因子分析实验报告范本

合集下载

因子分析实验报告

因子分析实验报告

因子分析实验报告一、实验目的因子分析是一种多元统计分析方法,旨在将多个相关变量归结为少数几个综合因子,以简化数据结构和揭示潜在的变量关系。

本次实验的主要目的是通过因子分析方法,对给定的数据集进行分析,提取主要因子,并解释其含义和实际应用价值。

二、实验数据来源及描述本次实验所使用的数据来源于一项关于消费者购买行为的调查。

该数据集包含了 500 个样本,每个样本包含了 10 个变量,分别是:价格敏感度、品牌忠诚度、产品质量感知、售后服务满意度、促销活动参与度、购买频率、购买金额、购买渠道偏好、口碑传播意愿和推荐他人购买意愿。

这些变量反映了消费者在购买过程中的不同方面的态度和行为,通过对这些变量的分析,可以更好地了解消费者的购买模式和偏好,为企业的市场营销策略提供决策依据。

三、实验方法及步骤1、数据预处理首先,对数据进行了缺失值处理。

对于存在少量缺失值的变量,采用了均值插补的方法进行填充。

然后,对数据进行了标准化处理,以消除量纲的影响,使得不同变量之间具有可比性。

2、因子提取运用主成分分析法(PCA)进行因子提取。

通过计算相关矩阵的特征值和特征向量,确定因子的个数。

根据特征值大于 1 的原则,初步确定提取 3 个因子。

3、因子旋转为了使因子更具有可解释性,采用了方差最大正交旋转(Varimax rotation)方法对因子进行旋转。

4、因子解释对旋转后的因子载荷矩阵进行分析,解释每个因子所代表的含义。

四、实验结果及分析1、因子载荷矩阵经过旋转后的因子载荷矩阵如下:|变量|因子 1|因子 2|因子 3|||||||价格敏感度|075|-012|021||品牌忠诚度|018|072|-015||产品质量感知|025|068|028||售后服务满意度|022|065|031||促销活动参与度|032|-025|078||购买频率|015|028|072||购买金额|012|025|068||购买渠道偏好|028|-035|052||口碑传播意愿|018|032|058||推荐他人购买意愿|021|035|055|2、因子解释因子 1 主要反映了消费者对产品本身相关因素的关注,包括价格敏感度、产品质量感知、售后服务满意度等,可命名为“产品相关因子”。

多元统计正交因子分析实验报告

多元统计正交因子分析实验报告

正交因子分析(设计性实验)(Orthogonal factor analysis)实验原理:因子分析是主成分分析的推广和发展,其目的是用少数几个不可观测的隐变量,即因子,来解释原始变量之间的相关关系,它也是属于多元分析中处理降维的一种统计方法。

因子分析的基本思想是通过变量间的协方差矩阵(或相关系数矩阵)内部结构的研究,寻找能控制所有变量的少数几个因子去描述多个变量之间的相关关系。

因子分析中最常用的数学模型是正交因子模型,其特点是模型中的因子相互之间正交。

实验题目一:下表中给出了二战以来奥运会运动员十项运动成绩的相关系数矩阵:(E9a6) 100米 1.00 . . . . . . . . .跳远0.59 1.00 . . . . . . . .铅球0.35 0.42 1.00 . . . . . . .跳高0.34 0.51 0.38 1.00 . . . . . .400米0.63 0.49 0.19 0.29 1.00 . . . . .110米跨栏0.40 0.52 0.36 0.46 0.34 1.00 . . . .铁饼0.28 0.31 0.73 0.27 0.17 0.32 1.00 . . .撑竿跳高0.20 0.36 0.24 0.39 0.23 0.33 0.24 1.00 . .标枪0.11 0.21 0.44 0.17 0.13 0.18 0.34 0.24 1.00 .1500米-0.07 0.09 -0.08 0.18 0.39 0.00 -0.02 0.17 -0.00 1.00实验要求:(1)试由相关系数矩阵作因子分析;covmat(2)试根据因子载荷,并结合题目背景知识,对公共因子进行命名。

