工程热力学与传热学基本理论共32页

合集下载

工程热力学与传热学 第二章 稳态热传导 基本概念

工程热力学与传热学 第二章 稳态热传导  基本概念

t—温度(0C);
x , y , z—直角坐标
由傅里叶定律可知,求解导热问题的关键是获 得温度场。导热微分方程式即物体导热应遵循的一 般规律,结合具体导热问题的定解条件,就可获得 所需的物体温度场。
具体推导: 傅里叶定律
能量守衡定律
导热微分方程式
假定导热物体是各向同性的,物性参数为常数。 我们从导热物体中取出一个任意的微元平行六面 体来推导导热微分方程,如下图所示。
2. 说明: 导热系数表明了物质导热能力的程度。 它是物性参数 物质的种类 热力状态(温度、压力等)。
在温度t=200C时:
纯铜λ=399 w/m0C;水λ=0.599 w/m0C;干空气0C λ(固体)大--------→(液体)---------→(气体)小
隔热材料(或保温材料)----石棉、硅藻土、矿渣棉等,它 们的导热系数通常:λ < 0.2 w/m0C。
c t ( x 2t2 y 2t2 z 2t2)q'
这是笛卡儿坐标系中三维非稳态导热微分方程的一般形式。
导热微分方程式——温度随时间和空间变化的一般关系。 它对导热问题具有普遍适用的意义。
Cp t ( x2t2 y2t2 z2t2)qv
最为简单的是一维温度场的稳定导热微分方程为:
稳态温度场:物体各点的温度不随时间变动; 非稳态(瞬态)温度场:物体的温度分布随时间改变。
2. 等温面(Isothermal surface)(线):同一时刻物体中温度 相同的点连成的面(或线)。 特点:(1)同一时刻,不同等温线(或面)不可能相交; (2)传热仅发生在不同的等温线(或面)间; (3)由等温线(或面)的疏密可直观反映出不同区域 热流密度的相对大小。
在半径r处取一厚度为dr长度为l米的薄圆筒壁。则

工程热力学与传热学第13章传热与换热器

工程热力学与传热学第13章传热与换热器

Hot fluid
Cold fluid
T
T1
Th(Hot) T2
Tc (cold) x
Cold fluid
T T1
Th
Tc
T2
x
顺流
完整版课件ppt
逆流
9
13-2 换热器的种类及平均温差
3、间壁式换热器的主要型式 ——壳管式换热器
最主要的一种间壁式换热器,传热面由管束组成,管子两端
固定在管板上,管束与管板再封装在外壳内。两种流体分管程
完整版课件ppt
4
13-1 传热过程的分析和计算
2、通过圆筒壁的传热
Q
tf1tf2 1 1 lnd2
1
kltl
1d1l 2l d1 2d2l
K的计算公式?
kl 11d121lnd d1 221d2
完整版课件ppt
5
例题:内、外直径分别为180mm和220mm的矿井冷媒输送 管道,管外包一层厚120mm的保温层。冷媒管道的导热 系数λ1=40W/(m·℃),保温层的导热系数λ2=0.1W/ (m·℃),管内冷媒tf1= -15℃,周围空气的温度tf2=25℃, 两侧的对流换热系数α1=100 W/(m2·℃),α 2=8.5 W/ (m2·℃)。试求单位管长的传热量和保温层外表面的温 度。
完整版课件ppt
30
保温材料
对于低于环境温度的工质和容器,关键在于防止外界热量 的传入:有三个档次的绝热材料可供选用。一般性的隔热 材料有在大气压下工作的疏松纤维或泡沫多孔材料,如聚 苯乙烯泡沫塑料、硬质聚氨脂泡沫塑料;效果更好些的有 抽真空至10Pa的粉末颗粒绝热材料;效果最佳的是多层真 空隔热材料。多层真空绝热村料由低导热系数的玻璃布、 铝箔之类的材料组成多层遮热板,这些遮热板具有很高的 反射比。对于多层真空绝热材料,由于气体的导热及表面 间的辐射已得到有效抑制,各反射层(即遮热扳)间的分隔 材料的导热系数对隔热性能有重要影响。应当采用导热系 数尽可能小的材料作为分隔物才能使这种复合结构的绝热 材料的优点得到充分发挥。

