图论习题
图论习题答案

习题一1. 一个工厂为一结点;若两个工厂之间有业务联系,则此两点之间用边相联;这样就得到一个无向图。
若每点的度数为3,则总度数为27,与图的总度数总是偶数的性质矛盾。
若仅有四个点的度数为偶数,则其余五个点度数均为奇数,从而总度数为奇数,仍与图的总度数总是偶数的性质矛盾。
2. 若存在孤立点,则m 不超过K n-1的边数, 故 m <= (n-1)(n-2)/2, 与题设矛盾。
3.4. 用向量(a 1,a 2,a 3)表示三个量杯中水的量, 其中a i 为第i 杯中水的量, i = 1,2,3.以满足a 1+a 2+a 3 = 8 (a 1,a 2,a 3为非负整数)的所有向量作为各结点, 如果(a 1,a 2,a 3)中某杯的水倒满另一杯得到 ( a ’1, a ’2, a ’3 ) , 则由结点到结点画一条有向边。
这样可得一个有向图。
本题即为在此图中找一条由( 8, 0, 0 )到( 4, 4, 0 )的一条有向路,以下即是这样的一条:5. 可以。
7. 同构。
同构的双射如下:8. 记e 1= (v 1,v 2), e 2= ( v 1,v 4), e 3= (v 3,v 1), e 4= (v 2,v 5), e 5= (v 6,v 3), e 6= (v 6,v 4), e 7= (v 5,v 3), e 8= (v 3,v 4), e 9 = (v 6,v 1), 则邻接矩阵为: 关联矩阵为:∑∑∑∑∑∑∑==+====-=++=-==---=--=ni i n i i n i n i n i ni i i n i i n i i i i a a n n a a a n n n a n a v v 1111121212/)1()1(2)1(])1[(。
, 所以 因为 ,+ 的负度数,则为结点的正度数,为结点记-----22 222 i i C a a ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---------100110000001001000010100010011010100000001001100000111, 001101000100000000001001010000001010⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡( 8, 0, 0 ) ( 5, 3, 0 ) ( 5, 0, 3 ) ( 2, 3, 3 ) ( 2, 5, 1 )(7, 0, 1 ) ( 7, 1, 0 ) ( 4, 4, 0 )( 4, 1, 3 )边列表为:A= (1,1,3,2,6,6,5,3,6), B= (2,4,1,5,3,4,3,4,1). 正向表为:A= (1,3,4,6,6,7,10), B= (2,4,5,1,4,3,3,4,1).习题二1. 用数学归纳法。
离散数学图论部分经典试题及答案

离散数学图论部分综合练习一、单项选择题1.设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010*******11100100110则G 的边数为( ).A .6B .5C .4D .32.已知图G 的邻接矩阵为, 则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边3.设图G =<V , E >,则下列结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集6.如图三所示,以下说法正确的是 ( ) .A .{(a, e )}是割边B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d , e )}是边割集οο ο ο οca b edο f图一图二图三7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的 应该填写:D8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树.A .1m n -+B .m n -C .1m n ++D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ).A .G 连通且边数比结点数少1B .G 连通且结点数比边数少1C .G 的边数比结点数少1D .G 中没有回路.