,由OA=OB=4,AB=,得△AOB为等腰直角三角形,∴OE=,∴,,∴,设O-ABC的外接球球心为M,半径为r,利用Rt△BO′M列方程得:,解得:r=.故答案为:.由球面动点C想到以O为顶点,以A,B,C所在球小圆O′为底面的圆锥,作出图形,取AB中点E,∠OEO′=60°,进而求得高和底面半径,列方程求解不难.此题考查了圆锥外接球,二面角等,综合性较强,难度较大.17.【答案】(本小题满分12分)解:(Ⅰ)由,可知:2c=sin C,∴sin2A+sin2B+sin A sin B=sin2C.由正弦定理得a2+b2+ab=c2.∴由余弦定理得,∴.…………………………(5分)(Ⅱ)由(Ⅰ)知2c=sin C,∴2a=sin A,2b=sin B.∴△ABC的周长为=∵∈,,∴∈,,∴∈,,∴△ABC的周长的取值范围为,.……………………………(12分)【解析】(Ⅰ)由已知利用三角形的面积公式可得2c=sinC,由正弦定理化简已知等式可得a2+b2+ab=c2.由余弦定理得,即可得解C的值.(Ⅱ)由(Ⅰ)知2c=sinC,由正弦定理,三角函数恒等变换的应用可得a+b+c=sin(A+)+,由范围,可求,利用正弦函数的图象和性质可求△ABC的周长的取值范围.本题主要考查了三角形的面积公式,正弦定理,余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.【答案】证明:(Ⅰ)取BC的中点为D,连结DF.由ABC-EFG是三棱台得,平面ABC∥平面EFG,从而BC∥FG.∵CB=2GF,∴,∴四边形CDFG为平行四边形,∴CG∥DF.∵BF=CF,D为BC的中点,∴DF⊥BC,∴CG⊥BC.∵平面ABC⊥平面BCGF,且交线为BC,CG⊂平面BCGF,∴CG⊥平面ABC,而AB⊂平面ABC,∴CG⊥AB.解:(Ⅱ)连结AD.由△ABC是正三角形,且D为中点得,AD⊥BC.由(Ⅰ)知,CG⊥平面ABC,CG∥DF,∴DF⊥AD,DF⊥BC,∴DB,DF,DA两两垂直.以DB,DF,DA分别为x,y,z轴,建立如图所示的空间直角坐标系D-xyz.设BC=2,则A(,,),E(,,),B(1,0,0),G(-1,,0),∴,,,,,,,,.设平面BEG的一个法向量为,,.由可得,,.令,则y=2,z=-1,∴,,.设AE与平面BEG所成角为θ,则直线AE与平面BEG所成角的正弦值为<,>.【解析】(Ⅰ)取BC的中点为D,连结DF,推导出四边形CDFG为平行四边形,从而CG∥DF,DF⊥BC,CG⊥BC.进而CG⊥平面ABC,由此能证明CG⊥AB.(Ⅱ)连结AD.由△ABC是正三角形,且D为中点得,AD⊥BC.由CG⊥平面ABC,CG∥DF,DF⊥AD,DF⊥BC,以DB,DF,DA分别为x,y,z轴,建立空间直角坐标系D-xyz.利用向量法能求出直线AE与平面BEG所成角的正弦值.本题考查线线垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.【答案】(本小题满分12分)解:(Ⅰ)X所有可能的取值为0,1,2,3,4,5,6.,,,,,,,(Ⅱ)选择延保方案一,所需费用元的分布列为:(元).选择延保方案二,所需费用Y元的分布列为:(元).∵EY1>EY2,∴该医院选择延保方案二较合算.【解析】(Ⅰ)X所有可能的取值为0,1,2,3,4,5,6,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)选择延保方案一,求出所需费用Y1元的分布列和数学期望,选择延保方案二,求出所需费用Y2元的分布列和数学期望,由此能求出该医院选择延保方案二较合算.本题考查离散型随机变量的分布列、数学期望的求法,考查相互独立事件概率乘法的性质等基础知识,考查运算求解能力,是中档题.20.【答案】解:(Ⅰ)已知M(m,9)到焦点F的距离为10,则点M到其准线的距离为10.∵抛物线的准线为,∴,解得,p=2,∴抛物线的方程为x2=4y.…………………………(5分)(Ⅱ)由已知可判断直线l的斜率存在,设斜率为k,因为F(0,1),则l:y=kx+1.设A(,),B(x2,),由消去y得,x2-4kx-4=0,∴x1+x2=4k,x1x2=-4.由于抛物线C也是函数的图象,且,则:.令y=0,解得,∴P,,从而.同理可得,∴=.∵k2≥0,∴|AP|•|BQ|的取值范围为[2,+∞).……………………………(12分)【解析】(Ⅰ)可得抛物线的准线为,∴,解得,p=2,即可得抛物线的方程.(Ⅱ)设l:y=kx+1.设A(),B(x2,),可得..同理可得,,即可得|AP|•|BQ|的取值范围.本题考查抛物线的简单性质,直线与抛物线的位置关系的综合应用,考查转化思想以及计算能力,属于中档题21.