环烷烃的顺反异构对映异构.共51页

合集下载

环烷烃

环烷烃

加溴化氢、 3.2.2.2 加溴化氢、硫酸
CH3 CH3 HBr CH3 C CH CH3 Br CH3 CH3 C CH CH3 OSO3H
H2SO4
CH3
H2O
CH3
CH3 CH3 C CH CH3 OH
环丁烷、环戊烷等与溴化氢不起反应。 环丁烷、环戊烷等与溴化氢不起反应。
3.2.2.4 氧化
eg.
H 3C
CH3
H
H 3C
H
H
H
CH3
H
H3C
H
1R,2R
CH3
H
H3C
H
1S,2S
H
CH3
H CH3
H
CH3 H
H3C
H
H CH3
H 3C
H 3C
3.1.2 环烷烃的命名
根据环中碳原子的数目叫 (1)单环烷烃: a.根据环中碳原子的数目叫“环某烷”; 单环烷烃: a.根据环中碳原子的数目叫“环某烷” b.环上取代基的位次和编号写在母体环烃名 b.环上取代基的位次和编号写在母体环烃名 字前面, 编号”原则与烷烃相同; 字前面,“编号”原则与烷烃相同; c.若有两个取代基 则在最前面标明“ 若有两个取代基, c.若有两个取代基,则在最前面标明“顺、 反”; 若取代基碳链较长,则环作为取代基。 d.若取代基碳链较长 d.若取代基碳链较长,则环作为取代基。
3.1. 1 环烷烃的异构 构造异构:碳链异构、官能团异构、 构造异构:碳链异构、官能团异构、 异构现象 立体异构 位置异构、 位置异构、互变异构 构型异构:顺反异构、 构型异构:顺反异构、对映异构
构象异构: 构象异构:
构型(configuration):在具有一定构造的分子中, 构型(configuration):在具有一定构造的分子中,原 子在空间的排列方式。 子在空间的排列方式。 环烷烃的顺反异构:假定环中碳原子在一个平面上, 环烷烃的顺反异构:假定环中碳原子在一个平面上,以环 平面为参考平面,两取代基在同一边的叫顺式(cis平面为参考平面,两取代基在同一边的叫顺式(cis-), 否则叫反式(trans否则叫反式(trans-)。

环烷烃

环烷烃
• 12
• 环烷烃的化学性质
加氢
与卤素反应
+ Cl2
hv
+ Br2 300 ℃
Cl + HCl
Br + HBr
与氢卤酸反应
+HI +HI CH3 +HI
CH3CH2CH2I
CH3CH2CH2CH2I I
CH3CHCH2CH3
反应活性次序 :
• 第三章习题 • 1-1,2,4,5,6 • 3-1,2,5 •5 • 6-1,2,4,5 • 10-1
CH3 CH3
CH3 CH3
优势构象
多取代环己烷有不同取代基时,体积较大 的取代基在e键为优势构象
CH3
CH3
(CH3)2CH
CH(CH3)2
(CH3)2CH
CH3
优势构象
(CH3)2CH
CH3
CH3
(CH3)2CH
优势构象
(CH3)2CH CH3
• 思考题: 写出反-1-甲基-3-叔丁基环己烷的优势构象。
4
315
2
6
a键和e键:
6个a键
6个e键
• a键和e键的转换
H 5H 4H 3
H
H6 1 H2
4 5
3
6
2 1
• 取代环己烷的稳定构象
单取代环己烷一般以取代基在e键的 构象为优势构象
H
5H
4
3
HH
C
H
61
室温
2
4
3
5
2
6
CH3
1
CH3
H
多取代环己烷一般以取代基在e键较多者为 优势构象
CH3 CH3

环烷烃

环烷烃
a键(axial bonds):与对称轴平行的键 e键(equatorial bonds ):与对称轴成109.5度的键
a键
e键
(3) 相邻两组a键伸展方向相反,一个向上,一个向下,e 键也如此。
a a
e e
e a
a e
e e a a
1
2
3
4
a
e
a 和e键的关系不清晰
5 a 和e 键的关系清晰
3.构象翻转:
Year 1883
Name of scientist Baeyer
1890 H.Sachse 1915-1918 W.M.Mohr
1920
1943 O.Hassel
1950 D.Barton
Point of view
Assumes that six carbon atoms are on the same plane
当环己烷由一种椅式构象翻转为另一种椅式构象时,原
来的a键变成e键,原来的e键变成a键。由于六个碳上连接的 都是氢原子,所以两种椅式构象完全等同。
5
61
43
2
456 3 21
O
O
O
O O O
4O
O1 O
O O
4O O
O O
O
O
O
环上原子或基团的空间关系保持。
O
O O O
O1 O
二. 取代环己烷的构象
3.3 环的张力
一、Bayer’s张力学说
Assumption: 1 成环的碳原子均在同一同面上,且呈正多边形 2 碳原子采取sp3杂化形式,正常键角应为约109.5度 3 为了满足平面正多边形的内角要求,成环的键必须向内或向