二、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割ο οο οc a b f集是 .3.若图G=<V , E>中具有一条汉密尔顿回路, 则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点 数|S|与W 满足的关系式为 .4.无向图G 存在欧拉回路,当且仅当G 连通 且 .5.设有向图D 为欧拉图,则图D 中每个结点的入度 . 应该填写:等于出度6.设完全图K n 有n 个结点(n 2),m 条边,当 时,K n 中存在欧拉回路.7.设G 是连通平面图,v , e , r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式 .8.设连通平面图G 的结点数为5,边数为6,则面数为 . 9.结点数v 与边数e 满足 关系的无向连通图就是树.10.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树.11.已知一棵无向树T 中有8个结点,4度,3度,2度的分支点各一个,T 的树叶数为 .12.设G =<V , E >是有6个结点,8条边的连通图,则从G 中删去 条边,可以确定图G 的一棵生成树.13.给定一个序列集合{000,001,01,10,0},若去掉其中的元素 ,则该序列集合构成前缀码.三、判断说明题1.如图六所示的图G 存在一条欧拉回路.2.给定两个图G 1,G 2(如图七所示):(1)试判断它们是否为欧拉图、汉密尔顿图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路.v 123图六图七3.判别图G (如图八所示)是不是平面图, 并说明理由.4.设G 是一个有6个结点14条边的连 通图,则G 为平面图.四、计算题1.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},E ={<a 1, a 2>,<a 2, a 4>,<a 3, a 1>,<a 4, a 5>,<a 5, a 2>}(1)试给出G 的图形表示; (2)求G 的邻接矩阵;(3)判断图G 是强连通图、单侧连通图还是弱连通图?2.设图G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1, v 2),(v 1, v 3),(v 2, v 3),(v 2, v 4),(v 3, v 4),(v 3, v 5),(v 4, v 5) },试(1)画出G 的图形表示; (2)写出其邻接矩阵;(2)求出每个结点的度数; (4)画出图G 的补图的图形. 3.设G =<V ,E >,V ={ v 1,v 2,v 3,v 4,v 5},E ={ (v 1,v 3),(v 2,v 3),(v 2,v 4),(v 3,v 4),(v 3,v 5),(v 4,v 5) },试(1)给出G 的图形表示; (2)写出其邻接矩阵; (3)求出每个结点的度数; (4)画出其补图的图形. 4.图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G 的图形; (2)写出G 的邻接矩阵;(3)求出G 权最小的生成树及其权值.5.用Dijkstra 算法求右图中A 点到其它各点的最短路径。
图论习题

9. 若图G=(V, E)是连通图,且eE,证 明:
(1)e属于每一棵生成树的充要条件是{e} 为G的割集;
(2)e不属于G的任何一棵生成树的充要条 件是e为G中的环。
提示:反证
分析: (1) e属于每一棵生成树, 要证G删去e后
0
P(G2) ......
0
...... ...... ...... 0
0
0 ...... P(Gr )
因为Gi是连通图,Gi的秩是连通分支Gi的 结点个数-1,所以 rank(G)=rank(Gi)=n-r。
本题背景:
1 线性相关/线性无关
如果对m个向量1, 2, …., mFm,
(3)1,2,3,4,5,5
(4)2,2,2,3,3,4
(西南交大1995考研)
(1) V1={a, c, e}, V2={b, d, f}. (2) 不可能画出图。(顶点度数之和为偶数)