【答案】解:(Ⅰ)f(x)的定义域为(-1,+∞),f′(x)=a ln(x+1)-2x.由f(x)是减函数得,对任意的x∈(-1,+∞),都有f′(x)=a ln(x+1)-2x≤0恒成立.设g(x)=a ln(x+1)-2x.∵,由a>0知,>,∴当∈,时,g'(x)>0;当∈,时,g'(x)<0,∴g(x)在,上单调递增,在,上单调递减,∴g(x)在时取得最大值.又∵g(0)=0,∴对任意的x∈(-1,+∞),g(x)≤g(0)恒成立,即g(x)的最大值为g(0).∴,解得a=2;(Ⅱ)由f(x)是减函数,且f(0)=0可得,当x>0时,f(x)<0,∴f(n)<0,即2(n+1)ln(1+n)<n2+2n.两边同除以2(n+1)2得,<,即<.从而<,∴<①.下面证<.记,x∈[1,+∞).∴,∵在[2,+∞)上单调递增,∴h'(x)在[2,+∞)上单调递减,而<,∴当x∈[2,+∞)时,h'(x)<0恒成立,∴h(x)在[2,+∞)上单调递减,即x∈[2,+∞),h(x)≤h(2)=2ln4-ln3-3ln2=ln2-ln3<0,∴当n≥2时,h(n)<0.∵<,∴当n∈N*时,h(n)<0,即<②.综上①②可得,<.【解析】(Ⅰ)求出原函数的定义域,求出原函数的导函数,把f(x)是定义域内的减函数转化为f′(x)=aln(x+1)-2x≤0恒成立.再利用导数求得导函数的最大值,由最大值等于0求得a值;(Ⅱ)由f(x)是减函数,且f(0)=0可得,当x>0时,f(x)<0,得到f(n)<0,即2(n+1)ln(1+n)<n2+2n.两边同除以2(n+1)2得,,即.得到T n<,则.然后利用导数证明即可.本题考查利用导数求函数的最值,训练了利用导数证明数列不等式,考查化归与转化思想方法,考查逻辑思维能力与推理论证能力,属难题.22.【答案】解:(Ⅰ)曲线C1的直角坐标方程为,曲线C2的直角坐标方程为x2+y2=4y-3,即x2+(y-2)2=1.…………………………(5分)(Ⅱ)设P点的坐标为(2cosθ,sinθ).|PQ|≤|PC2|+1=,当时,|PQ|max=.…………………………(10分)【解析】(Ⅰ)根据平方关系式可得C1的直角坐标方程,根据x=ρcosθ,y=ρsinθ可得C2的直角坐标方程;(2)|PQ|的最大值为C1上的点到圆心C2的最大值加上半径.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】解:(Ⅰ)由f(x)≤1得|3x+2|≤1,所以-1≤3x+2≤1,解得,所以,f(x)≤1的解集为,.…………………………(5分)(Ⅱ)f(x2)≥a|x|恒成立,即3x2+2≥a|x|恒成立.当x=0时,a∈R;当x≠0时,.因为(当且仅当,即时等号成立),所以,即a的最大值是.…………………………(10分)【解析】(Ⅰ)去掉绝对值,求出不等式的解集即可;(Ⅱ)问题转化为,根据基本不等式的性质求出a的最大值即可.本题考查了解绝对值不等式问题,考查基本不等式的性质以及转化思想,是一道常规题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年安徽省合肥市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设复数z满足,则z在复平面内的对应点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)若集合,B={x|﹣1<x<2},则A∩B=()A.[﹣2,2)B.(﹣1,1] C.(﹣1,1)D.(﹣1,2)3.(5分)已知双曲线(a>0,b>0)的一条渐近线方程为y=2x,且经过点P (,4),则双曲线的方程是()A.B.C.D.4.(5分)在△ABC中,,则=()A.B.C.D.5.(5分)如表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:空调类冰箱类小家电类其它类营业收入占比%%%%净利润占比%﹣%%%则下列判断中不正确的是()A.该公司2018年度冰箱类电器销售亏损B.该公司2018年度小家电类电器营业收入和净利润相同C.该公司2018年度净利润主要由空调类电器销售提供D.剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低6.(5分)将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数g(x)的图象,则下列说法正确的是()A.函数g(x)的图象关于点对称B.函数g(x)的周期是C.函数g(x)在上单调递增D.函数g(x)在上最大值是17.(5分)已知椭圆(a>b>0)的左右焦点分别为F1,F2,右顶点为A,上顶点为B,以线段F1A为直径的圆交线段F1B的延长线于点P,若F2B∥AP,则该椭圆离心率是()A.B.C.D.8.