UDEC滑坡实例步骤
滑坡治理工程施工组织实例

滑坡治理工程施工组织实例引言滑坡是地质灾害中的一种常见类型,给人们的生命和财产安全带来了严重威胁。
为了解决滑坡问题,进行滑坡治理工程是一种常见的方法。
本文将以一个实际的滑坡治理工程施工组织实例为例,介绍该工程的基本情况、施工方案、组织管理和安全保障等内容,并通过Markdown文本格式进行输出。
1. 滑坡治理工程基本情况该滑坡治理工程位于某省某市的山区,滑坡面积约为10万平方米,滑坡带宽约为1000米,滑坡高差约为50米。
滑坡造成了周边农田的损失,直接威胁到附近居民安全。
因此,决定进行滑坡治理工程来修复滑坡并保障周边人员和财产的安全。
2. 施工方案2.1 治理工程主要措施根据滑坡的情况,确定了以下主要治理措施:1.爆破预处理:对滑坡面进行爆破处理,破坏滑坡带的连续性,减少滑坡面积和高度。
2.加固措施:在滑坡面进行排水和加固工作,例如,安装排水管、加固钢筋混凝土墙等。
2.2 施工方法根据滑坡的具体情况,本工程确定了以下施工方法:1.爆破预处理施工:针对滑坡面较大的岩石体,采用动力钻/爆法进行预处理。
2.排水施工:将排水管埋设于滑坡体内,利用重力和压力差进行排水处理。
3.加固工程施工:利用混凝土灌注桩和喷射混凝土进行加固工作。
3. 组织管理3.1 项目组织架构该滑坡治理工程划分为以下几个部门:1.项目管理部门:负责整个滑坡治理工程的管理和协调工作。
2.技术部门:负责施工方案的制定和技术指导。
3.施工队伍:负责具体的施工工作。
3.2 任务分工为了保证滑坡治理工程的顺利进行,根据项目的具体要求,对各个部门进行了细致的任务分工:1.项目管理部门负责制定整个工程的计划、预算和进度管理。
2.技术部门负责制定施工方案和施工工艺,并提供技术指导。
3.施工队伍负责具体的施工任务,按照施工方案完成工程。
3.3 沟通协调为了确保各个部门之间的协调和沟通,定期召开项目会议,讨论工程进展和解决问题。
此外,各个部门之间保持良好的沟通,及时交流信息,以避免出现问题。
大众矿围岩运移的UDEC数值模拟

大众矿围岩运移的UDEC数值模拟安阳大众煤业有限责任公司工作面的现场矿压研究,一般采用的研究方法是测定支柱工作阻力、顶煤在工作面的位移表现、顶煤及顶板的深基点位移,由于受到各方面因素的限制,比如说测试手段的限制,而且测试数据只能反映某一些方面或某几方面的规律,基于这些观测研究,不能对顶板活动有一个全面的了解。
采用相似模拟的研究方法,虽然在某些方面能取得很好的效果,但是,模拟的成本高,特别是三维模拟,每一个模型的实验周期经较长,并且一次只能模拟一种状态。
近些年来,随着数值模拟的发展,采用这种方法来取代一部分的相似模拟,在某些方面,能得到相似模拟所达不到的效果。
为了更全面地从各个方面研究大众煤业*****开采工作面的岩层移动及应力分布规律,采用UDEC对采场围岩进行模拟。
1 UDEC的基本原理UDEC是针对非连续介质模型的二维离散元数值计算程序,UDEC(Universal Distinct Element code)有近三十年的发展历史,在1996年推出了最新的UDEC3.0版本。
它应用于计算机计算主要包括两方面的内容:一是离散的岩块允许大变形,允许沿节理面滑动、转动和脱离冒落;二是在计算的过程中能够自动识别新的接触。
在UDEC中块可以是刚性的或者是变形的,接触是变形的。
二维的UDEC既可以用于解决平面应变问题也可以用于解决平面应力问题;UDEC 既可以解决静态问题也可以解决动态问题。
UDEC是应用基于拉格朗日的显示差分法求解运动方程和动力方程,UDEC的运动方程和动力方程如下。
根据牛顿第二定律,并由中心差分格式得速度方程当考虑体力时,对于二维块体,根据牛顿第二定律,并由中心差分式得速度方程:式中:为块体质心角速度;I为块体的转动惯量;为块体上的转动惯量和;为块体质心的速度;为重力加速度(体力)。
将上式进行积分,可得块体新的状态:式中:θ为块体质心的转动角;为块体的质心坐标。
另外需要说明sss的是在离散元计算中仍然满足动量守衡定律。
UDEC滑坡实例步骤

1、加载UDEC进入DOC环境后输入giic或者gui命令,然后进入主菜单2、Model option 选择合适条件通常情况下,你可以使用默认域联系(domain-logic)检测模式。
如果你想监测任何块体的位移,这些块体可能从隧道顶部分离或掉落,你应该使用“cell-space detection”模式跟踪位移和下落块体的潜在接触。
3、命名并且保存文件4、New block 建模,根据需要设置模型的长30 宽15415 410 405 400 395 390 385 380 375 370415 410 405 400 395 390 385 380 375 370 420 425 430 435 440 445 450 455 m5、Bound 调节边界,与实际相符6、Crack 添加节理,(层状岩体是否按节理处理?)岩层20°∠34°,J1产状60°∠15°J2产状为35°∠47°,J3产状为95°∠89°(怎么将不同产状节理进行转换?)路线设计好,为后来开挖做好准备。
