分部积分法求不定积分(口诀 例题)
不定积分分部积分公式

x2e x 2( xex e xdx)
x2e x 2( xe x e x ) C.
例4 求积分 x ln xdx.
解
ln
xd
x2 2
1 x2 2
ln
x
x2 2
d (ln
x)
1 2
x 2 ln
练习1 求 xsinxdx.
解 令u x,dv sin xdx,则du dx,v cos x,则
xsinxdx x cos x ( cos x) dx x cos x cos x dx
xcos x sin x C.
练习2 求 x4lnxdx.
解
x4
ln
xdx
lnxd(
e x sin x (e x cos x e xd cos x)
e x (sin x cos x) e x sin xdx
e x sin xdx
e x (sin x cos x) C . 2
复原法在求不定积分时有着广泛的应用。
例7 求 cos xdx.
解 令 x t,则x t 2,dx 2tdt,有
如果令 u cos x, xdx 1 dx2 dv
2
x cos
xdx
x2 2
cos
x
x2 2
sin
xdx
显然,u, v 选择不当,积分更难进行.
由此可见,如果u和v选取不当,就求不出结果, 所以应用分部积分法时,恰当选取u和v是一个关键。 选取u和v一般要考虑下面两点:
(1)v要容易求得;
(2) vdu要比 udv容易积出。
2
x2 2
1
1 x
2
dx
x2 2
不定积分分部积分法

解: e x sin xdx sin xdex e x sin x e xd sin x
e x sin x e x cos xdx e x sin x cos xdex
e x sin x e x cos x e xd cos x
e x sin x e x cos x e x sin xdx
例4、求 arccos xdx
解:原式 x arccos x xd arccos x
x x
arccos arccos
x x
1 2
x dx
1 x2 (1 x2
)
1 2
d
(1
x2)
x arccos x 1 x2 C
上页 下页 返回
分部积分公式: udv uv vdu
例5、求 e x sin xdx
第四章 不定积分
分部积分法
上页 下页 返回
x (t )
1、第二换元公式: f ( x)dx f [ (t )](t )dt t1( x)
注:一般当被积函数含根号又不能用凑微分法求出其
积分时,考虑用第二换元公式去根号, 把无理化为有理. 2、去根号的方法: (1)被积函数含 a2 x2, 令x a sin t.
例1、求 x cos xdx
解:设令u x,v cos x. 则u 1, v sin x
故 x cos xdx x sin x sin xdx x sin x cos x C
若设u
故x
cos x,
cos xdx
v x.
x2 2
cos
则u sin x,v
x
x2 2
(
sin
x
)dx
x2 2
.
任务3.3 用分部积分法求不定积分

其中 pn (x) a0 a1x a2 x 2 an x n
u Pn (x),dv sin axdx
Pn (x) cos axdx
u Pn (x),dv cos axdx
常见类型(二)
Pn (x) eaxcdx (a 0)
其中 pn (x) a0 a1x a2 x 2 an x n
1
1 x
2
dx.
1 x2 arctan x 1
2
2
x2 11 1 x2 dx.
1 x2 arctan x 1 x 1 arctan x C.
2
22
练习1
计算下列不定积分
(1) ln(2x 1)dx ln(2x 1) x xd ln(2x 1)
x x
ln(2x ln(2x
如 求积分
x cos xdx .
若令 u cos x, xdx 1 dx2 dv
2
x cos
xdx
x2 2
cos
x
x2 2
sinLeabharlann xdxu, v 显然,
选择不当,积分更难进行.
例 1 求不定积分 x cos xdx. 解: x cos xdx
将被积表达式写成udv 形
xd sin x. 式,设u x,v sin x x sin x sin xdx. udv uv vdu.
u 和 dv 任意选取
连续两次使用分部积分法时,第二次 与第一次应将同类函数设为u 和 dv .
小结
1 t 2
t2 arctan t
t2 11 ( 1 t 2 )dt
t2 arctan t
(1 1 )dt 1 t2
不定积分的分部积分法