(5分)某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有()A.36种B.44种C.48种D.54种9.(5分)函数f(x)=x2+x sin x的图象大致为()A.B.C.D.10.(5分)如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A.2对B.3对C.4对D.5对11.(5分)“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的.若这堆货物总价是万元,则n的值为()A.7 B.8 C.9 D.1012.(5分)函数f(x)=e x﹣e1﹣x﹣b|2x﹣1|在(0,1)内有两个零点,则实数b的取值范围是()A.B.(1﹣e,0)∪(0,e﹣1)C.D.二、填空题:本大题共4小题,每小题5分.把答案填在答题卡上的相应位置.13.(5分)设等差数列{a n}的前n项和为S n,若a2=3,S4=16,则数列{a n}的公差d=.14.(5分)若,则cos2α+cosα=.15.(5分)若a+b≠0,则的最小值为.16.(5分)已知半径为4的球面上有两点A,B,,球心为O,若球面上的动点C 满足二面角C﹣AB﹣O的大小为60o,则四面体OABC的外接球的半径为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,sin2A+sin2B+sin A sin B=2c sin C,△ABC的面积S=abc.(Ⅰ)求角C;(Ⅱ)求△ABC周长的取值范围.18.(12分)如图,三棱台ABC﹣EFG的底面是正三角形,平面ABC⊥平面BCGF,CB=2GF,BF=CF.(Ⅰ)求证:AB⊥CG;(Ⅱ)若BC=CF,求直线AE与平面BEG所成角的正弦值.19.(12分)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:维修次数0123台数5102015以这50台机器维修次数的频率代替1台机器维修次数发生的概率.记X表示这2台机器超过质保期后延保的两年内共需维修的次数.(Ⅰ)求X的分布列;(Ⅱ)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算20.(12分)已知抛物线C:x2=2py(p>0)上一点M(m,9)到其焦点F的距离为10.(Ⅰ)求抛物线C的方程;(Ⅱ)设过焦点F的直线l与抛物线C交于A,B两点,且抛物线在A,B两点处的切线分别交x轴于P,Q两点,求|AP|•|BQ|的取值范围.21.(12分)已知函数f(x)=a(x+1)ln(x+1)﹣x2﹣ax(a>0)是减函数.(Ⅰ)试确定a的值;(Ⅱ)已知数列{a n},,T n=a1a2a3•…•a n(n∈N*),求证:.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B铅笔在答题卡上,将所选题号对应的方框涂黑.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(θ为参数).在以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2极坐标方程为ρ2=4ρsinθ﹣3.(Ⅰ)写出曲线C1和C2的直角坐标方程;(Ⅱ)若P,Q分别为曲线C1,C2上的动点,求|PQ|的最大值.[选修4-5:不等式选讲]23.已知f(x)=|3x+2|.(Ⅰ)求f(x)≤1的解集;(Ⅱ)若f(x2)≥a|x|恒成立,求实数a的最大值.2019年安徽省合肥市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设复数z满足,则z在复平面内的对应点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A4:复数的代数表示法及其几何意义;A5:复数的运算.【专题】38:对应思想;4A:数学模型法;5N:数系的扩充和复数.【分析】直接利用复数代数形式的乘除运算化简得答案.【解答】解:∵=,∴z在复平面内的对应点为(2,2),位于第一象限.故选:A.【点评】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.(5分)若集合,B={x|﹣1<x<2},则A∩B=()A.[﹣2,2)B.(﹣1,1] C.(﹣1,1)D.(﹣1,2)【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;49:综合法;5J:集合.【分析】可求出集合A,然后进行交集的运算即可.