7、execute 执行文件8、zone 执行长度为0.5的最大区域边界,划分网格9、Zone material 创建一个或者几个块体材料属性,选择一种本构模型,本次选择的是Mohr-Coulomb模型prop mat 1 den--2143 bu=30e9 sh=18e9 c=1.2e5f=21 t--2e5prop mat 2 den=2260 bu=40e9 sh=24e9 c=1.5e5f=28 t--2.5e5prop mat 3 den--2300 bu=50e9 sh=28e9 c=3.5e5f=32 t--3.5e510、JointMat 节理属性,选择;liexi 1prop jmat 1 jkn=4e9 jks=2.Oe9 j卜18 jc=0 jt=0jieli2prop jmat 2 jkn=4e9 jks=2.Oe9 jf=18 jc=le4 jt=0;huadai;bianxingtidijiemian3prop jmat 3 jkn=4e9 jks=2e9 jf--10jc=2e3 jt=0;duanceng4prop jmat 4 jkn=2e9 jks=0.7e9 jf=13 jc=le3 jt=011、instiu -bound 边界条件左右边xvelocity为0,下边界yvelocity为0保存slope112、utility 访问不同变量,可以监测将要下滑的块体垂直和水平位移13、setting 设置重力9.8114、run -solve 自动检测平衡,在分析的不同阶段保存项目为slope2、3、415、build -cut or fill 如果删除某一块后则可立即保存,评价岩体的稳定性用solve工具实现,计算稳定状态得到开挖后岩体周边的位移通过y位移等值线图来说明,点击“Contour-Motion/ydisplace”输出,保存slope516、接下来可以评价有弱节理的岩体中因开挖引起节理岩体的反应,首先回到slope1,A分支包含关于强节理岩体开挖的保存文件,B分支是一个新的分支,你可以用来执行弱节理的模拟。
.滑坡处理施工方案

滑坡处理施工方案摘要本文档旨在提供滑坡处理的施工方案。
通过分析滑坡的原因和特点,确定合适的措施和方法进行处理,并提供施工方案的具体步骤和注意事项。
1. 引言滑坡是指由于地表土壤和岩石的失稳而导致的地表运动。
滑坡不仅会对周围环境造成破坏,还会给人们的生命和财产带来威胁。
因此,滑坡处理工作显得十分重要。
本文将介绍滑坡处理的施工方案。
2. 滑坡处理原则在制定滑坡处理方案时,应遵循以下原则: - 确定原因:首先需要明确滑坡发生的原因,以便针对性地采取措施。
- 安全第一:处理滑坡时,要确保施工过程中的安全,避免二次灾害。
- 综合施工:选择合适的方法,综合运用多种技术手段进行滑坡处理。
- 可持续发展:在处理滑坡的过程中,应尽量减少对环境的影响,追求可持续发展。
3. 滑坡处理措施根据滑坡的原因和特点,可以采取以下处理措施:3.1 强夯法强夯法是通过夯实土壤或岩石,增加土体的稳定性,防止进一步滑动。
其具体步骤如下: 1. 清理滑坡现场:清理滑坡面上的杂物和松散土体,确保施工区域干净。
2. 准备工作:对滑坡区域进行勘测,确定夯击点和距离。
3. 强夯施工:使用夯击机对土体进行夯实,直到达到要求的稳定程度。
4. 监测:对夯击区域进行监测,及时发现异常情况,并采取相应措施。
3.2 土体加固当滑坡是由于土体的松散或不稳定引起时,可以采取土体加固措施。
常用的土体加固方法有: - 土钉加固:通过在土体中插入钢筋土钉,并用混凝土进行固定,提高土体的稳定性。
- 桩基础加固:通过钻孔施工,将桩体嵌入到稳定的土层中,增加土体的承载能力。
- 土工格栅:使用土工格栅材料在滑坡表面进行加固,提高土体的抗滑性能。
3.3 排水处理当滑坡的原因是由于水分引起的时,进行排水处理是十分重要的。
常用的排水处理方法包括: - 排水井:在滑坡区域进行钻探施工,安装排水井,将水排出滑坡区域,降低土体的含水量。
- 地下排水管道:通过埋设地下排水管道,将水引导到安全区域,减少水分对土体的影响。
某滑坡计算及治理方案选择实例

某滑坡计算及治理方案选择实例某滑坡计算及治理方案选择实例滑坡是指地面土壤或岩层在重力、水力等作用下发生的失稳而发生的大规模地质灾害,给人们的生命和财产都造成了严重威胁。
为了确保社会稳定和人民生命财产安全,特别是在建设中,对于滑坡的预测和控制显得尤为重要。
本文以某滑坡为例,介绍它的计算和治理方案选择方法,旨在提供相关知识,以便于同学们学习和研究。
一、某滑坡概述某滑坡位于某县某村,坡高200米左右,面积约为5万平方米。
为了防止人员和财产损失,当地政府需要对该滑坡进行计算和治理。
滑坡区域主要为黄色泥岩,坡度较大,降雨量较大,水分容易渗入泥岩中,且长期得不到排泄,导致滑坡的发生和加剧。
二、滑坡计算滑坡计算是指对于地表上的土壤或岩石进行分析,评估其稳定性,以确定可能发生滑坡的位置和程度,并据此设计出治理方案。
在某滑坡的计算中,步骤如下:1. 地形测量首先需要对滑坡的地形进行测量,并画成高程图和坡面剖面图,以此确定其他参数。