(3) 不可能画出图和二分图。由于有两个结点 的度数为5,则该两个结点的度数必与其余5个 结点有边相连(因为是简单图),所以其余4 个结点度数至少为2,但有一个结点的度数为1。
1. n个结点的简单图G,n>2且n奇数,G 和G补图中度数为奇数的结点个数是否相 等?请证明或给出反例。
(西南交大2001考研)
解:一定相等。
因为n>2且n奇数,则对于奇数个结点的 完全图,每个结点的度数必为偶数。若G 中度数为奇数的结点个数是m,则G的补 图中m个结点的度数为(偶数-奇数)=奇 数。 G中度数为偶数的结点,在G的补图 中这些结点的度数仍为(偶数-偶数)=偶 数。
图论复习题

图论复习题(二)图论复习题一、选择题1.设图G =<V , E >,v ∈V ,则下列结论成立的是 ( C ) . A .deg(v )=2∣E ∣ B . deg(v )=∣E ∣ C .E v Vv 2)deg(=∑∈ [PPT 23] D .Ev Vv =∑∈)deg(定理1 图G=(V ,E )中,所有点的次之和为边数的两倍 2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110则G 的边数为( B ).A .6B .5C .4D .33、 设完全图K n 有n 个结点(n ≥2),m 条边,当( C )时,K n 中存在欧拉回路.A .m 为奇数B .n 为偶数C .n 为奇数D .m 为偶数解释:K n 每个结点的度都为n -1,所以若存在欧拉回路则n -1必为偶数。
n 必为奇数。
4.欧拉回路是( B )A. 路径B. 简单回路[PPT 40]C. 既是基本回路也是简单回路D.既非基本回路也非简单回路5.哈密尔顿回路是( C )A. 路径B. 简单回路C. 既是基本回路也是简单回路D.既非基本回路也非简单回路[PPT 40]:哈密尔顿回路要求走遍所有的点,即是基本回路的点不重复,也可以是简单回路的边不重复。
6.设G 是简单有向图,可达矩阵P(G)刻划下列关系中的是( C ) A 、点与边 B 、边与点 C 、点与点 D 、边与边7.下列哪一种图不一定是树(C )。
A.无简单回路的连通图B. 有n 个顶点n-1条边的连通图C. 每对顶点间都有通路的图D. 连通但删去一条边便不连通的图8.在有n 个结点的连通图中,其边数(B )A.最多有n-1条B.至少有n-1条C.最多有n 条D.至少有n 条9.下列图为树的是(C )。
A 、>><><><=<},,,,,{},,,,{1d c b a a a d c b a GB 、>><><><=<},,,,,{},,,,{2d c d b b a d c b a GC 、>><><><=<},,,,,{},,,,{3a c d a b a d c b a GD 、>><><><=<},,,,,{},,,,{4d d c a b a d c b a G 10、下面的图7-22是(C )。
图论习题

课前练习一、填空题1、图G 是简单图当且仅当 。
2、简单图G 是二部图当且仅当 。
3、若简单图G 满足(G)δ≥3,则G 中存在长度至少为 的圈。
4、连通图G 具有欧拉通路,而无欧拉回路的充要条件为 。
5、一颗树有两个2度分支点,一个3度分支点,三个4度分支点,则该树有 片树叶。
6、设T 为高为k 的二叉树,则T 最多有 个顶点。
7、设图G 是具有6条边、4个顶点的平面图,则图G 的面数为 。
8、一个图为非平面图当且仅当 。
9、S V ⊂,S 是图G 的极大独立集,则()V G S -是图G 的 。
10、带权为1,3,5,7,8,11,13的最优二叉树T 的权W(T)= 。
二、解答题1、求下图G 1的色多项式,并指出其色数、点连通度和边连通度。
图G 12、(1)证明自补图的阶数n 4k =或者n 4k 1=+,k 为某个自然数。
(2)找出所有4阶的自补图。
3、(1)证明:设G 是有v 个顶点ε条边,且G 是自对偶平面图,则2v 2ε=-。
(2)已知一颗无向树T 有三个3度结点,一个二度结点,其余都是1度结点。
①T 有几个1度结点?②试画出两棵满足上述度数要求的非同构的无向树。
4、通过布尔变量的运算,求下图3的全部极小支配集。
V 16 图3图G 25、用破圈法求下图G 3中的一颗最小生成树,写出具体过程,并计算生成树的权。
图G 36、设简单图,, |V|=n, |E|=m,G V E =<> 若有212n m C -≥+,则G 是哈密尔顿图。