实验题目二:下表中给出了不同国家及地区的女子径赛记录:(t1a7)Country 100 m(s)200 m(s)400 m(s)800 m(min)1500 m(min)3000 m(min)Marathon(min)australi 11.2 22.35 51.08 1.98 4.13 9.08 152.37 austria 11.43 23.09 50.62 1.99 4.22 9.34 159.37 belgium 11.41 23.04 52 2 4.14 8.88 157.85 bermuda 11.46 23.05 53.3 2.16 4.58 9.81 169.98 brazil 11.31 23.17 52.8 2.1 4.49 9.77 168.75 burma 12.14 24.47 55 2.18 4.45 9.51 191.02 canada 11 22.25 50.06 2 4.06 8.81 149.45 chile 12 24.52 54.9 2.05 4.23 9.37 171.38 china 11.95 24.41 54.97 2.08 4.33 9.31 168.48 columbia 11.6 24 53.26 2.11 4.35 9.46 165.42 cookis 12.9 27.1 60.4 2.3 4.84 11.1 233.22 costa 11.96 24.6 58.25 2.21 4.68 10.43 171.8 czech 11.09 21.97 47.99 1.89 4.14 8.92 158.85 denmark 11.42 23.52 53.6 2.03 4.18 8.71 151.75 domrep 11.79 24.05 56.05 2.24 4.74 9.89 203.88 finland 11.13 22.39 50.14 2.03 4.1 8.92 154.23 france 11.15 22.59 51.73 2 4.14 8.98 155.27 gdr 10.81 21.71 48.16 1.93 3.96 8.75 157.68 frg 11.01 22.39 49.75 1.95 4.03 8.59 148.53 gbni 11 22.13 50.46 1.98 4.03 8.62 149.72 greece 11.79 24.08 54.93 2.07 4.35 9.87 182.2 guatemal 11.84 24.54 56.09 2.28 4.86 10.54 215.08 hungary 11.45 23.06 51.5 2.01 4.14 8.98 156.37 india 11.95 24.28 53.6 2.1 4.32 9.98 188.03 indonesi 11.85 24.24 55.34 2.22 4.61 10.02 201.28 ireland 11.43 23.51 53.24 2.05 4.11 8.89 149.38 israel 11.45 23.57 54.9 2.1 4.25 9.37 160.48 italy 11.29 23 52.01 1.96 3.98 8.63 151.82 japan 11.73 24 53.73 2.09 4.35 9.2 150.5 kenya 11.73 23.88 52.7 2 4.15 9.2 181.05 korea 11.96 24.49 55.7 2.15 4.42 9.62 164.65 dprkorea 12.25 25.78 51.2 1.97 4.25 9.35 179.17 luxembou 12.03 24.96 56.1 2.07 4.38 9.64 174.68 malaysia 12.23 24.21 55.09 2.19 4.69 10.46 182.17 mauritiu 11.76 25.08 58.1 2.27 4.79 10.9 261.13 mexico 11.89 23.62 53.76 2.04 4.25 9.59 158.53 netherla 11.25 22.81 52.38 1.99 4.06 9.01 152.48 nz 11.55 23.13 51.6 2.02 4.18 8.76 145.48 norway 11.58 23.31 53.12 2.03 4.01 8.53 145.48 png 12.25 25.07 56.96 2.24 4.84 10.69 233 philippi 11.76 23.54 54.6 2.19 4.6 10.16 200.37 poland 11.13 22.21 49.29 1.95 3.99 8.97 160.82 portugal 11.81 24.22 54.3 2.09 4.16 8.84 151.2singapor 12.3 25 55.08 2.12 4.52 9.94 182.77 spain 11.8 23.98 53.59 2.05 4.14 9.02 162.6 sweden 11.16 22.82 51.79 2.02 4.12 8.84 154.48 switzerl 11.45 23.31 53.11 2.02 4.07 8.77 153.42 taipei 11.22 22.62 52.5 2.1 4.38 9.63 177.87 thailand 11.75 24.46 55.8 2.2 4.72 10.28 168.45 turkey 11.98 24.44 56.45 2.15 4.37 9.38 201.08 usa 10.79 21.83 50.62 1.96 3.95 8.5 142.72 ussr 11.06 22.19 49.19 1.89 3.87 8.45 151.22 wsamoa 12.74 25.85 58.73 2.33 5.81 13.04 306 (数据来源:1984年洛杉机奥运会IAAF/AFT径赛与田赛统计手册)ussr 11.06 22.19 49.19 1.89 3.87 8.45 151.22 rumania 11.44 23.46 51.2 1.92 3.96 8.53 165.45 实验要求:(1)根据以上数据对女子径赛项目作因子分析;(2)对公共因子进行解释;(3)计算各个国家的第一因子得分并进行排名。