2. 岩土物性测试为了得到土壤和岩石的力学性质,需要对其进行室内实验,以便于对其进行分析和计算。
3. 排水性和稳定性分析在该滑坡的分析中,需要对于滑坡区域的土质分析,研究其排水性,以确定其渗透性,从而分析出可能的滑坡发生机制,并且计算其稳定系数。
4. 建立滑坡模型在确定各项参数后,需要将滑坡建模,以此通过数值分析和模型实验,以确定滑坡位置和大小程度以及潜在的危害。
5. 分析治理方案通过以上计算分析,能够快速有效的确定治理方案,完成滑坡的预防和治理工作。
三、滑坡治理方案在确定了滑坡的位置和危害大小后,需要制定相应的治理方案,该方案包括:1.设立防护柵栏在滑坡发生危害时,设置防护柵栏,以避免人员和财产的损失。
2. 水土保持在滑坡区域进行水土保持,减少水土流失率,以保证滑坡的稳定性,同时也能够提高水资源的利用效率。
3. 建设排水系统建设排水系统以治理滑坡的根本问题,改善土地排水状况,降低土壤切线力,提高土壤的稳定性。
UDEC模拟实例与解析

^`UDEC 实例翻译与命令解析翻译:珠穆朗玛1 地震诱发地层坍塌 Seismic-Induced Groundfall1.1 问题描述本例展示使用 UDEC 模拟分析地震诱发地层坍塌的一类的问题,模型见图 1.1,该模型基 于加拿大安大略省萨德伯里市鹰桥公司弗雷则矿 34-1-554 切割断面的一个剖面图的结构和 尺寸. 用二维平面应变模型代表垂直于超采轴向方向的平面效应,超采面高 5m,宽 10m.假定两个连续节理交叉平面分析:一个角度为 45 度,另一个为-9 度,两者节理间距均为 5m,为了演示的目的,一个近似垂直的“虚拟节理”也被添加到块体内开挖面顶部以增强不稳 定性。
围岩参数来自试验室平均测试数值,假定岩石块体参数如下:假定块体仅具有弹性行为,节理假定符合库伦滑动准则,选择典型的教课书数值作为节 理参数,如下:初始应力状态按各向同性估计为24Mpa(假定垂直荷载由覆盖深度大约800m 的岩层产生)。
1.2 UDEC 分析UDEC 模拟顺序分三个阶段,首先,模型在初始应力状态下进行无超采固结.其次,进行开挖并且模型循环至平衡状态.本阶段超采面周围的应力分布见图1.2.超采正上方和下方的块体滑动后稳定.在第三阶段.估计了两个不同的峰值速度的地震事件.对所有地震模拟,在问题域的外周边界引入粘滞边界用以消除波的反射.从而模拟有限的岩体,地震事件用施加到模型顶部y 方向的正弦应力波表现.应力波被叠加到已存在的初始地应力上.在第一个模拟中,施加1.25Mpa 的峰值应力,应当注意的是,由于粘滞边界条件实际是在模型顶部, 施加的有效影响应力应该是1.25 MPa/2, or 0.625 MPa.0.02 秒后的开挖面拱顶的应力分布见图1.3,两点的位移被监测,1 点位于开挖面的左角,点2 位于拱顶块体的右角, 图1.4 的位移时间曲线显示两点本质上是弹性反应.本例关心的问题是在模型顶部施加的速度和计算速度的对比,下面的公式可以用以估计施加的波速.使用这个方程,施加的最大波速大概是0.04m/sec,图1.5 显示的峰值波速小于0.06m/sec. 估计的波速和监测波速的不同在于使用的围岩模量.而是没有考虑节理变形的相等变形模量.在第二个案例中,施加应力波峰值12.5 Mpa(有效应力6.25Mpa).0.02 秒后的开挖拱顶应力分布见图1.6.该图显示出拱顶岩体不受力,表面该块体已经松散并正在下落.对于关心的问题,后来三个时间的几何体和应力分布见图1.8 至图1.10.在问题的顶部预测的波速(从上面的方程)是0.4m/sec.从模型中计算的波速见图1.11,再次,由于使用的是原岩弹性模量而不是岩体的变形模量导致预测和监测的波速之间的差异.1.3 节包含了该模型的数据列表,该列表包含了一个FISH 函数(show)被用来创建坍塌的动画文件,每隔0.02 秒俘获一个显示的图片.通过改变FISH 参数time_int 可以改变动画帧的间隔.视图的总数也可以通过改变snap_shot 的数值进行改变.为了显示80 帧的显示图片而创建的该电影文件需要大概13MB 的硬盘空间.1.3 数据文件列表Example 1.1 SEISMIC.DATtitleSEISMIC INDUCED ROOF COLLAPSE 地震诱发拱顶坍塌;round 0.01; define original boundary of modeled region 定义模型区域的原始边界block -25,-20 -25,20 25,20 25,-20; generate joint pattern over entire original region 在整个原始区域生成节理形态jregion id 1 -25,-25 -25,25 25,25 25,-25jset 45,0 200,0 0,0 5.0,0 (0,0) range jreg 1jset -9,0 200,0 0,0 5.0,0 (0,0) range jreg 1; put in joints needed for the later excavation 为了后面开挖而设置的节理crack -5.01,-2.51 