工程热力学与传热学湿空气

工程热力学与传热学湿空气

水蒸气的扩散
水蒸气在湿空气中的扩散系数较小, 扩散速度较慢,但水蒸气分子间的相 互作用较强。
湿空气的化学反应传质
化学反应传质
01
当湿空气中的物质与其他物质发生化学反应时,物质会发生转
移和变化。
化学反应速率
02
化学反应速率取决于反应物质的浓度、温度和催化剂等因素。
化学反应传质的控制因素
03
化学反应传质通常受到反应动力学和传递过程的控制,需要综
04
湿空气的传热过程
传热的基本概念
热传导
通过物体内部微观粒子的相互作用,将热量从高温区 域传递到低温区域的过程。
对流传热
由于流体运动产生的热量传递现象,包括自然对流和 强制对流。
辐射传热
通过电磁波传递能量的过程,不受物体间相对位置的 影响。
湿空气的传导传热
湿空气的导热系数
湿空气的导热系数随温度 和湿度的变化而变化,是 影响湿空气传导传热的重
目的
热力学的目的是为了揭示热现象的本 质和规律,为能源利用、工程设计和 环境保护等领域提供理论基础和应用 指导。
热力学第一定律
定义
热力学第一定律即能量守恒定律,它 指出能量不能凭空产生也不能凭空消 失,只能从一种形式转化为另一种形 式。
应用
在工程领域中,热力学第一定律用于 分析能量转换和传递过程,如燃烧、 热传导、对流和辐射等,以及评估设 备的效率。
合考虑化学反应和物质传递两个方面的因素。
06
湿空气在工程中的应用
空调系统中的湿空气处理
湿空气调节
在空调系统中,湿空气的处理是至关重要的,需要控制湿度以提 供舒适的室内环境。
除湿和加湿
空调系统中的湿空气处理还包括除湿和加湿,以适应不同的湿度 需求。