【解答】解:A={x|﹣2≤x<1},B={x|﹣1<x<2};∴A∩B=(﹣1,1).故选:C.【点评】考查描述法、区间的定义,分式不等式的解法,以及交集的运算.3.(5分)已知双曲线(a>0,b>0)的一条渐近线方程为y=2x,且经过点P(,4),则双曲线的方程是()A.B.C.D.【考点】KC:双曲线的性质.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程.【分析】求得双曲线的渐近线方程可得=2,代入点P的坐标,可得a,b的方程组,解方程即可得到所求双曲线的方程.【解答】解:双曲线(a>0,b>0)的一条渐近线方程为y=2x,可得=2,由双曲线经过点P(,4),可得﹣=1,解得a=,b=2,则双曲线的方程为﹣=1.故选:C.【点评】本题考查双曲线的方程和性质,主要是渐近线方程的运用,考查方程思想和运算能力,属于基础题.4.(5分)在△ABC中,,则=()A.B.C.D.【考点】9E:向量数乘和线性运算.【专题】11:计算题;35:转化思想;41:向量法;5A:平面向量及应用.【分析】根据即可得出:,解出向量即可.【解答】解:∵;∴;∴.故选:B.【点评】考查向量减法的几何意义,以及向量的数乘运算.5.(5分)如表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:空调类冰箱类小家电类其它类营业收入占比%%%%净利润占比%﹣%%%则下列判断中不正确的是()A.该公司2018年度冰箱类电器销售亏损B.该公司2018年度小家电类电器营业收入和净利润相同C.该公司2018年度净利润主要由空调类电器销售提供D.剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低【考点】B7:分布和频率分布表.【专题】38:对应思想;44:数形结合法;5I:概率与统计.【分析】根据题意,分析表中数据,即可得出正确的选项.【解答】解:根据表中数据知,该公司2018年度冰箱类电器销售净利润所占比为﹣,是亏损的,A正确;小家电类电器营业收入所占比和净利润所占比是相同的,但收入与净利润不一定相同,B 错误;该公司2018年度净利润空调类电器销售所占比为%,是主要利润来源,C正确;所以剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低,D正确.故选:B.【点评】本题考查了数据分析与统计知识的应用问题,是基础题.6.(5分)将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数g(x)的图象,则下列说法正确的是()A.函数g(x)的图象关于点对称B.函数g(x)的周期是C.函数g(x)在上单调递增D.函数g(x)在上最大值是1【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】35:转化思想;56:三角函数的求值;57:三角函数的图象与性质.【分析】直接利用函数的图象的伸缩变换的应用求出函数的关系式,进一步利用正弦型函数的性质的应用求出结果.【解答】解:函数的图象上各点横坐标缩短到原来的(纵坐标不变),得到函数g(x)=2sin(2x+)﹣1的图象,故:①函数g(x)的图象关于点对称,故选项A错误.②函数的最小正周期为π,故选项B错误.③当时,,所以函数的最大值取不到1.故选项D错误.故选:C.【点评】本题考查的知识要点:三角函数关系式的恒等变变换,正弦型函数的性质的应用,主要考查学生的运算能力和转化能力,属于基础题型.7.(5分)已知椭圆(a>b>0)的左右焦点分别为F1,F2,右顶点为A,上顶点为B,以线段F1A为直径的圆交线段F1B的延长线于点P,若F2B∥AP,则该椭圆离心率是()A.B.C.D.【考点】K4:椭圆的性质.【专题】34:方程思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】如图所示,以线段F1A为直径的圆的方程为:+y2=,化为:x2﹣(a﹣c)x+y2﹣ac0.直线F1B的方程为:bx﹣cy+bc=0,联立解得P点坐标,利用F2B∥AP,及其斜率计算公式、离心率计算公式即可得出.【解答】解:如图所示,以线段F1A为直径的圆的方程为:+y2=,化为:x2﹣(a﹣c)x+y2﹣ac0.直线F1B的方程为:bx﹣cy+bc=0,联立,解得P.k AP=,=﹣.∵F2B∥AP,∴=﹣,化为:e2=,e∈(0,1).解得.另解:F1A为圆的直径,∴∠F1PA=90°.∵F2B∥AP,∴∠F1BF2=90°.∴2a2=(2c)2,解得e=.故选:D.【点评】本题考查了椭圆的标准方程及其性质、斜率与离心率计算公式、圆的标准方程,考查了推理能力与计算能力,属于中档题.8.