因子分析实验报告

因子分析实验报告

因子分析实验报告因子分析实验报告引言:因子分析是一种常用的统计分析方法,用于探索变量之间的内在关系。

通过因子分析,我们可以找到隐藏在观测变量背后的潜在因素,从而更好地理解数据的结构和解释变量之间的关系。

本实验旨在通过因子分析方法,对某一特定数据集进行分析,以探索其内在因素和变量之间的关系。

实验设计:本实验选取了一个涉及消费者购买行为的数据集,包含了多个观测变量,如消费金额、购买频率、品牌忠诚度等。

我们希望通过因子分析,找出这些变量背后的潜在因素,以便更好地理解消费者购买行为的本质。

实验步骤:1. 数据准备:首先,我们收集了一份关于消费者购买行为的数据集,包含了1000个样本和10个观测变量。

这些变量包括消费金额、购买频率、品牌忠诚度等。

我们将这些变量进行了标准化处理,以消除量纲差异。

2. 因子提取:接下来,我们使用主成分分析方法进行因子提取。

主成分分析是一种常用的因子提取方法,通过线性变换将原始变量转化为一组互相无关的主成分。

我们计算了每个主成分的特征值和特征向量,并选取了特征值大于1的主成分作为因子。

3. 因子旋转:在因子提取后,我们进行了因子旋转,以使得因子更易于解释。

常用的因子旋转方法有方差最大旋转和极大似然旋转等。

在本实验中,我们选择了方差最大旋转方法,以最大化因子的方差。

4. 因子解释:最后,我们对提取出的因子进行解释。

通过观察每个因子所对应的变量载荷,我们可以确定每个因子的含义和影响因素。

同时,我们还计算了每个因子的方差贡献率,以评估其在解释总体方差中的贡献程度。

实验结果:经过因子分析,我们成功地提取出了3个主要因子,并对其进行了旋转和解释。

这些因子分别代表了消费者的购买能力、购买偏好和品牌忠诚度。

具体而言,第一个因子与消费金额和购买频率相关,代表了消费者的购买能力;第二个因子与购买偏好和购买意愿相关,代表了消费者的购买偏好;第三个因子与品牌忠诚度相关,代表了消费者对品牌的忠诚程度。

因子分析实验报告

因子分析实验报告

因子分析实验报告1. 引言因子分析是一种常用的数据分析方法,用于探索和解释观测变量背后的潜在因子结构。

它可以帮助我们发现变量之间的关联性,进而理解数据的本质和结构。

本实验报告旨在通过一个因子分析的具体案例,介绍因子分析的步骤和相关概念。

2. 实验设计2.1 数据收集首先,我们需要收集一组观测变量的数据。

在本实验中,我们选择了一个市场调查问卷作为数据源。

该问卷包含了多个问题,涉及不同的主题,如消费习惯、生活方式等。

我们将这些问题作为观测变量,以便进行因子分析。

2.2 变量选择在进行因子分析之前,我们需要对观测变量进行筛选和选择。

一般来说,我们会选择那些具有较高相关性的变量用于因子分析。

在本实验中,我们将根据变量之间的相关系数矩阵进行选择。

2.3 数据预处理在进行因子分析之前,我们还需要对数据进行一些预处理操作。

这可能包括缺失值处理、异常值处理、数据标准化等。

我们需要确保数据的可靠性和一致性,以获得准确的因子分析结果。

3. 因子分析步骤3.1 因子提取因子提取是因子分析的关键步骤。

它用于从观测变量中提取潜在因子。

常用的因子提取方法包括主成分分析法、最大方差法等。

在本实验中,我们将采用主成分分析法进行因子提取。

3.2 因子旋转因子旋转是为了使提取的因子更易解释和解读。

它通过改变因子载荷矩阵的结构,使得每个因子只与少数几个观测变量相关联。

常用的因子旋转方法包括方差最大旋转法、正交旋转法等。

在本实验中,我们将采用方差最大旋转法进行因子旋转。

3.3 因子解释因子解释是根据旋转后的因子载荷矩阵,对提取的因子进行解释和命名的过程。

我们需要分析每个因子与观测变量之间的关系,以确定每个因子所代表的概念或主题。

在本实验中,我们将尝试解释每个因子,并为其命名。

4. 实验结果经过因子分析的步骤,我们得到了旋转后的因子载荷矩阵。

根据这个矩阵,我们可以解释每个因子所代表的概念,并为其命名。

以下是我们得到的部分结果:•因子1:消费习惯因子,包括购买力、消费水平等变量。

SPSS因子分析实验报告

SPSS因子分析实验报告

实验十一(因子分析)报告一、数据来源各地区年平均收入.sav二、基本结果(1)考察原有变量是否适合进行因子分析首先考察原有变量之间是否存在线性关系,是否采用因子分析提取因子。