5.01,-2.51crack -5.01, 2.51 5.01, 2.51crack -5,-2.5 -5,2.5crack 5,-2.5 5,2.5crack 2.25,2.5 1.93,5.0; generate fdef zones and assign joint properties (mat=1 & jmat=1;default) 生成单元和设置节理参数generate edge 9.0 range -30,30 -30,30prop mat=1 d=0.00300 k=39060 g=31780prop jmat=1 jkn=20000 jks=20000prop jmat=1 jf=30.0; apply boundary conditions and initial conditions to 在地应力下施加边界条件和初始条件; consolidate model under field stressesbound stress=-24.0, 0.0, -24.0 ygrad=-0.3 0 -0.3insitu stress=-24.0, 0.0, -24.0 ygrad=-0.3 0 -0.3bound yvel 0.0 range -26,26 -21,-19grav 0.0 -10.0; track the x-displacement, and y-displacement over time 追踪位移hist solvehist xdis=0,7 ydis=0,7 type 1solve rat 1e-5; save consolidated statesave seismic1.sav; make excavationdelete range -5,5 -2.5,2.5solve rat 1e-5; save excavated statesave seismic2.sav;rest seismic2.sav; apply seismic load from top (peak velocity=0.04 m/sec);; set up nonreflecting boundarybound mat=1bound xvisc range -26 -23 -21 21bound xvisc range 23 26 -21 21bound xvisc yvisc range -26 26 -21 -19bound xvisc yvisc range -26 26 19 21; apply sinusoidal stress wavebound stress 0 0 -1.25 yhist=cos(100.0,0.0195) range -26 26 19 21 ;reset time hist disp rothist ydis (-4.48,2.57)hist ydis (0,2.57) yvel (0,2.57) yvel (4,2.57) yvel(-4.48,2.57)hist yvel (0,20) yvel (25,10) yvel (25,-10) yvel (0,-20)hist yvel (-25,-10) yvel (-25,10)hist sxx (25,10) sxx (25,-10) sxx (-25,-10) sxx (-25,10)hist syy (0,20);damp 0.1 1.0 mass; 0.02 sec.cyc time 0.02save seismic3.sav;rest seismic2.sav; apply seismic load from top (peak velocity=0.4 m/sec); set up nonreflecting boundarybound mat=1bound xvisc range -26 -23 -21 21bound xvisc range 23 26 -21 21bound xvisc yvisc range -26 26 -21 -19bound xvisc yvisc range -26 26 19 21; apply sinusoidal stress wavebound stress 0 0 -12.5 yhist=cos(100.0,0.0195) range -26 26 19 21 reset time hist disphist ydis (-4.48,2.57)hist ydis (0,2.57) yvel (0,2.57) yvel (4,2.57) yvel(-4.48,2.57)hist yvel (0,20) yvel (25,10) yvel (25,-10) yvel (0,-20)hist yvel (-25,-10) yvel (-25,10)hist sxx (25,10) sxx (25,-10) sxx (-25,-10) sxx (-25,10)hist syy (0,20);damp 0.1 1.0 masssave seismov.sav;; 0.02 sec.cyc time 0.02save seismic4.sav; 0.25 sec.cyc time 