(5分)某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E,任务B、任务C不能相邻,则不同的执行方案共有()A.36种B.44种C.48种D.54种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;34:方程思想;35:转化思想;5O:排列组合.【分析】根据题意,分3种情况讨论:①,任务A排在第一位,则E排在第二位,②,任务A排在第二位,则E排在第三位,③,任务A排在第三位,则E排在第四位,由加法原理计算可得答案.【解答】解:根据题意,任务A必须排在前三项执行,分3种情况讨论:①,任务A排在第一位,则E排在第二位,将剩下的2项任务全排列,排好后有3个空位,将B、C安排在3个空位中,有A22A32=12种不同的执行方案,②,任务A排在第二位,则E排在第三位,BC的安排方法有4×A22=8种,将剩下的2项任务全排列安排在剩下位置,有A22=2种安排方法,则有8×2=16种安排方法,③,任务A排在第三位,则E排在第四位,BC的安排方法有4×A22=8种,将剩下的2项任务全排列安排在剩下位置,有A22=2种安排方法,则有8×2=16种安排方法,则不同的执行方案共有12+16+16=44种;故选:B.【点评】本题考查排列、组合的应用,涉及分类计数原理的应用,注意优先分析受到限制的元素,属于基础题.9.(5分)函数f(x)=x2+x sin x的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】11:计算题;33:函数思想;44:数形结合法;51:函数的性质及应用.【分析】根据函数的奇偶性排除B,再根据函数的单调性排除C,D,问题得以解决.【解答】解:函数f(x)=x2+x sin x是偶函数,关于y轴对称,故排除B,令g(x)=x+sin x,∴g′(x)=1+cos x≥0恒成立,∴g(x)在R上单调递增,∵g(0)=0,∴f(x)=xg(x)≥0,故排除D,当x>0时,f(x)=xg(x)单调递增,故当x<0时,f(x)=xg(x)单调递减,故排除C.故选:A.【点评】本题考查了函数图象识别和应用,考查了导数和函数单调性的关系,属于中档题.10.(5分)如图,正方形网格纸中的实线图形是一个多面体的三视图,则该多面体各表面所在平面互相垂直的有()A.2对B.3对C.4对D.5对【考点】L!:由三视图求面积、体积.【专题】31:数形结合;5F:空间位置关系与距离.【分析】首先把三视图转换为几何体,进一步利用面面垂直的判定的应用求出结果.【解答】解:根据几何体的三视图转换为几何体为:根据几何体得到:平面SAD⊥平面SCD,平面SBC⊥平面SCD,平面SCD⊥平面ABCD,平面SAD⊥平面SBC.故选:C.【点评】本题考查的知识要点:三视图和几何体的转换,面面垂直的判定定理的应用,主要考查学生的运算能力和转化能力,属于基础题型.11.(5分)“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的.若这堆货物总价是万元,则n的值为()A.7 B.8 C.9 D.10【考点】89:等比数列的前n项和.【专题】11:计算题;38:对应思想;4R:转化法;54:等差数列与等比数列.【分析】由题意可得第n层的货物的价格为a n=n•()n﹣1,根据错位相减法求和即可求出.【解答】解:由题意可得第n层的货物的价格为a n=n•()n﹣1,设这堆货物总价是S n=1•()0+2•()1+3•()2+…+n•()n﹣1,①,由①×可得S n=1•()1+2•()2+3•()3+…+n•()n,②,由①﹣②可得S n=1+()1+()2+()3+…+()n﹣1﹣n•()n=﹣n•()n=10﹣(10+n)•()n,∴S n=100﹣10(10+n)•()n,∵这堆货物总价是万元,∴n=10,故选:D.【点评】本题考查了错位相减法求和,考查了运算能力,以及分析问题解决问题的能力,属于中档题.12.(5分)函数f(x)=e x﹣e1﹣x﹣b|2x﹣1|在(0,1)内有两个零点,则实数b的取值范围是()A.B.(1﹣e,0)∪(0,e﹣1)C.D.【考点】52:函数零点的判定定理.【专题】31:数形结合;32:分类讨论;35:转化思想;4R:转化法;51:函数的性质及应用.【分析】利用换元法设t=x﹣,则函数等价为y=﹣﹣2b|t|,条件转化为﹣=2b|t|,研究函数的单调性结合绝对值的应用,利用数形结合进行求解即可.【解答】解:f(x)=e x﹣e1﹣x﹣2b|x﹣|,设t=x﹣,则x=t+,∵0<x<1,∴﹣<t<,则函数f(x)等价为y=﹣﹣2b|t|,即等价为y=﹣﹣2b|t|在﹣<t<上有两个零点,即﹣=2b|t|有两个根,设h(t)=﹣,则h(﹣t)=﹣=﹣(﹣)=﹣h(t),即函数h(t)是奇函数,则h′(t)=+>0,即函数h(t)在﹣≤t≤上是增函数,h(0)=0,h()=e﹣1,h(﹣)=1﹣e,当0≤t≤,若b=0,则函数f(x)只有一个零点,不满足条件.