工程热力学与传热学概念整理

工程热力学与传热学概念整理

工程热力学与传热学概念整理工程热力学第一章、基本概念1.热力系:根据研究问题的需要,人为地选取一定范围内的物质作为研究对象,称为热力系(统),建成系统。

热力系以外的物质称为外界;热力系与外界的交界面称为边界。

2.闭口系:热力系与外界无物质交换的系统。

开口系:热力系与外界有物质交换的系统。

绝热系:热力系与外界无热量交换的系统。

孤立系:热力系与外界无任何物质和能量交换的系统3.工质:用来实现能量像话转换的媒介称为工质。

4.状态:热力系在某一瞬间所呈现的物理状况成为系统的状态,状态可以分为平衡态和非平衡态两种。

5.平衡状态:在没有外界作用的情况下,系统的宏观性质不随时间变化的状态。

实现平衡态的充要条件:系统内部与外界之间的各种不平衡势差(力差、温差、化学势差)的消失。

6.强度参数:与系统所含工质的数量无关的状态参数。

广延参数:与系统所含工质的数量有关的状态参数。

比参数:单位质量的广延参数具有的强度参数的性质。

基本状态参数:可以用仪器直接测量的参数。

7.压力:单位面积上所承受的垂直作用力。

对于气体,实际上是气体分子运动撞击壁面,在单位面积上所呈现的平均作用力。

8.温度T:温度T是确定一个系统是否与其它系统处于热平衡的参数。

换言之,温度是热力平衡的唯一判据。

9.热力学温标:是建立在热力学第二定律的基础上而不完全依赖测温物质性质的温标。

它采用开尔文作为度量温度的单位,规定水的汽、液、固三相平衡共存的状态点(三相点)为基准点,并规定此点的温度为273.16K。

10状态参数坐标图:对于只有两个独立参数的坐标系,可以任选两个参数组成二维平面坐标图来描述被确定的平衡状态,这种坐标图称为状态参数坐标图。

11.热力过程:热力系从一个状态参数向另一个状态参数变化时所经历的全部状态的总和。

12.热力循环:工质由某一初态出发,经历一系列状态变化后,又回到原来初始的封闭热力循环过程称为热力循环,简称循环。

13.准平衡过程:由一系列连续的平衡状态组成的过程称为准平衡过程,也成准静态过程。

工程热力学与传热学基本理论

工程热力学与传热学基本理论
可逆过程可逆过程比熵的单位为的单位为jkgkkgkkjkjkgkkgk22对于质量为对于质量为mm的工质的工质ss为质量为为质量为mm的工质的熵的工质的熵单位是单位是示热图ttss图图在可逆过程中在可逆过程中单位质量工质与外单位质量工质与外界交换的热量可以界交换的热量可以用用ttss上过程曲线下的面上过程曲线下的面积来表示积来表示
2.准静态着眼于系统内部平衡,可逆着眼于
系统内部及系统与外界作用的总效果
3.可逆=准静态+没有耗散效应
10
注意:
可逆过程只是指可能性,并不 是指必须要回到初态的过程。
●实际过程都是不可逆过程!
11
1-5 功和热量
热力过程 A、本身状态发生变化 B、与外界进行能量交换

12
一、功
功的起源 功的热力学定义:热力系统通过界面与 外界进行的机械能的交换量称为作功量, 简称为功(机械功)。
7
8
一个可逆过程必定是准静态过程,而过 程的不平衡必然导致过程的不可逆。 实际过程都是不可逆过程,如传热、混 合、扩散、渗透、溶解、燃烧、电加热等 。 可逆过程是一个理想过程。可逆过程的 条件:准平衡过程+无耗散效应。
可逆过程可用状态参数图上实线表示
9
都能在热力学参数 坐标图上用一连续的曲线表示。
热量正负的规定: 系统吸热:q > 0 ; 系统放热:q < 0 。
热量和功量都是系统与外界在相互作用的过 程中所传递的能量,都是过程量而不是状态量
18
热量与功的异同:
1.均为通过边界传递的能量; 2.均为过程量; 3.功传递由压力差推动,比体积变化是作功标志; 热量传递由温差推动,比熵变化是传热的标志; 4.功是物系间通过宏观运动发生相互作用传递的能量; 热是物系间通过紊乱的微粒运动发生相互作用而传递的 能量。 功 热

工程热力学与传热学复习资料总体(主要是一些概念)

工程热力学与传热学复习资料总体(主要是一些概念)