0.23save seismic5.sav; 0.50 sec.cyc time 0.25save seismic6.sav; 0.75 seccyc time 0.25save seismic7.sav;rest seismov.sav; make a movie of the groundfall;wind -12 12 -12 12set ovtol 0.05plot block vel max 2.0 blue stress max 50movie onmovie file = seismic.dcxmovie step 1000step 400003 隧道支护荷载Tunnel Support Loading3.1 问题陈述本例模拟展示了UDEC 在检查衬砌隧道方面的应用,着重强调了荷载在混凝土衬砌中的发展,本例也解释了模拟连续建造操作中独立阶段的模拟程序.隧道系统的理想几何体见图3.1.系统包含在海床下大约70m(中线)深度,中线间距12m 的两个隧道, 初始水位在隧道中线上方110m 处.服务隧道直径5.24m,衬砌厚度37cm.主隧道直径8.22m,衬砌厚度46cm.服务隧道先于主隧道开挖和衬砌.随后设置主隧道衬砌,水位上升增加到100m.施工顺序是:(1)开挖服务隧道excavation of the service tunnel;(2)衬砌服务隧道lining of the service tunnel; (3)开挖主隧道excavation of the main tunnel; (4)衬砌主隧道lining of the main tunnel; and (5)升高水位raising of the water level.分析的目的是评价每个施工阶段服务隧道和主隧道支护状况.本例的材料参数见下:岩体——开挖隧道的围岩参数为:弹性模量elastic modulus 0.89 GPa泊松比Poisson’s ratio 0.35单轴抗压强度uniaxial compressive strength 3.5 MPa粘聚力cohesion 1 MPa密度density 1340 kg/m3混凝土衬砌——弹性模量为24 GPa ,泊松比为0.19. 假定衬砌为线弹性材料。
(完整word版)UDEC模拟实例与解析

UDEC 实例翻译与命令解析中铁隧道集团科研所——珠穆浪玛UDEC 实例翻译与命令解析翻译:珠穆朗玛1 地震诱发地层坍塌 Seismic-Induced Groundfall1.1 问题描述本例展示使用 UDEC 模拟分析地震诱发地层坍塌的一类的问题,模型见图 1.1,该模型基 于加拿大安大略省萨德伯里市鹰桥公司弗雷则矿 34-1-554 切割断面的一个剖面图的结构和 尺寸. 用二维平面应变模型代表垂直于超采轴向方向的平面效应,超采面高 5m,宽 10m.假定两个连续节理交叉平面分析:一个角度为 45 度,另一个为-9 度,两者节理间距均为 5m,为了演示的目的,一个近似垂直的“虚拟节理”也被添加到块体内开挖面顶部以增强不稳 定性。
围岩参数来自试验室平均测试数值,假定岩石块体参数如下:假定块体仅具有弹性行为,节理假定符合库伦滑动准则,选择典型的教课书数值作为节 理参数,如下:初始应力状态按各向同性估计为24Mpa(假定垂直荷载由覆盖深度大约800m 的岩层产生)。
1.2 UDEC 分析UDEC 模拟顺序分三个阶段,首先,模型在初始应力状态下进行无超采固结.其次,进行开挖并且模型循环至平衡状态.本阶段超采面周围的应力分布见图1.2.超采正上方和下方的块体滑动后稳定.在第三阶段.估计了两个不同的峰值速度的地震事件.对所有地震模拟,在问题域的外周边界引入粘滞边界用以消除波的反射.从而模拟有限的岩体,地震事件用施加到模型顶部y 方向的正弦应力波表现.应力波被叠加到已存在的初始地应力上.在第一个模拟中,施加1.25Mpa 的峰值应力,应当注意的是,由于粘滞边界条件实际是在模型顶部, 施加的有效影响应力应该是1.25 MPa/2, or 0.625 MPa.0.02 秒后的开挖面拱顶的应力分布见图1.3,两点的位移被监测,1 点位于开挖面的左角,点2 位于拱顶块体的右角, 图1.4 的位移时间曲线显示两点本质上是弹性反应.本例关心的问题是在模型顶部施加的速度和计算速度的对比,下面的公式可以用以估计施加的波速.使用这个方程,施加的最大波速大概是0.04m/sec,图1.5 显示的峰值波速小于0.06m/sec. 估计的波速和监测波速的不同在于使用的围岩模量.而是没有考虑节理变形的相等变形模量.在第二个案例中,施加应力波峰值12.5 Mpa(有效应力6.25Mpa).0.02 秒后的开挖拱顶应力分布见图1.6.该图显示出拱顶岩体不受力,表面该块体已经松散并正在下落.对于关心的问题,后来三个时间的几何体和应力分布见图1.8 至图1.10.在问题的顶部预测的波速(从上面的方程)是0.4m/sec.从模型中计算的波速见图1.11,再次,由于使用的是原岩弹性模量而不是岩体的变形模量导致预测和监测的波速之间的差异.1.3 节包含了该模型的数据列表,该列表包含了一个FISH 函数(show)被用来创建坍塌的动画文件,每隔0.02 秒俘获一个显示的图片.