若b>0,则g(t)=2bx,设过原点的直线g(t)与h(t)相切,切点为(a,﹣),h′(t)=+,即h′(a)=+,则切线方程为y﹣(﹣)=(+)(x﹣a),切线过原点,则﹣(﹣)=﹣a(+),即﹣+=﹣a﹣a,则(a+1)=(﹣a+1),得a=0,即切点为(0,0),此时切线斜率k=h′(0)==2若2=2b,则b==,此时切线y=2x与h(t)相切,只有一个交点,不满足条件.当直线过点(,e﹣1)时,e﹣1=2b×=b,此时直线g(t)=2(e﹣1)x,要使g(t)与h(t)有两个交点,则<b<e﹣1,当b<0时,t<0时,g(t)=﹣2bx,由﹣2b=2得b=﹣,当直线过点(﹣,1﹣e)时,1﹣e=﹣2b(﹣)=b,要使g(t)与h(t)有两个交点,则1﹣e<b<﹣,综上1﹣e<b<﹣或<b<e﹣1,即实数b的取值范围是,故选:D.【点评】本题主要考查函数与方程的应用,利用条件转化为两个函数图象问题是解决本题的关键.综合性较强,难度较大.二、填空题:本大题共4小题,每小题5分.把答案填在答题卡上的相应位置.13.(5分)设等差数列{a n}的前n项和为S n,若a2=3,S4=16,则数列{a n}的公差d= 2 .【考点】85:等差数列的前n项和.【专题】34:方程思想;49:综合法;54:等差数列与等比数列.【分析】利用等差数列的通项公式及其求和公式即可得出.【解答】解:由a2=3,S4=16,∴a1+d=3,4a1+6d=16,联立解得a1=1,d=2,故答案为:2.【点评】本题考查了等差数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.14.(5分)若,则cos2α+cosα=.【考点】GS:二倍角的三角函数.【专题】38:对应思想;4O:定义法;56:三角函数的求值.【分析】根据三角函数的诱导公式求出cosα的值,结合二倍角公式进行转化求解即可.【解答】解:∵,∴cosα=,则cos2α+cosα=2cos2α﹣1+cosα=2×﹣1+=﹣,故答案为:﹣.【点评】本题主要考查三角函数值的化简和求值,利用诱导公式以及二倍角公式是解决本题的关键.15.(5分)若a+b≠0,则的最小值为.【考点】7F:基本不等式及其应用.【专题】11:计算题;34:方程思想;35:转化思想;5T:不等式.【分析】根据题意,由基本不等式的性质可得a2+b2≥,进而可得≥+,结合基本不等式的性质分析可得答案.【解答】解:根据题意,若a+b≠0,即a≠﹣b,则有a2+b2≥,则≥+≥2=,即的最小值为;故答案为:【点评】本题考查基本不等式的性质以及应用,关键是构造基本不等式成立的条件.16.(5分)已知半径为4的球面上有两点A,B,,球心为O,若球面上的动点C 满足二面角C﹣AB﹣O的大小为60o,则四面体OABC的外接球的半径为.【考点】LG:球的体积和表面积;LR:球内接多面体.【专题】15:综合题;34:方程思想;5Q:立体几何.【分析】由球面动点C想到以O为顶点,以A,B,C所在球小圆O′为底面的圆锥,作出图形,取AB中点E,∠OEO′=60°,进而求得高和底面半径,列方程求解不难.【解答】解:如图,设A,B,C所在球小圆为圆O′,取AB中点E,连接OE,O′E,则∠OEO′即为二面角C﹣AB﹣O的平面角,为60°,由OA=OB=4,AB=,得△AOB为等腰直角三角形,∴OE=,∴,,∴,设O﹣ABC的外接球球心为M,半径为r,利用Rt△BO′M列方程得:,解得:r=.故答案为:.【点评】此题考查了圆锥外接球,二面角等,综合性较强,难度较大.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,sin2A+sin2B+sin A sin B=2c sin C,△ABC的面积S=abc.(Ⅰ)求角C;(Ⅱ)求△ABC周长的取值范围.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)由已知利用三角形的面积公式可得2c=sin C,由正弦定理化简已知等式可得a2+b2+ab=c2.由余弦定理得,即可得解C的值.(Ⅱ)由(Ⅰ)知2c=sin C,由正弦定理,三角函数恒等变换的应用可得a+b+c=sin (A+)+,由范围,可求,利用正弦函数的图象和性质可求△ABC的周长的取值范围.【解答】(本小题满分12分)解:(Ⅰ)由,可知:2c=sin C,∴sin2A+sin2B+sin A sin B=sin2C.由正弦定理得a2+b2+ab=c2.∴由余弦定理得,∴.