聚类分析原理及步骤
完整版数据挖掘中的聚类分析方法

完整版数据挖掘中的聚类分析方法聚类分析方法是数据挖掘领域中常用的一种数据分析方法,它通过将数据样本分组成具有相似特征的子集,并将相似的样本归为一类,从而揭示数据中隐藏的模式和结构信息。
下面将从聚类分析的基本原理、常用算法以及应用领域等方面进行详细介绍。
聚类分析的基本原理聚类分析的基本原理是将数据样本分为多个类别或群组,使得同一类别内的样本具有相似的特征,而不同类别之间的样本具有较大的差异性。
基本原理可以总结为以下三个步骤:1.相似性度量:通过定义距离度量或相似性度量来计算数据样本之间的距离或相似度。
2.类别划分:根据相似性度量,将样本分组成不同的类别,使得同一类别内的样本之间的距离较小,不同类别之间的距离较大。
3.聚类评估:评估聚类结果的好坏,常用的评估指标包括紧密度、分离度和一致性等。
常用的聚类算法聚类算法有很多种,下面将介绍常用的几种聚类算法:1. K-means算法:是一种基于划分的聚类算法,首先通过用户指定的k值确定聚类的类别数,然后随机选择k个样本作为初始聚类中心,通过迭代计算样本到各个聚类中心的距离,然后将样本划分到距离最近的聚类中心对应的类别中,最后更新聚类中心,直至达到收敛条件。
2.层次聚类算法:是一种基于树状结构的聚类算法,将样本逐步合并到一个大的类别中,直至所有样本都属于同一个类别。
层次聚类算法可分为凝聚式(自底向上)和分裂式(自顶向下)两种。
凝聚式算法首先将每个样本作为一个初始的类别,然后通过计算样本之间的距离来逐步合并最近的两个类别,直至达到停止准则。
分裂式算法则是从一个包含所有样本的初始类别开始,然后逐步将类别分裂成更小的子类别,直至达到停止准则。
3. 密度聚类算法:是一种基于样本密度的聚类算法,通过在数据空间中寻找具有足够高密度的区域,并将其作为一个聚类。
DBSCAN (Density-Based Spatial Clustering of Applications with Noise)算法是密度聚类算法的代表,它通过定义距离和邻域半径来确定样本的核心点、边界点和噪声点,并通过将核心点连接起来形成聚类。
聚类分析实验报告

聚类分析实验报告一、实验目的:通过聚类分析方法,对给定的数据进行聚类,并分析聚类结果,探索数据之间的关系和规律。
二、实验原理:聚类分析是一种无监督学习方法,将具有相似特征的数据样本归为同一类别。
聚类分析的基本思想是在特征空间中找到一组聚类中心,使得每个样本距离其所属聚类中心最近,同时使得不同聚类之间的距离最大。
聚类分析的主要步骤有:数据预处理、选择聚类算法、确定聚类数目、聚类过程和聚类结果评价等。
三、实验步骤:1.数据预处理:将原始数据进行去噪、异常值处理、缺失值处理等,确保数据的准确性和一致性。
2.选择聚类算法:根据实际情况选择合适的聚类算法,常用的聚类算法有K均值算法、层次聚类算法、DBSCAN算法等。
3.确定聚类数目:根据数据的特征和实际需求,确定合适的聚类数目。
4.聚类过程:根据选定的聚类算法和聚类数目进行聚类过程,得到最终的聚类结果。
5. 聚类结果评价:通过评价指标(如轮廓系数、Davies-Bouldin指数等),对聚类结果进行评价,判断聚类效果的好坏。
四、实验结果:根据给定的数据集,我们选用K均值算法进行聚类分析。
首先,根据数据特点和需求,我们确定聚类数目为3、然后,进行数据预处理,包括去噪、异常值处理和缺失值处理。
接下来,根据K均值算法进行聚类过程,得到聚类结果如下:聚类1:{样本1,样本2,样本3}聚类2:{样本4,样本5,样本6}聚类3:{样本7,样本8最后,我们使用轮廓系数对聚类结果进行评价,得到轮廓系数为0.8,说明聚类效果较好。
五、实验分析和总结:通过本次实验,我们利用聚类分析方法对给定的数据进行了聚类,并进行了聚类结果的评价。
实验结果显示,选用K均值算法进行聚类分析,得到了较好的聚类效果。
实验中还发现,数据预处理对聚类分析结果具有重要影响,必要的数据清洗和处理工作是确保聚类结果准确性的关键。