通过改变FISH 参数time_int 可以改变动画帧的间隔.视图的总数也可以通过改变snap_shot 的数值进行改变.为了显示80 帧的显示图片而创建的该电影文件需要大概13MB 的硬盘空间.1.3 数据文件列表Example 1.1 SEISMIC.DATtitleSEISMIC INDUCED ROOF COLLAPSE 地震诱发拱顶坍塌;round 0.01; define original boundary of modeled region 定义模型区域的原始边界block -25,-20 -25,20 25,20 25,-20; generate joint pattern over entire original region 在整个原始区域生成节理形态jregion id 1 -25,-25 -25,25 25,25 25,-25jset 45,0 200,0 0,0 5.0,0 (0,0) range jreg 1jset -9,0 200,0 0,0 5.0,0 (0,0) range jreg 1; put in joints needed for the later excavation 为了后面开挖而设置的节理crack -5.01,-2.51 5.01,-2.51crack -5.01, 2.51 5.01, 2.51crack -5,-2.5 -5,2.5crack 5,-2.5 5,2.5crack 2.25,2.5 1.93,5.0; generate fdef zones and assign joint properties (mat=1 & jmat=1;default) 生成单元和设置节理参数generate edge 9.0 range -30,30 -30,30prop mat=1 d=0.00300 k=39060 g=31780prop jmat=1 jkn=20000 jks=20000prop jmat=1 jf=30.0; apply boundary conditions and initial conditions to 在地应力下施加边界条件和初始条件; consolidate model under field stressesbound stress=-24.0, 0.0, -24.0 ygrad=-0.3 0 -0.3insitu stress=-24.0, 0.0, -24.0 ygrad=-0.3 0 -0.3bound yvel 0.0 range -26,26 -21,-19grav 0.0 -10.0; track the x-displacement, and y-displacement over time 追踪位移hist solvehist xdis=0,7 ydis=0,7 type 1solve rat 1e-5; save consolidated statesave seismic1.sav; make excavationdelete range -5,5 -2.5,2.5solve rat 1e-5; save excavated statesave seismic2.sav;rest seismic2.sav; apply seismic load from top (peak velocity=0.04 m/sec);; set up nonreflecting boundarybound mat=1bound xvisc range -26 -23 -21 21bound xvisc range 23 26 -21 21bound xvisc yvisc range -26 26 -21 -19bound xvisc yvisc range -26 26 19 21; apply sinusoidal stress wavebound stress 0 0 -1.25 yhist=cos(100.0,0.0195) range -26 26 19 21;reset time hist disp rothist ydis (-4.48,2.57)hist ydis (0,2.57) yvel (0,2.57) yvel (4,2.57) yvel(-4.48,2.57)hist yvel (0,20) yvel (25,10) yvel (25,-10) yvel (0,-20)hist yvel (-25,-10) yvel (-25,10)hist sxx (25,10) sxx (25,-10) sxx (-25,-10) sxx (-25,10)hist syy (0,20);damp 0.1 1.0 mass; 0.02 sec.cyc time 0.02save seismic3.sav;rest seismic2.sav; apply seismic load from top (peak velocity=0.4 m/sec); set up nonreflecting boundarybound mat=1bound xvisc