…………………………(5分)(Ⅱ)由(Ⅰ)知2c=sin C,∴2a=sin A,2b=sin B.∴△ABC的周长为=∵,∴,∴,∴△ABC的周长的取值范围为.……………………………(12分)【点评】本题主要考查了三角形的面积公式,正弦定理,余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.(12分)如图,三棱台ABC﹣EFG的底面是正三角形,平面ABC⊥平面BCGF,CB=2GF,BF=CF.(Ⅰ)求证:AB⊥CG;(Ⅱ)若BC=CF,求直线AE与平面BEG所成角的正弦值.【考点】MI:直线与平面所成的角.【专题】14:证明题;35:转化思想;41:向量法;5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取BC的中点为D,连结DF,推导出四边形CDFG为平行四边形,从而CG ∥DF,DF⊥BC,CG⊥BC.进而CG⊥平面ABC,由此能证明CG⊥AB.(Ⅱ)连结AD.由△ABC是正三角形,且D为中点得,AD⊥BC.由CG⊥平面ABC,CG∥DF,DF⊥AD,DF⊥BC,以DB,DF,DA分别为x,y,z轴,建立空间直角坐标系D﹣xyz.利用向量法能求出直线AE与平面BEG所成角的正弦值.【解答】证明:(Ⅰ)取BC的中点为D,连结DF.由ABC﹣EFG是三棱台得,平面ABC∥平面EFG,从而BC∥FG.∵CB=2GF,∴,∴四边形CDFG为平行四边形,∴CG∥DF.∵BF=CF,D为BC的中点,∴DF⊥BC,∴CG⊥BC.∵平面ABC⊥平面BCGF,且交线为BC,CG⊂平面BCGF,∴CG⊥平面ABC,而AB⊂平面ABC,∴CG⊥AB.解:(Ⅱ)连结AD.由△ABC是正三角形,且D为中点得,AD⊥BC.由(Ⅰ)知,CG⊥平面ABC,CG∥DF,∴DF⊥AD,DF⊥BC,∴DB,DF,DA两两垂直.以DB,DF,DA分别为x,y,z轴,建立如图所示的空间直角坐标系D﹣xyz.设BC=2,则A(),E(),B(1,0,0),G(﹣1,,0),∴,,.设平面BEG的一个法向量为.由可得,.令,则y=2,z=﹣1,∴.设AE与平面BEG所成角为θ,则直线AE与平面BEG所成角的正弦值为.【点评】本题考查线线垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.(12分)某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:维修次数0123台数5102015以这50台机器维修次数的频率代替1台机器维修次数发生的概率.记X表示这2台机器超过质保期后延保的两年内共需维修的次数.(Ⅰ)求X的分布列;(Ⅱ)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)X所有可能的取值为0,1,2,3,4,5,6,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)选择延保方案一,求出所需费用Y1元的分布列和数学期望,选择延保方案二,求出所需费用Y2元的分布列和数学期望,由此能求出该医院选择延保方案二较合算.【解答】(本小题满分12分)解:(Ⅰ)X所有可能的取值为0,1,2,3,4,5,6.,,,,,,,∴X的分布列为X0123456P(Ⅱ)选择延保方案一,所需费用Y1元的分布列为:Y170009000110001300015000P(元).选择延保方案二,所需费用Y2元的分布列为:Y2100001100012000P(元).∵EY1>EY2,∴该医院选择延保方案二较合算.【点评】本题考查离散型随机变量的分布列、数学期望的求法,考查相互独立事件概率乘法的性质等基础知识,考查运算求解能力,是中档题.20.(12分)已知抛物线C:x2=2py(p>0)上一点M(m,9)到其焦点F的距离为10.(Ⅰ)求抛物线C的方程;(Ⅱ)设过焦点F的直线l与抛物线C交于A,B两点,且抛物线在A,B两点处的切线分别交x轴于P,Q两点,求|AP|•|BQ|的取值范围.【考点】K8:抛物线的性质.【专题】34:方程思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)可得抛物线的准线为,∴,解得,p=2,即可得抛物线的方程.(Ⅱ)设l:y=kx+1.设A(),B(x2,),可得..同理可得,,即可得|AP|•|BQ|的取值范围.【解答】解:(Ⅰ)已知M(m,9)到焦点F的距离为10,则点M到其准线的距离为10.∵抛物线的准线为,∴,解得,p=2,∴抛物线的方程为x2=4y.…………………………(5分)(Ⅱ)由已知可判断直线l的斜率存在,设斜率为k,因为F(0,1),则l:y=kx+1.