此外,聚类数目的选择也是影响聚类结果的重要因素,过多或过少的聚类数目都会造成聚类效果的下降。
聚类分析原理

聚类分析原理
聚类分析是一种无监督学习算法,它将数据集中的对象分
成相似的组或簇。
其原理基于以下几个关键步骤:
1. 选择合适的相似性度量:聚类算法需要定义一个衡量对
象之间相似性的度量方式。
常用的度量方法包括欧氏距离、曼哈顿距离、余弦相似度等。
2. 初始化聚类中心:聚类算法通常需要提前指定簇的数量K。
然后可以随机选取K个样本作为初始的聚类中心,或者通过某种启发式方法选择初始聚类中心。
3. 分配样本到簇:将每个样本分配到最接近的聚类中心所
属的簇。
这个过程可以通过计算每个样本与每个聚类中心
之间的距离,并选择距离最小的聚类中心来完成。
4. 更新聚类中心:根据当前簇中的样本重新计算聚类中心
的位置,通常是取簇内所有样本的均值作为新的聚类中心。
5. 重复步骤3和步骤4,直到簇的分配结果不再变化或达
到预定的停止条件。
6. 输出最终的聚类结果。
聚类分析的目标是在不知道样本的真实标签的情况下,将
样本聚类成相似的组。
它可以帮助发现数据的内在结构,
识别相似的样本和异常值,以及进行数据压缩和预处理等
任务。
系统聚类法的原理和具体步骤

系统聚类法(Hierarchical Clustering)是一种常用的聚类分析方法,用于将样本或对象根据相似性或距离进行层次化的分组。
其原理和具体步骤如下:
原理:
系统聚类法通过计算样本或对象之间的相似性或距离,将它们逐步合并为不同的聚类组。
该方法基于一个假设,即相似的样本或对象更有可能属于同一个聚类。
具体步骤:
距离矩阵计算:根据选定的相似性度量(如欧氏距离、曼哈顿距离等),计算样本或对象之间的距离,并生成距离矩阵。
初始化聚类:将每个样本或对象视为一个初始聚类。
聚类合并:根据距离矩阵中的最小距离,将距离最近的两个聚类合并为一个新的聚类。
更新距离矩阵:根据合并后的聚类,更新距离矩阵,以反映新的聚类之间的距离。
重复步骤3和4,直到所有的样本或对象都合并为一个聚类或达到指定的聚类数目。
结果展示:将合并过程可视化为一棵聚类树状图(树状图或树状图),以显示不同聚类之间的关系和层次结构。
需要注意的是,系统聚类法有两种主要的实现方式:凝聚层次聚类和分裂层次聚类。
凝聚层次聚类从单个样本开始,逐步合并为更大的聚类;分裂层次聚类从一个整体聚类开始,逐步分裂为更小的聚类。
以上步骤适用于凝聚层次聚类。
系统聚类法在数据分析、模式识别、生物学分类等领域广泛应用。
通过系统聚类法,可以将样本或对象进行有序的分组,帮助发现数据中的模式和结构,并为进一步的分析和解释提供基础。
聚类分析的统计原理

聚类分析的统计原理聚类分析是一种常用的数据分析方法,它通过将相似的数据点分组,将数据集划分为不同的类别或簇。
聚类分析的统计原理是基于数据点之间的相似性或距离来进行分类。
本文将介绍聚类分析的统计原理及其应用。
一、聚类分析的基本概念聚类分析是一种无监督学习方法,它不需要事先标记好的训练样本,而是根据数据点之间的相似性进行分类。
聚类分析的目标是将数据集中的数据点划分为不同的类别,使得同一类别内的数据点相似度较高,不同类别之间的相似度较低。
在聚类分析中,数据点可以是任意形式的对象,如文本、图像、音频等。
聚类分析的结果是一个或多个簇,每个簇包含一组相似的数据点。
聚类分析的结果可以用于数据的分类、模式识别、异常检测等应用。
二、聚类分析的统计原理聚类分析的统计原理基于数据点之间的相似性或距离来进行分类。
常用的聚类分析方法包括层次聚类、K均值聚类、密度聚类等。
1. 层次聚类层次聚类是一种自底向上的聚类方法,它从每个数据点作为一个簇开始,然后逐步合并相似的簇,直到所有数据点都被合并为一个簇或达到预设的聚类数目。
层次聚类的相似性度量可以使用欧氏距离、曼哈顿距离、相关系数等。
2. K均值聚类K均值聚类是一种迭代的聚类方法,它将数据点划分为K个簇,每个簇由一个质心代表。
K均值聚类的过程包括初始化质心、计算每个数据点与质心的距离、将数据点分配到最近的质心所在的簇、更新质心的位置等。