7、证明:5K 不是平面图.8、证明:若,(,1)m n K m n ≥是哈密顿图,则必有.m n = 9、若,m n K 是树,求,m n 应满足的条件.132411253e 6e 1e 2e 3e 4e 5e 7e 8e 9。
图论习题参考答案

二、应用题题0:(1996年全国数学联赛)有n(n≥6)个人聚会,已知每个人至少认识其中的[n/2]个人,而对任意的[n/2]个人,或者其中有两个人相互认识,或者余下的n-[n/2]个人中有两个人相互认识。
证明这n个人中必有3个人互相认识。
注:[n/2]表示不超过n/2的最大整数。
证明将n个人用n个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G。
由条件可知,G是具有n个顶点的简单图,并且有(1)对每个顶点x,)(xN G≥[n/2];(2)对V的任一个子集S,只要S=[n/2],S中有两个顶点相邻或V-S中有两个顶点相邻。
需要证明G中有三个顶点两两相邻。
反证,若G中不存在三个两两相邻的顶点。
在G中取两个相邻的顶点x1和y1,记N G(x1)={y1,y2,……,y t}和N G(y1)={x1,x2,……,x k},则N G(x1)和N G(y1)不相交,并且N G(x1)(N G(y1))中没有相邻的顶点对。
情况一;n=2r:此时[n/2]=r,由(1)和上述假设,t=k=r且N G(y1)=V-N G(x1),但N G(x1)中没有相邻的顶点对,由(2),N G(y1)中有相邻的顶点对,矛盾。
情况二;n=2r+1: 此时[n /2]=r ,由于N G (x 1)和N G (y 1)不相交,t ≥r,k ≥r,所以r+1≥t,r+1≥k 。
若t=r+1,则k=r ,即N G (y 1)=r ,N G (x 1)=V-N G (y 1),由(2),N G (x 1)或N G (y 1)中有相邻的顶点对,矛盾。
故k ≠r+1,同理t ≠r+1。
所以t=r,k=r 。
记w ∈V- N G (x 1) ∪N G (y 1),由(2),w 分别与N G (x 1)和N G (y 1)中一个顶点相邻,设wx i0∈E, wy j0∈E 。
若x i0y j0∈E ,则w ,x i0, y j0两两相邻,矛盾。
图论测试题及答案

图论测试题及答案一、选择题1. 在图论中,如果一个图的每个顶点的度数都是偶数,那么这个图一定存在欧拉路径吗?A. 是的B. 不一定C. 没有欧拉路径D. 无法确定答案:B2. 图论中的哈密顿路径是指什么?A. 经过图中所有顶点的路径B. 经过图中所有顶点的回路C. 经过图中某些顶点的路径D. 经过图中某些顶点的回路答案:A3. 如果一个图是完全图,那么它的边数是多少?A. 顶点数的一半B. 顶点数的平方C. 顶点数的两倍D. 顶点数减一答案:B二、填空题4. 在无向图中,如果存在一条路径,使得每个顶点只被经过一次,并且起点和终点相同,这样的路径被称为________。
答案:欧拉回路5. 图论中的二分图是指图中的顶点可以被分成两个不相交的集合,使得同一个集合内的顶点之间没有边,而不同集合之间的顶点之间有边,这种图也被称为________。
答案:二部图三、简答题6. 请简述图论中的最短路径问题,并给出解决该问题的一种算法。
答案:最短路径问题是在图中找到两个顶点之间的最短路径的问题。
解决该问题的一种算法是迪杰斯特拉算法(Dijkstra's algorithm),该算法通过维护一个顶点集合来记录已经找到最短路径的顶点,并迭代更新距离,直到找到从起点到所有顶点的最短路径。
7. 描述图论中的图着色问题,并说明其在实际生活中的应用。
答案:图着色问题是将图的顶点着色,使得任何两个相邻的顶点颜色不同。
在实际生活中,图着色问题可以应用于时间表的安排、频率分配、电路设计等领域,其中每个顶点代表一个任务或频道,而颜色则代表不同的时间段或频率。
结束语:以上是图论测试题及答案,希望能够帮助大家更好地理解和掌握图论的基本概念和算法。
图论复习题

图论及网络总复习题一、选择题1、设G是由5个顶点构成的完全图,则从G中删去()边可以得到树。
A.6 B.5 C.8 D.42、下面哪几种图不一定是树()。
A.无回路的连通图B.有n个结点,n-1条边的连通图C.对每对结点间都有通路的图D.连通但删去任意一条边则不连通的图。
3、5阶无向完全图的边数为()。