工程热力学第一章工质——实现热能和机械能相互转化的媒介物质。

热力学系统——简称系统、体系,人为分割出来作为热力学分析对象的有限物质系统。

闭口系统——与外界只有能量交换而无物质交换的热力系统,闭口系统又叫做控制质量。

开口系统——与外界不仅有能量交换而且有物质交换的热力系统,开口系又叫做控制容积,或控制体。

区分闭口系和开口系的关键是有没有质量越过了边界,并不是系统的质量是不是发生了变化。

绝热系统——与外界无热量交换的热力系统。

绝热系是从系统与外界的热交换的角度考察系统,不论系统是开口系还是闭口系,只要没有热量越过边界,就是绝热系。

简单可压缩系——由可压缩流体构成,与外界可逆功交换只有体积变化功(膨胀功)一种形式,没有化学反应的有限物质系统。

对于简单可压缩系,只要有两个独立的状态参数即可确定一个平衡状态,所有其它状态参数均可表示为这两个独立状态参数的函数。

准平衡过程——又称准静态过程,不致显著偏离平衡状态,并迅速恢复平衡的过程。

准平衡过程进行的条件是破坏平衡的势无穷小,过程进行足够缓慢,工质本身具有恢复平衡的能力。

准平衡过程在坐标图中可用连续曲线表示。

可逆过程——工质能沿相同的路径逆行而回复到原来状态,并使相互作用中所涉及到的外界回复到原来状态,而不留下任何改变的过程。

过程不可逆的成因一是有限势差的作用,二是物系本身的耗散作用,所以可逆过程,首先应是准平衡过程,同时在过程中没有任何耗散效应。

实际热力设备中所进行的一切热力过程都是不可逆的,可逆过程是不引起任何热力学损失的理想过程。

可逆过程可用状态参数图上连续实线表示。

膨胀功——又称“体积功”。

机械功的一种。

由系统体积变化而由系统对环境所做的功或环境对系统所做的功。

第二章热力学能——原称内能,由分子或其他微观粒子的热运动及相互作用力形成的内动能、内位能及维持一定分子结构的化学能和原子核内部的原子能以及电磁场作用下的电磁能等一起构成的内部储存能。

工程热力学与传热学(中文) 第2章 热力学第一定律

工程热力学与传热学(中文) 第2章 热力学第一定律

(2)内位能 由于分子间相互作用力的存在所具有的位能,
与气体的比体积有关。 (3)化学能,原子核能,电磁能。
热力学能
内动能 + 内位能 + 化学能 + 原子核能 + 电磁能
内动能 + 内位能
可忽略
2. 对热力学能的几点说明
(1)热力学能的单位和符号:单位:焦耳 J,符号 U。 (2)比热力学能:单位质量物质的热力学能。 u, J / kg。
(4)可逆微元过程 Q = d U + p d V
2
W 1 pdV
2
w 1 pdv
q=du+pdv
(5)循环
Q W
Q net = w net
2-4 开口系统稳定流动的能量方程式
分析
p1 v1 m1 1
cf1
1
Q
Ws
2
cf 2
2 p2 v2 m2
1. 工质的热力状态参数及速度在不同截面上不同。
2. 特点
工质质量流量 维持恒定
系统储存能量 维持恒定
流通截面上一 切参数恒定
单位时间流入 系统的工质质 量等于流出系 统的工质质量
单位时间内加入 系统的净热及系 统对外做的净功 不随时间改变
任何空间点上 工质的状态参 数和流速不随 时间而变化。
2-4-2 流动功(flow work)
1. 流动功
Q = W + U = W + U2 - U1
—— 闭口系统能量方程式(热一解析式)
2-3-2 几点说明
W
(1)意义:加给工质的热量
Q
a: 一部分用于增加工质的热力学能。
u
b: 另一部分以作功的方式传递到外界。

工程热力学与传热学-§1-6 功和热量

工程热力学与传热学-§1-6 功和热量

或 kJ/kg。
w pdv
膨胀:dv > 0 , w > 0
2
w 1 pdv
压缩:dv < 0 , w < 0
(2) 示功图(p-v图)
w的大小可以p-v图上的过程
曲线下面的面积来表示 。
功是过程量而不是状态量。
3
§1-6 功和热量
2. 热量与示热图
(1)热量
系统与外界之间依靠温差传递的能量称为热量,符号
功量:
热量:
w pdv
2
w 1 pdv
q Tds
2
q 1 Tds
s 称为比熵。比熵同比体积 v 一样是工质的状态参数。
比熵的定义式: ds q (可逆过程) T
比熵的单位为J/ (kg·K) 或 kJ/ (kg·K) 。
5
§1-6 功和热量
对于质量为 m 的工质,
Q TdS
§1-6 功和热量
§1-6 功和热量
1. 功量与示功图
(1) 膨胀功
工质在体积膨胀时所作 的功称为膨胀功。
符号:W 单位:J 或 kJ
对于微元可逆过程,
W pAdx pdV
2
对于可逆过程1~2: W pdV 1
2
§1-6 功和热量
单位质量工质所作的膨胀功用符号w 表示,单位为J/kg
2
Q 1 TdS
S为质量为 m 的工质的熵,单位是 J/K。
根据熵的变化判断一个可逆过程中系统与外界之间热 量交换的方向:
ds 0 , q 0 , 系统吸热;
ds 0 , q 0 , 系统放热。
ds 0 , q 0 , 系统绝热,定熵过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档