K均值聚类的相似性度量通常使用欧氏距离。
3. 密度聚类密度聚类是一种基于数据点密度的聚类方法,它将数据点划分为高密度区域和低密度区域。
密度聚类的核心思想是通过计算每个数据点周围的密度来确定簇的边界。
常用的密度聚类方法包括DBSCAN、OPTICS 等。
三、聚类分析的应用聚类分析在各个领域都有广泛的应用。
以下是一些常见的应用领域: 1. 市场分析聚类分析可以用于市场细分,将消费者划分为不同的群体,以便针对不同群体制定不同的营销策略。
2. 图像处理聚类分析可以用于图像分割,将图像中的像素点划分为不同的区域,以便进行图像处理和分析。
聚类分析原理及步骤

聚类分析原理及步骤
一,聚类分析概述
聚类分析是一种常用的数据挖掘方法,它将具有相似特征的样本归为
一类,根据彼此间的相似性(相似度)将样本准确地分组为多个类簇,其中
每个类簇都具有一定的相似性。
聚类分析是半监督学习(semi-supervised learning)的一种,半监督学习的核心思想是使用未标记的数据,即在训
练样本中搜集的数据,以及有限的标记数据,来学习模型。
聚类分析是实际应用中最为常用的数据挖掘算法之一,因为它可以根
据历史或当前的数据状况,帮助组织做出决策,如商业分析,市场分析,
决策支持,客户分类,医学诊断,质量控制等等,都可以使用它。
二,聚类分析原理
聚类分析的本质是用其中一种相似性度量方法将客户的属性连接起来,从而将客户分组,划分出几个客户类型,这样就可以进行客户分类、客户
细分、客户关系管理等,更好地实现客户管理。
聚类分析的原理是建立在相似性和距离等度量概念之上:通过对比一
组数据中不同对象之间的距离或相似性,从而将它们分成不同的类簇,类
簇之间的距离越近,则它们之间的相似性越大;类簇之间的距离越远,则
它们之间的相似性越小。
聚类分析的原理分为两类,一类是基于距离的聚类。
聚类分析的数学原理

聚类分析的数学原理聚类分析是一种常用的数据分析方法,广泛应用于商业、工程、社会科学等领域。
它的主要作用是将一组数据分成若干个类别,使得同一类别内部的数据相似度高,而不同类别之间的相似度则较低。
聚类分析的数学原理主要包括距离度量、相似度计算、聚类算法等几个方面。
一、距离度量聚类分析中需要计算不同数据之间的距离,从而判断它们是否属于同一类别,因此距离度量是聚类分析的基础。
常用的距离度量方法有欧几里得距离和曼哈顿距离。
欧几里得距离是平面上两点之间的距离,也就是勾股定理的应用。
对于n维空间中两个点A(x1,x2,...,xn)和B(y1,y2,...,yn),欧几里得距离公式为:d(A,B) = sqrt((x1-y1)^2 + (x2-y2)^2 + ... +(xn-yn)^2)曼哈顿距离是指两点之间横向和纵向的距离之和,也就是在城市街区中走路的距离。
对于n维空间中两个点A(x1,x2,...,xn)和B(y1,y2,...,yn),曼哈顿距离公式为:d(A,B) = |x1-y1| + |x2-y2| + ... + |xn-yn|二、相似度计算相似度计算是聚类分析中的另一重要内容,用于判断两个数据之间的相似程度。
常用的相似度计算方法有余弦相似度和皮尔逊相关系数。
余弦相似度是衡量两个向量之间的相似程度的一种度量方式。
对于两个向量A和B,余弦相似度公式为:cos(A,B) = (A·B) / (|A||B|)其中“A·B”表示向量内积,而“|A|”和“|B|”分别表示向量A和B 的模长。
皮尔逊相关系数是一种统计学上的度量两个变量之间相关程度的方法。
对于两个变量A和B,皮尔逊相关系数公式为:r(A,B) = Cov(A,B) / (Sd(A)Sd(B))其中“Cov(A,B)”表示变量A和B的协方差,“Sd(A)”和“Sd(B)”分别表示变量A和B的标准差。
三、聚类算法聚类算法是聚类分析的核心,主要包括层次聚类和K均值聚类两种。
聚类分析原理及步骤

1、什么是聚类分析聚类分析也称群分析或点群分析,它是研究多要素事物分类问题的数量方法,是一种新兴的多元统计方法,是当代分类学与多元分析的结合。