A.5 B.10 C.15 D.204、把平面分成x个区域,每两个区域都相邻,问x最大为()A.6 B.4 C.5 D.35、设图G有n个结点,m条边,且G中每个结点的度数不是k,就是k+1,则G中度数为k的节点数是()A.n/2 B.n(n+1) C.nk-2m D.n(k+1)-2m 6、图G1和G2的结点和边分别存在一一对应关系是G1和G2同构的()。
A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件7、设G=<V,E>为有向图,V={a,b,c,d,e,f},E={<a,b>,<b,c>,<a,d>,<d,e>,<f,e>}是()。
A.强连通图B.单向连通图C.弱连通图D.不连通图8、无向图G中的边e是G的割边(桥)的充分必要条件是()。
A.e是重边B.e不是重边C.e不包含在G的任一简单回路中D.e不包含在G的某一简单回路中9、在有n个结点的连通图中,其边数()A.最多有n-1条B.至少有n-1条C.最多有n条D.至少有n条10.设无向简单图的顶点个数为n,则该图最多有()条边。
A.n-1 B.n(n-1)/2 C. n(n+1)/2 D.n211.n个结点的完全有向图含有边的数目()。
A.n*n B.n(n+1) C.n/2 D.n*(n-l)12.在一个无向图中,所有顶点的度数之和等于所有边数()倍。
A.1/2 B.2 C.1 D.413.连通图G是一棵树,当且仅当G中()A.有些边不是割边B.所有边都是割边C.无割边集D.每条边都不是割边14.4个顶点的完全图G,其生成树个数是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题八
8.1 设V={u,v,w,x,y}, 画出图G: (V ,E).
(1) E={(u,v),(u,x),(v,w),(v,y),(x,y)} (2) E={(u,v),(v,w),(w,x),(w,y),(x,y)} 再求每个结点的次数。
8.2 设G 是具有4个结点的完全图:
(1) 写出G 的所有子图; (2) 写出G 的所有生成子图。
8.3 画出一个多重图,使它们的邻接矩阵为
1300301101220
120⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭
. 8.4 对于图1,试求
(1) 从a 到h 的所有基本通路; (2) 从a 到h 的所有简单通路; (3) 从a 到h 的距离。
h
e d
图1
8.5 图2中哪个有欧拉通路、有欧拉回路、有汉密尔顿通路、有汉密尔顿回路?
b c
e
图2
8.6 图G 1,G 2的邻接矩阵分别为A 1,A 2,试求:
(1) 2323
1122,,,A A A A ;
(2) 在G 1内列出每两个结点间的距离; (3) 列出G 1,G 2中的所有基本回路。
100110000011
00101010001001A ⎛⎫ ⎪
⎪ ⎪= ⎪ ⎪
⎪⎝
⎭,
20
0011000
0000110001000101010010010000
1000000100000A ⎛⎫
⎪
⎪ ⎪ ⎪
= ⎪ ⎪
⎪
⎪ ⎪⎝⎭
8.7 设有向图D 如下,试求:
(1) 每个结点的入次与出次; (2) 它的邻接矩阵M D ; (3) D 是强连通、弱连通还是单向连通? (4) 求从a 到c 长度小于或等于3的通路数。
8.8 D 是具有结点v 1、v 2、v 3、v 4的有向图,它的邻接矩阵表示如下:
0111011011011
00
0⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭
(1) 画出这个图; (2) D 是强连通还是单向连通?
(3) 求从v 1到v 1长度是3的回路,从v 1到v 2、v 1到v 3、v 1到v 4长度是3的通路数。
习题九
9.4 设有代数表示式如下:4
2
(35)(2)
x y a b c -+,试画出这个表示式的树. 第四篇
1. 在图G=(V,E)中,结点次数与边数的关系是下面4个中的哪一个? (1) deg()2||i v E = (2) deg()||i v E = (3)
deg()2||v V
v E ∈=∑ (4) deg()||v V
v E ∈=∑
2. 设G 是n 个结点的无向完全图,则图G 的边数是多少?设D 是n 个结点的有向完全图,则图D 的边数又是多少?