借助变量的相关系数矩阵、反映像相关矩阵、巴特利球度检验和KMO检验方法进行分析,结果如表1、表2所示:表1原有变量相关系数矩阵 correlation matrix表1显示原有变量的相关系数矩阵,可以看出大部分的相关系数都比较高,各变量呈较强的线性关系,能够从中提取公共因子,适合进行因子分析。

表2 KMO and Bartlett's Test由表2可知,巴特利特球度检验统计量观测值为,p值接近0,显著性差异,可以认为相关系数矩阵与单位阵有显著差异,同时KMO值为,根据Kaiser给出的KMO度量标准可知原有变量适合进行因子分析。

(2)提取因子进行尝试性分析:根据原有变量的相关系数矩阵,采用主成分分析法提取因子并选取大于1的特征值。

具体结果见表3:可知,initial一列是因子分析初始解下的共同度,表明如果对原有7个变量采用主成分分析法提取所有特征值,那么原有变量的所有方差都可以被解释,变量的共同度均为1。

事实上,因子个数小于原有变量的个数才是因子分析的目的,所以不可以提取全部特征值。

第二列表明港澳台经济单位、集体经济单位以及外商投资经济单位等变量的绝大部分信息(大于83%)可被因子解释。

但联营经济、其他经济丢失较为表3因子分析中的变量共同度(一)严重。

因此,本次因子提取的总体效果不理想。

重新制定提取特征值的标准,指定提取2个因子,分析表4:可以看出,此时所有变量的共同度均较高,各个变量的信息丢失较少。

因此,本次因子提取的总体效果比较理想。

表4因子分析的变量共同度(二)表5中,第一列是因子编号,以后三列组成一组,每组中数据项为特征值、方差贡献率、累计方差贡献率。

第一组数据项(2-4列)描述因子分析初始解的情况。

在初始解中由于提取了7个因子,因此原有变量的总方差均被解释,累计方差贡献率为100%。

因子分析实验报告范本

因子分析实验报告范本

因子分析实验报告范本(8)对实验结果进行分析研究5、预习抽查、提问及成绩(请按优,良,中,及格,不及格五级评定)6、未抽查学生的预习成绩(请按优,良,中,及格,不及格五级评定,由教师评阅实验报告时确定)第二部分:实验过程记录(可加页)1、实验原始记录(包括实验数据记录,实验现象记录,实验过程发现的问题等)第一步:导入数据交作® 编勘视图茁fttg(D)炜飘D 分折他)图羽〔① 起H■幵数据俸回3檢素…■关闭Q Ct甘斗Q 探存Ctrl-S另存M£0...1舲股票代冯蛋票启称星玉每股收主营业务临入万元主营壮务和净利掏万元总资庐万元总氏储万元am万元净资庐万元1600519蛊州茅台9.3500217181918531611D69333536615&831023:625034133 2520*ST 風圈 4.3100 765S9 91S3 4360£9 5321S J3330 34 48773 2304 洋河战储370001230535 735376 396274 29^0921D08495 3719206974 E00694大酋股盼 3.5100244355349&401 1029551M0G9409297431E177205 551 格力电器 3.27® 9341Q06 35387J6982755 1595O3B3 11073129 1140772596 600392 广杀朋珠 2.42008612 5149 02756 2&35B1 1041310 25314B76031B8亚邦股粘 2.380019276S9613051512365843105490 10 260053 8300386 飞天诚信 2.3200 73471 31617 18937 1452S8 13802 13 131J869 33B 建茉动力 2.2200 5614B38 1196345 J44543 12291644 8253531 4B4038113 10300Q95三六五网•-■'ill3275730342117353B773BO536080720 111600340 痒夏車舊 2 130******** 5SI71492821171O454E07 0757223 75 1697464 12333 美的菓团 2.120010908416 2724175895296 115822077164805 7D 4417492 13601336新华■保晞 2.030010992500770400&3250061043000663669001246B2100 14 E0Q742 一汽宣錐 1.0300 321935 44368 39B42E25EQ323354120392142 15538 云甫白药 1.0700 1331752397977 194470 1471992397999 37 1074393 1660D436片甘腐 1.06001067735215223877338619&37^025274S21 17 600104 上芫棄团1,0500 46954731 528B0772CMO93238147695 2127279010 16674997 106D3168 张普罢思 1.B400 5B567 41D699995 8347S 1031789 7315819601533匠城汽生 1.BJ0042665B9105313355S625543O55J2317249213113305 2060081G 妄怯信托1,6100135026 109457 S209Q22956270060:45 1594&4图1数据第二步:将数据标准化fe9.36004.3100口十"gn丄H L H教IM也…,貝谒股J締出(①…■本©•••r Trnrsn点击分析f 描述统计f 描述。