环烷烃的异构

环烷烃的异构

2、加溴
+ Br2 hv
+ Br2
+ Br2
BrCH2CH2CH2; HBr
+ HBr
H3C
CH3CH2CH2Br
CH3CH2CHCH3
Br
4、氧化
三元环对氧化剂相对稳定,例如,环丙烷不能使高锰 酸钾溶液退色。含三元环的多环化合物氧化时,三元环可 以保持不变。
O
O
O2 +
O
例题:某烃A,分子式为C5H10,不能使Br2-CCl4溶液 褪色,在光照下与Br2 作用,只得到一种产物B,分子式 为C5H9Br,此化合物与KOH-EtOH溶液加热回流得化合物 C(C5H8)。请推测A,B,C的结构式。
(A)
(B)
Br
(C)
第三节 环烷烃的来源和用途(自学)
补充环烷烃的实验室合成:
CH3
CH3
顺 -1,4-二 甲 基 环 己 烷
CH3
CH3
反 -1,4-二 甲 基 环 己 烷
例题:用CCS命名法命名下列化合物:
(A)
CH3
CH3
C(CH3)3 (B)
解 :(A) 1,1- 二甲基环丙烷 (B) 叔丁基环癸烷
碳环可以简写成相同大小的正多变型,每一个定点 表示一个亚甲基。还上有取代基式,在相应的位置上写 出取代基的编号。
第一节 环烷烃的异构和命名
一、环烷烃的异构
1、构造异构 环烷烃由于环的大小及侧链的长短和位置不同而产生构造
异构体。 最简单的环烷烃含有三个碳原子,它没有异构体;含有四
个碳原子的环烷烃有两个异构体;含五个碳原子的环烷烃有五 个构造异构体。
2、立体异构
构造相同,分子中原子在空间的排列方式不同的化合物互 称为立体异构体。

c3-环烷烃

c3-环烷烃
25
(2) 不同取代基
例:写出顺-1-甲基-2-叔丁基环己烷的稳定构象。
CH3 (H3C)3C e H H a C(CH3)3 a H H3 C e H
不稳定,因 叔丁基在a键 受到环同边 a-H的排斥力 远大于甲基
e-叔丁基
a-叔丁基
结论:不同取代基时体积大的取代基在e位的构象较稳定,当然也是 ee >ae >aa,若只能为ae式时,则体积大者在e键时比较稳定,即 e(大)a(小)>e(小)a(大)
10
例: 环丙烷分子中环内C-C键之间的夹角为60° (为几何角),要使键角由正常的109°28′→ 60°,必须使两个价键各向内偏转 24°44′= (109°28′- 60°)/2
60°
环烷烃: 分子中价键的 偏转程度:
109°28′ 60° 24°44′
120°
90°
108°
+24°44′ +9°44′
(Cycloalkane )
第三章 环烷烃
1
◇环烷烃 — 分子中C原子以单键互相连接成闭合环 ◇通 式 — CnH2n,链成环需增加一个C-C单键,同时减少两个H,与烯 烃为同分异构体
一、环烷烃的异构和命名
1.环烷烃的异构
◇环烷烃构造异构产生的原因: ◎环的大小
◎侧链的长短和位置
◎顺反异构(cis-trans-isomerism)
30
作业
一、第三版P41问题3.1 (1)(3)(4) (第二版P45) 二、第三版P54问题3.5 (1)(2)(3)(4) (第二版P59) 三、补充题:有一饱和烃,其分子式位C7H14,并只含有一个一级碳原 子,写出该化合物可能的结构式并命名之。
31
补充:十氢化萘的构象

有机化学课件-3-环烷烃

有机化学课件-3-环烷烃
(一)环丙烷: 环中C-C键形成一种弯曲键(又称为香蕉键)结构,碳环键角为
105.5o,H-C-H键角114º:
HH
C
H
H
CC
H
H
C-C弯曲键电子云重叠面积较链状烷烃的小,故键的稳定性
较低。
(二)环丁烷和环戊烷:
环丁烷与环丙烷相似,C-C键也是弯曲的,C-C-C键角约111.5º, 其中四个C不在同一平面。呈信封式结构。
十氢萘有两种顺反异构体:
H
顺式:

H
H
反式:

H
Bp(0C) 187.3
195.7
顺式的构象: 反式的构象:
a
H
e
H H
e
e
H
反式的十氢萘内能更低一些;
H
H
Pd
500oC
H
H
9%
91%
4
5
6
7
8
△ H[(CH2)n]
n
-697.1 -686.2 -664 -658.6 -662.4 -663.6
(kJ/mol)
从环烷烃的开环反应条件(见本章§2)及燃烧热数据可以看出: 环丙烷最不稳定,环丁烷次之,环戊烷比较稳定,环己烷以上的 大环都稳定,这反映了环的稳定性与环的结构有着密切的联系。
H
H
HH
H
HH
H
环戊烷分子中,C-C-C夹角为108°,接近sp3杂化轨道间夹角
109.5°,环张力甚微,是比较稳定的环。因此,环戊烷的化学性
质稳定。
H
H H
H
H
H H
H HH
(三)环己烷
所有键的键角都接近于理想sp3杂化的109.50,故最稳定;

第三章环烷烃

第三章环烷烃
H (1 2 0 p m ) H CH3 CH3
(2 0 0 p m )
CH3
取代基的体积越大,e键的比例越高
C(CH
3)3
~100%
2) 二取代环己烷的构象
CH3 E=10.4 kJ/mol CH3 CH3 CH3
试比较顺式和反式 1,4-二甲基环己烷的稳定性。
H3 C CH3
CH3 a CH3 a
1-甲基螺[3.4]辛烷
2.编号从连接螺碳的小环的碳开始; 3.将编号和取代基名称写在螺字前.
2.桥环烃
两个环共用两个或两个以上碳原子的多环烃。两 个碳原子之间的距离叫桥,桥的交点为桥头碳。
二环[1.1.0]丁烷 bicyclo[1.1.0]butane
CH
3
二环[2.2.1]庚烷 bicyclo[2.2.1]heptane
四元环
60°
9 °44′
0 ° 44′ -5 °16 ′
五元环 六元环
109° 8′ 2
解释了小环化合物的性质,大环化合物的出现否 定了该学说。因六元环以上的环烷烃的碳原子能以正 常的键角成键,因此稳定性很高。
2.张力因素
引起分子不稳定的因素
范德华张力 非键原子之间的距离较近时引起的排斥作用。 角张力 键张力 扭转张力
信封式
4.环己烷及其衍生物的构象 (1) 环己烷的构象 极端构象: A)椅式构象 透视式
H 2 H H 1 H H 250pm H 3 H H 5 H H 4 H H
椅式
船式 纽曼投影式
H
H
H
H H
6 1
H H H
2 5
H H
4
H
6
交叉型
3

有机化学-环烷烃

有机化学-环烷烃

CH3
CH3
H
H
H3C H
CH3 H
H3C
CH3
顺-1,3-二甲基环戊烷 (cis-1, 3-dimethylcyclopentane)
CH3 H H3C
H

H

CH3
CH3
CH3
H3C
CH3
顺反异构体
H CH3
➢ 顺反异构用“顺” 或“反”注明基团相 对位置。 英文用 “cis”和“trans”表示。
萘 naphthalene
O
莰烷
2-莰酮(樟脑)
camphane camphor
§3.2 环烷烃的物理性质和化学反应
一、物理性质
环烷烃的bp. mp.和相对密度比同碳原子数的直链烷烃高。 例题:将下列化合物按沸点降低的顺序排列: (1)丁烷(2)己烷(3)3-甲基戊烷 (4)2-甲基丁烷(5)2,3-二甲基丁烷(6)环己烷
解:(6)(2)(3)(5)(4)(1)
二、化学性质 饱和环烷烃对强酸、强碱、强氧化剂稳定
自由基取代反应(普通脂环烃具有开链烃的通性 )
Br2
30 0 ℃
CH3

Cl2
Br HBr
CH3
Cl
HCl
小环化合物的特殊性质 —— 易开环加成
➢ 小环化合物的催化加氢
H2 / Pt, 50oC or Ni, 80oC
环烷烃:碳干为环状而性质与开链烷烃相似的烃类。
§3.1 环烷烃的异构和命名
一、分类 环烷烃的类型
(单)环烷烃
通式:CnH2n
(与烯烃通式相同)
桥环烃(稠环) 桥环烃
螺环烃
小 环 ( C3、 C4)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档