其基本原理是,根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。
聚类分析是将分类对象置于一个多维空问中,按照它们空问关系的亲疏程度进行分类。
通俗的讲,聚类分析就是根据事物彼此不同的属性进行辨认,将具有相似属性的事物聚为一类,使得同一类的事物具有高度的相似性。
聚类分析方法,是定量地研究地理事物分类问题和地理分区问题的重要方法,常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。
2、聚类分析方法的特征(1)、聚类分析简单、直观。
(2)、聚类分析主要应用于探索性的研究,其分析的结果可以提供多个可能的解,选择最终的解需要研究者的主观判断和后续的分析。
(3)、不管实际数据中是否真正存在不同的类别,利用聚类分析都能得到分成若干类别的解。
(4)、聚类分析的解完全依赖于研究者所选择的聚类变量,增加或删除一些变量对最终的解都可能产生实质性的影响。
(5)、研究者在使用聚类分析时应特别注意可能影响结果的各个因素。
(6)、异常值和特殊的变量对聚类有较大影响,当分类变量的测量尺度不一致时,需要事先做标准化处理。
3、聚类分析的发展历程在过去的几年中聚类分析发展方向有两个:加强现有的聚类算法和发明新的聚类算法。
现在已经有一些加强的算法用来处理大型数据库和高维度数据,例如小波变换使用多分辨率算法,网格从粗糙到密集从而提高聚类簇的质量。
然而,对于数据量大、维度高并且包含许多噪声的集合,要找到一个“全能”的聚类算法是非常困难的。
某些算法只能解决其中的两个问题,同时能很好解决三个问题的算法还没有,现在最大的困难是高维度(同时包含大量噪声)数据的处理。
算法的可伸缩性是一个重要的指标,通过采用各种技术,一些算法具有很好的伸缩性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚类分析原理及步骤
——将未知数据按相似程度分类到不同的类或簇的过程
1》传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚
类法、有序样品聚类、有重叠聚类和模糊聚类等。
采用k-均值、k-中
心点等算法的聚类分析工具已被加入到许多着名的统计分析软件包
中,如SPSS、SAS等。
典型应用
1》动植物分类和对基因进行分类
2》在网上进行文档归类来修复信息
3》帮助电子商务的用户了解自己的客户,向客户提供更合适
的服务
主要步骤
1》数据预处理——选择数量,类型和特征的标度((依据特征
选择和抽取)特征选择选择重要的特征,特征抽取把输入的特征转化
为一个新的显着特征,它们经常被用来获取一个合适的特征集来为避
免“维数灾”进行聚类)和将孤立点移出数据(孤立点是不依附
于一般数据行为或模型的数据)
2》为衡量数据点间的相似度定义一个距离函数——既然相类似性是定义一个类的基础,那么不同数据之间在同一个特征空间相似度的衡
量对于聚类步骤是很重要的,由于特征类型和特征标度的多样性,距离度量
必须谨慎,它经常依赖于应用,例如,通常通过定义在特征空间的距离度量
来评估不同对象的相异性,很多距离度都应用在一些不同的领域一个简单的
距离度量,如Euclidean距离,经常被用作反映不同数据间的相异性,一些
有关相似性的度量,例如PMC和SMC,能够被用来特征化不同数据的概念相
似性,在图像聚类上,子图图像的误差更正能够被用来衡量两个图形的相似
性
3》聚类或分组——将数据对象分到不同的类中【划分方法(划分
方法一般从初始划分和最优化一个聚类标准开始,Cris p Clustering和Fuzzy
Clusterin是划分方法的两个主要技术,Crisp Clustering,它的每一个数据
都属于单独的类;Fuzzy Clustering,它的每个数据可能在任何一个类中)和
层次方法(基于某个标准产生一个嵌套的划分系列,它可以度量不同类之间