复习引入
(A)一.求下列不定积分:
1.sin xdx 2.sin5x cosxdx 3. xexdx
1 2
x
2
arc
2 tanx
1 2
x
2d
arc
tan
x
1 x2 arctan x 1
2
2
x2 1 x2 dx
1 x2 arctan x 1
2
2
x2 11 1 x2 dx
1 x2 arctanx 1 x 1 arctanx C
2
22
(B)练习1.求下列不定积分
x
c os x)
C(C1
2C)
(C)练习3:求不定积分 ex cosxdx
常用解题技巧
Ⅲ 与换元法相结合
(C) 例4. e x dx
解: 令 x t, x t2 , dx 2tdt
原式 2 tetdt 2 tdet 2tet 2 etdt
2tet 2et C 2et (t 1) C
(1) xexdx (2) x2 ln xdx
常用解题技巧
(Ⅰ)多次使用分部积分法则
(B)例2.求 x2 sin xdx
解: x2 sin xdx x2d(cosx)
x2 cosx cosxdx2 x2 cosx 2 x cosxdx
x2 cosx 2 xd sin x x2 cosx 2x sin x 2 sin xdx
分部积分法顺序口诀

分部积分法顺序口诀对于分部积分法,很多小伙伴在学习时感到很烦恼,老是记不住,小编整理了口诀,希望能帮助到你。
一、口诀“反对不要碰,三指动一动”(这是对两个函数相乘里面含有幂函数而言),反——反三角函数对——对数函数三——三角函数指——指数函数(幂函数)。
将分部积分的顺序整理为口诀:“反对幂指三”。
(分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。
)反>对>幂>三>指就是分部积分法的要领当出现两种函数相乘时指数函数必然放到( )中然后再用分部积分法拆开算而反三角函数不需要动再具体点就是:反*对->反(对)反*幂->反(幂)对*幂->对(幂)二、相关知识(一)不定积分的公式1、∫a dx = ax + C,a和C都是常数2、∫x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且a ≠-13、∫1/x dx = ln|x| + C4、∫a^x dx = (1/lna)a^x + C,其中a > 0 且a ≠15、∫e^x dx = e^x + C6、∫cosx dx = sinx + C7、∫sinx dx = - cosx + C8、∫cotx dx = ln|sinx| + C = - ln|cscx| + C(二)求不定积分的方法:第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。
分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。
不定积分的分部积分法

例4 求不定积分 x arctan xdx.
解
x arctan
x dx
arctan
x
d(
x2 2
)
x2 arctan x 2
x2 2
1
1 x2
dx
x2 arctan x 2
1 2
(1
1
1 x
2
)
dx
x2 arctan x 1 ( x arctan x) C.
2
2
例5 求不定积分 arcsin xdx.
1 x2 arctan x ln( x 1 x2 ) C.
xe x
(2) (1 x)2 dx.
解
(1
xe x x
)2
dx
xe xd( 1 ) 1 x
xe x 1 d( xe x ) 1 x 1 x
xe x e xdx 1 x
xe x e x C e x C
n 2
I n1
,(n N * ,n 1),
而
I1 x ln xdx
ln
x
d(
x2 2
)
x2
ln x 2
x2 d(ln x)
2
x2 ln x 2
x dx 2
x2
x2
ln x C
2
2
所以对任意确定的n 1 ,由递推公式都可求得In .
例10
求不定积分
e
x
(
1 x
ln
x
)dx
1 x
1 x
(3)
(
x
1
1)e
x
1 x
dx
.
x
解
原式
(x
1
不定积分公式口诀