《多元统计实验》因子分析实验报告一

《多元统计实验》因子分析实验报告一

《多元统计实验》因子分析实验报告newscore2 #显示以第二因子得分排序结果newscore3<-newscore[order(newscore[,4],decreasing=T),] #按第三因子得分排序newscore3 #显示以第三因子得分排序结果newscore4<-newscore[order(newscore[,5],decreasing=T),] #按因子综合得分排序newscore4 #显示以因子综合得分排序结果三、实验结果分析下图为数据标准化后相关系数矩阵图,可以看出x3、x8、x4之间的存在较大的相关性,这些消费指标之间存在较强的线性相关关系,适合用因子分析模型进行分析,下面用极大似然估计法进行因子分析。

将公共因子设置为3个,从下运行结果可以看出,累计方差贡献率达到了83.36%,说明选择3个是合适的,从初始载荷阵可以看出消费指标无法准确的解释因子的含义,故我们在进行基于极大似然法的正交旋转。

由下图旋转得到的因子载荷估计,居住(x3)、生活用品及服务(x4)、交通通信(x5)、教育文化娱乐(x6)、医疗保健(x7)和其他用品及服务(x8)在因子f1上的载荷分别为0.772、0.679、0.663、0.858、0.733、0.692,这六个消费指标反映了日常消费,因此f1命名为日常消费因子;x1在f2上反映了食品烟酒的消费,因此f2命名为食品烟酒因子;x2在f3上反映了衣着的消费,因此命名为衣着因子。

也由此可得到因子分析模型:x*1≈0.208f1+0.975f2+ε1x*2≈0.220f1+0.972f3+ε2x*3≈0.772f1+0.510f2+ε3x*4≈0.679 f1+0.361 f2+0.405f3+ε4x*5≈0.663 f1+0.440 f2+0.271 f3+ε5x*6≈0.858 f1+0.262 f2+ε6x*7≈0.733 f1+0.350 f3+ε7x*8≈0.692 f1+0.522 f2+0.391+ε8从下图的各因子得分结果,可以看出,在第一因子上得分多的为上海、北京、天津;第二因子上得分多的为北京、上海、云南;第三因子得分多的为海南、广东、上海;但是这样得到的结果,较难找,因此我们对得分分别按第一因子和第二因子以及第三因子进行排序可直观看出。