设A(),B(x2,),由消去y得,x2﹣4kx﹣4=0,∴x1+x2=4k,x1x2=﹣4.由于抛物线C也是函数的图象,且,则.令y=0,解得,∴P,从而.同理可得,,∴==.∵k2≥0,∴|AP|•|BQ|的取值范围为[2,+∞).……………………………(12分)【点评】本题考查抛物线的简单性质,直线与抛物线的位置关系的综合应用,考查转化思想以及计算能力,属于中档题21.(12分)已知函数f(x)=a(x+1)ln(x+1)﹣x2﹣ax(a>0)是减函数.(Ⅰ)试确定a的值;(Ⅱ)已知数列{a n},,T n=a1a2a3•…•a n(n∈N*),求证:.【考点】6B:利用导数研究函数的单调性.【专题】33:函数思想;4R:转化法;53:导数的综合应用;55:点列、递归数列与数学归纳法.【分析】(Ⅰ)求出原函数的定义域,求出原函数的导函数,把f(x)是定义域内的减函数转化为f′(x)=aln(x+1)﹣2x≤0恒成立.再利用导数求得导函数的最大值,由最大值等于0求得a值;(Ⅱ)由f(x)是减函数,且f(0)=0可得,当x>0时,f(x)<0,得到f(n)<0,即2(n+1)ln(1+n)<n2+2n.两边同除以2(n+1)2得,,即.得到T n<,则.然后利用导数证明即可.【解答】解:(Ⅰ)f(x)的定义域为(﹣1,+∞),f′(x)=aln(x+1)﹣2x.由f(x)是减函数得,对任意的x∈(﹣1,+∞),都有f′(x)=aln(x+1)﹣2x≤0恒成立.设g(x)=aln(x+1)﹣2x.∵,由a>0知,,∴当时,g'(x)>0;当时,g'(x)<0,∴g(x)在上单调递增,在上单调递减,∴g(x)在时取得最大值.又∵g(0)=0,∴对任意的x∈(﹣1,+∞),g(x)≤g(0)恒成立,即g(x)的最大值为g(0).∴,解得a=2;(Ⅱ)由f(x)是减函数,且f(0)=0可得,当x>0时,f(x)<0,∴f(n)<0,即2(n+1)ln(1+n)<n2+2n.两边同除以2(n+1)2得,,即.从而,∴①.下面证.记,x∈[1,+∞).∴,∵在[2,+∞)上单调递增,∴h'(x)在[2,+∞)上单调递减,而,∴当x∈[2,+∞)时,h'(x)<0恒成立,∴h(x)在[2,+∞)上单调递减,即x∈[2,+∞),h(x)≤h(2)=2ln4﹣ln3﹣3ln2=ln2﹣ln3<0,∴当n≥2时,h(n)<0.∵,∴当n∈N*时,h(n)<0,即②.综上①②可得,.【点评】本题考查利用导数求函数的最值,训练了利用导数证明数列不等式,考查化归与转化思想方法,考查逻辑思维能力与推理论证能力,属难题.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B铅笔在答题卡上,将所选题号对应的方框涂黑.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(θ为参数).在以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2极坐标方程为ρ2=4ρsinθ﹣3.(Ⅰ)写出曲线C1和C2的直角坐标方程;(Ⅱ)若P,Q分别为曲线C1,C2上的动点,求|PQ|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;5S:坐标系和参数方程.【分析】(Ⅰ)根据平方关系式可得C1的直角坐标方程,根据x=ρcosθ,y=ρsinθ可得C2的直角坐标方程;(2)|PQ|的最大值为C1上的点到圆心C2的最大值加上半径.【解答】解:(Ⅰ)曲线C1的直角坐标方程为,曲线C2的直角坐标方程为x2+y2=4y﹣3,即x2+(y﹣2)2=1.…………………………(5分)(Ⅱ)设P点的坐标为(2cosθ,sinθ).|PQ|≤|PC2|+1=,当时,|PQ|max=.…………………………(10分)【点评】本题考查了简单曲线的极坐标方程,属中档题.[选修4-5:不等式选讲]23.已知f(x)=|3x+2|.(Ⅰ)求f(x)≤1的解集;(Ⅱ)若f(x2)≥a|x|恒成立,求实数a的最大值.【考点】R5:绝对值不等式的解法.【专题】38:对应思想;4R:转化法;59:不等式的解法及应用.【分析】(Ⅰ)去掉绝对值,求出不等式的解集即可;(Ⅱ)问题转化为,根据基本不等式的性质求出a的最大值即可.【解答】解:(Ⅰ)由f(x)≤1得|3x+2|≤1,所以﹣1≤3x+2≤1,解得,所以,f(x)≤1的解集为.…………………………(5分)(Ⅱ)f(x2)≥a|x|恒成立,即3x2+2≥a|x|恒成立.当x=0时,a∈R;当x≠0时,.因为(当且仅当,即时等号成立),所以,即a的最大值是.…………………………(10分)【点评】本题考查了解绝对值不等式问题,考查基本不等式的性质以及转化思想,是一道常规题.。

相关文档
最新文档