不定积分公式口诀摘要:一、引言二、不定积分的概念与基本公式1.不定积分的定义2.基本积分公式三、常用初等函数的积分公式1.幂函数的积分公式2.三角函数的积分公式3.指数函数与对数函数的积分公式4.反三角函数的积分公式5.其他常见函数的积分公式四、记忆口诀与技巧1.口诀一:奇偶函数积分规律2.口诀二:高阶导数求积分3.口诀三:分部积分法五、总结正文:一、引言在微积分学习中,不定积分是重要的基础知识之一。
掌握好不定积分的方法和技巧,对于后续学习定积分、微分方程等课程具有重要意义。
本文将为大家介绍一些常用的不定积分公式,并通过口诀形式帮助大家记忆。
二、不定积分的概念与基本公式1.不定积分的定义:设函数f(x) 在区间[a, b] 上有界,F(x) 是f(x) 在[a, b] 上的一个原函数,则称F(x) 在[a, b] 上关于x 的不定积分。
通常用∫(a~b)f(x)dx 表示。
2.基本积分公式:对于一些基本的初等函数,我们可以直接查表或记忆其不定积分公式。
例如:∫(x^n)dx = x^(n+1)/(n+1)、∫(sinx)dx = -cosx +C、∫(ex)dx = ex + C 等。
三、常用初等函数的积分公式1.幂函数的积分公式:对于幂函数f(x) = x^n,其不定积分为F(x) =x^(n+1)/(n+1) + C。
2.三角函数的积分公式:对于正弦函数f(x) = sinx,其不定积分为F(x) = -cosx + C;对于余弦函数f(x) = cosx,其不定积分为F(x) = sinx + C。
3.指数函数与对数函数的积分公式:对于指数函数f(x) = ex,其不定积分为F(x) = ex + C;对于自然对数函数f(x) = lnx,其不定积分为F(x) = xlnx - ln(x) + C。
4.反三角函数的积分公式:对于反正弦函数f(x) = arcsin(x),其不定积分为F(x) = -√(1-x^2) + C;对于反余弦函数f(x) = arccos(x),其不定积分为F(x) = √(1-x^2) + C。
不定积分例题(含过程及解析)

例题1dx e x x ⎰+)12( ce e x dxe e x x d e e x de x x x xx x x x+-+=•-+=+-+=+=⎰⎰⎰2)12(2)12()12()12()12( 根据分部积分法⎰⎰-=vdu uv udv ,(2x+1)为u ,e x 为v 。
(确定u 和v 的口诀:对反幂三指;对——对数函数、反——反函数、幂——幂函数、三——三角函数、指——指数函数)2x+1为幂函数,e x 为指数函数。
例题2dx xe x ⎰-ce xe dxe e xe dx e xe xde x x x x x x x++-=•+-=--=-=-------⎰⎰⎰1)(x e -是一个复合函数,其导数应为1-•-x e例题3⎰xdx arctanc x x x xd xx x dx x x x x xxd x x ++-=++-=+-•=-•=⎰⎰⎰)1ln(21arctan 11121arctan 1arctan tan arctan 2222arctanx ’=1/1+x 2,在这里会用到反三角函数的导数公式。
其它的反三角导数是arcsinx ’=211x -、arccosx ’=211x --、arccotx ’=211x +-例题4dx x x ⎰2cos 2sin|cos |ln 2cos cos 12cos sin 2cos cos sin 22x x d xdx xx dx xx x -=-===⎰⎰⎰这里用到二倍角公式,如下:Sin2x=2sinxcosxCos2x=2cos 2x-1=1-sin 2x-1例题5dx x x ⎰++2cos 1sin 12c x x x xdx dx dx x dx xx +-=-=-=-=⎰⎰⎰⎰21tan 21sec 121cos 1cos 2cos 22222 这里除了用到二倍角公式,还会用到sin 、cos 、sec 、csc 间的相互转化,sinx 和cscx 互为倒数、cosx 和secx 互为倒数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用分部积分法求不定积分
重点:
① ⎰⎰-=vdu uv udv
② 对反幂三指
用分部积分法计算的不定积分:
分部积分法是微积分学中的一类重要的、基本的计算积分的方法。
其它两种计算不定积分的方法是凑微分法和第二类换元法。
通常可适用于变形后为“udv ”的不定积分,根据公式(⎰-=vdu uv udv )很容易求解。
证明:由
或
对上式两边求不定积分,即得分部积分公式,也将其简写为
如果将
和
用微分形式写出,则亦可得出
口诀:
“对反幂三指”,分别对应对数函数、反函数、幂函数、三角函数、指数函数。
越往前则可认定在不定积分中充当着u ,越往后则为v 。
例题及答案:
∫(2x+1)e x dx ∫(x2+x)e x dx
∫(2x+1)cosxdx ∫x∙cos2xdx
(2x+1)e x-2e x+c
(x2-x+1)e x+c (2x+1)sinx+2cosx+c 2
1xsin2x+
4
1cos2x+c。