因子分析实验报告范本

因子分析实验报告范本

因子分析实验报告范本一、实验目的本次因子分析实验旨在探究多个变量之间的潜在结构关系,通过降维的方法提取出主要的公共因子,以更简洁、有效地解释数据中的信息。

二、实验数据来源及描述实验数据来源于_____调查,共收集了_____个样本,涉及_____个变量。

这些变量包括但不限于:1、变量 1:_____,用于衡量_____。

2、变量 2:_____,反映了_____。

3、变量 3:_____,其代表的含义是_____。

三、实验方法1、数据预处理对缺失值进行处理,采用_____方法进行填充。

对数据进行标准化处理,以消除量纲的影响。

2、因子提取方法选用主成分分析法提取公共因子。

根据特征根大于 1 的原则确定因子个数。

3、因子旋转方法采用方差最大化正交旋转,以使因子更具有可解释性。

四、实验步骤1、导入数据使用统计软件(如 SPSS)将数据文件导入。

2、数据预处理按照上述预处理方法进行操作。

3、因子分析在软件中选择因子分析模块,设置相应的参数进行分析。

4、结果解读观察公因子方差表,了解每个变量被公共因子解释的程度。

查看总方差解释表,确定提取的公共因子个数及解释的总方差比例。

分析旋转后的成分矩阵,解读公共因子的含义。

五、实验结果1、公因子方差变量 1 的公因子方差为_____,表明公共因子能够解释其_____%的方差。

变量 2 的公因子方差为_____,意味着公共因子对其的解释程度为_____%。

2、总方差解释提取了_____个公共因子,其特征根分别为_____、_____、_____。

这_____个公共因子累计解释了总方差的_____%。

3、旋转后的成分矩阵公共因子 1 在变量 1、变量 2 上有较高的载荷,分别为_____、_____,可以将其解释为_____因素。

公共因子 2 在变量 3、变量 4 上的载荷较大,分别为_____、_____,代表了_____方面。

六、结果讨论1、因子的可解释性提取的公共因子在实际意义上具有一定的合理性和可解释性,能够较好地概括原始变量所包含的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

..
实验课程名称:多元统计分析
实验项目名称20家上市公司业务能力分析实验成绩
教育资料word
..
教育资料word
..
1 数据图第二步:将数据标准化点击分析→描述统计→描述。

然后选择变量,勾选“将标准化得分另存为变量”教育资料word
..
图2 数据标准化第三步:对数据进行因子分析
点击分析→降维→因子分析,然后选择变量,然后对描述统计和抽取等进行设置,如图。

教育资料word
..
教育资料word
..
描述统计设置
抽取设置教育资料word ..
旋转设置
得分设置
教育资料word
..
教育资料word
..
标准化数据
教育资料word
..
即包含了信息个主成分解释了全部方差的278.569%,由以输出结果第二张图可以看出,前个指标评价企业的经济效益已经足够了。

个主成分代表原来的总量的78.569%,这说明28
2 输出结果是提取个主成分后输出的结果。

教育资料word
..
上面的表在主成分分析中也得到过,实际上,用主成分法求解公共因子与载荷矩阵,是求主成分的逆运算,这在前面有所表述。

其中成分矩阵是因子载荷矩阵,使用标准化后的主成分(公表示各公共因子,以总资产为例,fac1,fac2共因子)近似表示标准化原始变量的系数矩阵,用即有=0.829*fac1-0.354*fac2
总资产标准化的
教育资料word
..
个变量即为各个样品的第一公共因子,第二公共因子。

这2量,变量名分别为fac1-1,fac2-1得分。

在前面的分析中层提到过,这些得分是经过标准化的,这一点可以用下面的方法简单地验证。

个变量,点fac1-1,fac2-1 2描述描述统计依次点击分析------描述,进入“”对话框,选中。

“击确定”
得到各个样本的因子得分后,就可以对样本点进行分析,可以看到,三个变量的标准差均为1. 如用因子得分值代替原始数据进行归类分析或回归分析等。

教育资料word
..
由上面结果看到,旋转后的公共因子解释原始数据的能力没有提高,但因子载荷矩阵及因子得1.
0分系数矩阵都发生了变化,因子载荷矩阵的元素更倾向于或正负教育资料word ..。

,,,X8这是对因子载荷矩阵进行方差最大化正交旋转。

记基本每股收益等指标分别为X1,X2 即
可得因子分析模型:0.555F2 X1=0.205F1+0.745F2 X5=0.71F1—0.63F2 0.212F2 X6=0.547F1——X2=0.916F10.086F1+0.7F2 X3=0.937F1+0.064F2 X7=—0.07F2
X4=0.981F1+0.091F2 X8=0.971F1—主要由主营业务收入,主营业务利润,净利润,
净资产F1由因子分析模型知,第一个主因子而上的载荷均在0.85以上。

它代表企业的盈利能
力,F1四个指标决定,这4个指标在主因子之多,所以更说明是企业经济效益指标体系中的主要
方面。

此的方差达58%对且主因子F1X1的贡献也相对较大,这也是反映企业盈利能力的主要指
标。

企业要提高经济F1外,总资产对效益,就要在这个主因子方面下功夫。

主要由基本每股收
益和流动负债决定,是代表企业经营效率的指标。

经营效第二个主因子F2率主要反映企业的运
营能力,企业改进管理方法,提高科学管理水平,也是提高经济效益的重要途径。

2、小结、
建议及体会教育资料word
..
教育资料word。

相关文档
最新文档