range -26 -23 -21 21bound xvisc range 23 26 -21 21bound xvisc yvisc range -26 26 -21 -19bound xvisc yvisc range -26 26 19 21; apply sinusoidal stress wavebound stress 0 0 -12.5 yhist=cos(100.0,0.0195) range -26 26 19 21reset time hist disphist ydis (-4.48,2.57)hist ydis (0,2.57) yvel (0,2.57) yvel (4,2.57) yvel(-4.48,2.57)hist yvel (0,20) yvel (25,10) yvel (25,-10) yvel (0,-20)hist yvel (-25,-10) yvel (-25,10)hist sxx (25,10) sxx (25,-10) sxx (-25,-10) sxx (-25,10)hist syy (0,20);damp 0.1 1.0 masssave seismov.sav;; 0.02 sec. —————————————————————————————————————UDEC 实例翻译与命令解析中铁隧道集团科研所——珠穆浪玛cyc time 0.02save seismic4.sav; 0.25 sec.cyc time 0.23save seismic5.sav; 0.50 sec.cyc time 0.25save seismic6.sav; 0.75 seccyc time 0.25save seismic7.sav;rest seismov.sav; make a movie of the groundfall;wind -12 12 -12 12set ovtol 0.05plot block vel max 2.0 blue stress max 50movie onmovie file = seismic.dcxmovie step 1000step 400003 隧道支护荷载Tunnel Support Loading3.1 问题陈述本例模拟展示了UDEC 在检查衬砌隧道方面的应用,着重强调了荷载在混凝土衬砌中的发展,本例也解释了模拟连续建造操作中独立阶段的模拟程序.隧道系统的理想几何体见图3.1.系统包含在海床下大约70m(中线)深度,中线间距12m 的两个隧道, 初始水位在隧道中线上方110m 处.服务隧道直径5.24m,衬砌厚度37cm.主隧道直径8.22m,衬砌厚度46cm.服务隧道先于主隧道开挖和衬砌.随后设置主隧道衬砌,水位上升增加到100m.—————————————————————————————————————UDEC 实例翻译与命令解析中铁隧道集团科研所——珠穆浪玛施工顺序是:(1)开挖服务隧道excavation of the service tunnel;(2)衬砌服务隧道lining of the service tunnel; (3)开挖主隧道excavation of the main tunnel; (4)衬砌主隧道lining of the main tunnel; and (5)升高水位raising of the water level.分析的目的是评价每个施工阶段服务隧道和主隧道支护状况.本例的材料参数见下:岩体——开挖隧道的围岩参数为:弹性模量elastic modulus 0.89 GPa泊松比Poisson’s ratio 0.35单轴抗压强度uniaxial compressive strength 3.5 MPa粘聚力cohesion 1 MPa密度density 1340 kg/m3混凝土衬砌——弹性模量为24 GPa ,泊松比为0.19. 假定衬砌为线弹性材料。
udec模拟实例

6.4喷射混凝土UDEC模拟6.4.1 UDEC简介刚体离散单元法一般认为Cundall于1971年提出来的。
该法适用于研究在准静力或动力条件下的节理系统或块体集合的力学问题,最初用来分析岩石边坡的运动。
该法是在牛顿第二定律的基础上建立起来的, 假设块体为准刚度体,块体运动主要受节理或弱面控制。
刚性块体的假设对于应力水平较低的问题,如边坡稳定是合理的。
将节理岩体视为由裂隙切割的非连续介质,相互切割的裂隙将岩体分成相互独立的块体单元,单元之间可以看成是角-角接触、角-边接触或边-边接触。
块体间的边-边接触可分解为由两个角-边接触而成,并且随着单元的平移和转动,允许调整各个单元之间的接触关系,最终块体单元可能达到平衡状态,也可能一直运动下去。
这些块体在平衡条件发生变化时,块体之间就产生相互作用力,从而导致块体产生一定的加速度和位移,使块体的空间位置和状态发生变化。
运动的块体之间,由于差异位移矢量的存在,从而使块体之间又发生新的作用力,根据新的力系,又可以计算出来各个块体在新的力系下的加速度、位移及新的运动位置。
如此反复迭代直到整个体系在新的力系作用下达到平衡状态为止,这样整个岩体的破坏运动过程就被真实的模拟出来。