的相似性或一个类的可分离性用来合并和分裂类)是聚类分析的两个主要方法,
另外还有基于密度的聚类,基于模型的聚类,基于网格的聚类】4》评估输出——评估聚类结果的质量(它是通过一个类有效索引来评价,,
一般来说,几何性质,包括类间的分离和类内部的耦合,一般都用来评价聚类
结果的质量,类有效索引在决定类的数目时经常扮演了一个重要角色,类有效
索引的最佳值被期望从真实的类数目中获取,一个通常的决定类数目的方法是
选择一个特定的类有效索引的最佳值,这个索引能否真实的得出类的数目是判
断该索引是否有效的标准,很多已经存在的标准对于相互分离的类数据集合都
能得出很好的结果,但是对于复杂的数据集,却通常行不通,例如,对于交叠
类的集合。
)
聚类分析的主要计算方法原理及步骤
划分法
1》将数据集分割成K个组(每个组至少包含一
个数据且每一个数据纪录属于且仅属于一个
分组),每个组成为一类
2》通过反复迭代的方法改变分组,使得每一次
改进之后的分组方案都较前一次好(标准就
是:同一分组中的记录越近越好,而不同分
组中的纪录越远越好,使用这个基本思想的
算法有:K-MEANS算法、K-MEDOIDS算法、
CLARANS算法)
层次法
1》“自底向上”方案——将每个数据单独作为一组,
通过反复迭代的方法,把那些相互邻近的组合并成一
个组,直到所有的记录组成一个分组或者某个条件满
足为止,代表算法有:BIRCH算法、CURE算法、
CHAMELEON算法等
2》“自顶向下”方案
主要算法原理及步骤
K-MEANS算法
k-means 算法接受输入量 k ;然后将n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。
聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
k-means 算法的工作过程说明如下:
1》从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;
2》计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。
一般都采用均方差作为标准测度函数.
k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
K-MEDOIDS算法
K-MEANS有其缺点:产生类的大小相差不会很大,对于脏数
据很敏感。
改进的算法:
k—medoids 方法:
选取一个对象叫做mediod来代替上面的中心的作用,这样的一个medoid就标识了这个类。
步骤:
(1)、任意选取K个对象作为medoids(O1,O2,…Oi…
Ok)。
以下是循环的:
(2)、将余下的对象分到各个类中去(根据与medoid
最相近的原则);(3)、对于每个类(Oi)中,顺序选
取一个Or,计算用Or代替Oi后的消耗—E(Or)。
选
择E最小的那个Or来代替Oi。
这样K个medoids就改
变了,
下面就再转到2。
(4)、这样循环直到K个medoids固定下来。
这种算
法对于脏数据和异常数据不敏感,但计算量显然要比K
均值要大,一般只适合小数据量
Clara算法
K-medoids算法不适合于大数据量的计算,Clara算法的思想就是用实际数据的抽样来代替整个数据,然后再在这些抽样的数据上利用K-medoids算法得到最佳的medoids。
Clara算法从实际数据中抽取多个采样,在每个采样上都用K-medoids算法得到相应的(O1,O2…Oi…Ok),然后在这当中选取E最小的一个作为最终的结果。
Clarans算法
Clara算法的效率取决于采样的大小,一般不太可能得到最佳的结果
在Clara算法的基础上,又提出了Clarans的算法,与Clara 算法不同的是:
在Clara算法寻找最佳的medoids的过程中,采样都是不变的。
而Clarans算法在每一次循环的过程中所采用的采样都是不一样的。
与上次课所讲的寻找最佳medoids的过程不同的是,必须人为地来限定循环的次数。