3. 仅有一个结点是图称为什么图?
4. 设G=(V ,E)为无向简单图,|V|=n ,∆(G)为G 中结点的最大次数,请指出下面4个中哪个不等式是正确的。
(1) ∆(G)<n (2) ∆(G )≤n, (3) ∆(G)>n (4) ∆(G )≥n.
5. 图G 与G ’的结点和边分别存在一一对应关系是G 与G ’同构的充分必要条件吗?说明之。
(1)充分条件 (2)必要条件 (3)充要条件 (4)非充分也非必要条件
6. 设V={a ,b ,c ,d }, 则与V 能构成强连通图的边集合是下面4个中哪一个? (1) E ={(a ,d ),(b ,a ),(b ,d ),(c ,b ),(d ,c )}; (2) E ={(a ,d ),(b ,a ),(b ,c ),(b ,b ),(d ,c )}; (3) E ={(a ,c ),(b ,a ),(b ,c ),(d ,a ),(d ,c )}; (4) E ={(a ,d ),(b ,c ),(a ,d ),(b ,d ),(c ,d )};
7.设图G=<V ,E>和G ’=<V ’,E ’>, 若_______,则G ’是G 的真子图,若_________,则G ’是G 的生成子图。
8. 在无向图中,结点间的连通关系具有_______性, _______性,______ 性,是_____关系。
9. 图的通路中边的数目称为___,结点不重复的通路是___通路,边不重复的通路是___通路。
10.设G 是一个无向图,V={v 1,…,v 8 }, E ={(v 1,v 2),(v 2,v 3), (v 3,v 1) , (v 1,v 5), (v 5,v 4), (v3,v4), (v 1,v 8)}. (1) 出G 的图解;
(2) 图是否有孤立结点? (3) 出各结点的次数。
11. 有21条边的无向图中有多少个结点?其中3个结点次数为4,其余均为3. 12. 给定图G=(V ,E ),如图
(1) 找一条长度为7的通路; (2) 找一条长度为4的简单通路.
(3) G 中找出一条长度为4的简单回路。
2
v 3
13. 设简单图G i =(V ,E i ),i=1,2…,6, V={a,b,c,d,e }
E 1={(a,b),(b,c),(c,d),(a,e)} E 2={(a,b),(b,e),(e,b),(a,e),(d,e)}
E 3={(a,b),(b,e),(e,d),(c,c)} E 4={(a,b),(b,c),(c,a),(a,d),(d,a),(d,e)} E 5={(a,b),(b,a),(b,c),(c,d),(d,e),(e,a)} E 6={(a,a),(a,b),(b,c),(e,c),(e,d)}. 作出各图,试问:
(1) 哪些图是有向图?哪些图是无向图?
(2) 哪些图是强连通图?哪些图是单向连通图?哪些是弱连通图? 14.求上题中:
(1) G 2和G 6各结点的次数;
(2) G 5邻接矩阵以及从b 到c 、d 长度为3的通路条数,从b 到b 长度为2的回路条数,
以及长度为3的通路共有多少,长度不超过3的通路条数好回路的条数; (3) G 5的可达矩阵.
15. 当且仅当为下面4个中的哪一个是,无向图G 是欧拉图?
(1) G 的所有结点的次数为偶数; (2) G 的所有结点的次数为奇数; (3) G 连通且所有结点的次数为偶数; (4) G 连通且所有结点的次数为奇数。
19. 下图是下面哪种?
(1) 完全图 (2) 欧拉图 (3) 汉密尔顿图
25. 下列各图是否可以一笔画出?有是欧拉图吗?若是,试写出一个回路。
1
v v 3
5
v v 4
3
(a )(b )(c )
26.下列各图是否是汉密尔顿图,有无汉密尔顿通路或回路?
(a )
(b )
(c )。