离散单元法可以对由不同块体构成的整体进行应力、应变的分析计算,各不同块体之间通过接触点的耦合而互相连接在一起。
就大多数岩体来说,其构造弱面的刚度和强度均比岩石本身要小得多,从这点出发,为了减少研究对象的不确定性(自由度)的数量,通常假定各不同岩石块体为刚性,结构产生的总位移仅仅是由各接触点(面)的变形所引起。
这里的研究对象被认为是各种离散块体的堆砌,块体之间的相互作用力可根据位移和力的关系式来求解,单个块体的运动遵循牛顿运动定律,即力和力矩的平衡。
数值分析模型的建立必须满足平衡方程、变形协调方程和本构方程,此外,还需要满足一定的边界条件。
但离散元块体之间不存在变形协调的约束,因为块体之间是彼此互不约束的,因而仅需满足物理方程和运动方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、加载UDEC进入DOC环境后输入giic或者gui命令,然后进入主菜单
2、Model option 选择合适条件通常情况下,你可以使用默认域联系(domain-logic)检
测模式。
如果你想监测任何块体的位移,这些块体可能从隧道顶部分离或掉落,你应该使用“cell-space detection”模式跟踪位移和下落块体的潜在接触。
3、命名并且保存文件
4、New block 建模,根据需要设置模型的长30 宽15
415 410 405 400 395 390 385 380 375 370
415 410 405 400 395 390 385 380 375 370 420 425 430 435 440 445 450 455 m
5、Bound 调节边界,与实际相符
6、Crack 添加节理,(层状岩体是否按节理处理?)岩层20°∠34°,J1产状60°∠15°J2产状为35°∠47°,J3产状为95°∠89°(怎么将不同产状节理进行转换?)
路线设计好,为后来开挖做好准备。
7、execute 执行文件
8、zone 执行长度为0.5的最大区域边界,划分网格
9、Zone material 创建一个或者几个块体材料属性,选择一种本构模型,本次选择的是
Mohr-Coulomb模型
prop mat 1 den--2143 bu=30e9 sh=18e9 c=1.2e5
f=21 t--2e5
prop mat 2 den=2260 bu=40e9 sh=24e9 c=1.5e5
f=28 t--2.5e5
prop mat 3 den--2300 bu=50e9 sh=28e9 c=3.5e5
f=32 t--3.5e5
10、JointMat 节理属性,选择
;liexi 1
prop jmat 1 jkn=4e9 jks=2.Oe9 j卜18 jc=0 jt=0
jieli2
prop jmat 2 jkn=4e9 jks=2.Oe9 jf=18 jc=le4 jt=0
;huadai;bianxingtidijiemian3
prop jmat 3 jkn=4e9 jks=2e9 jf--10
jc=2e3 jt=0
;duanceng4
prop jmat 4 jkn=2e9 jks=0.7e9 jf=13 jc=le3 jt=0
11、instiu -bound 边界条件左右边xvelocity为0,下边界yvelocity为0保存slope1
12、utility 访问不同变量,可以监测将要下滑的块体垂直和水平位移
13、setting 设置重力9.81
14、run -solve 自动检测平衡,在分析的不同阶段保存项目为slope2、3、4
15、build -cut or fill 如果删除某一块后则可立即保存,评价岩体的稳定性用solve工具
实现,计算稳定状态得到开挖后岩体周边的位移通过y位移等值线图来说明,点击“Contour-Motion/ydisplace”输出,保存slope5
16、接下来可以评价有弱节理的岩体中因开挖引起节理岩体的反应,首先回到slope1,
A分支包含关于强节理岩体开挖的保存文件,B分支是一个新的分支,你可以用来执行弱节理的模拟。
返回到“Material”材料工具栏,打开“JointMat”工具。
现在选择隧道:弱节理在材料单中。
单击“SetAll”按钮来更改所有的弱节理。
弱节理的初始应力状态与强节理的有明显的不同,因此,在使用“Run/Solve”工具更改节理属性之后,初始应力状态应该重新计算。
图1.29绘出了在应用“SOLVE”之后的不平衡力历史;不平衡力中的跳跃表明当弱节理添加时,模型处于不平衡。
新的平衡状态保存为“slope6”。
17、现在删除块体,保存slope7
18、run-cycle 计算时步10000 可以产生plot-history相关图件,保存slope8,继续模拟,直到斜坡有明显滑带。
;求解
solve
;查看计算结果
;plot plas
;plot b1 stress
;plot b1 disp
;plot sxy fill
;plot sxx fill
;plot syy fill
;plot hist 1
;plot hist 2。