数字电路 第10章(2学时)

合集下载

《数字电路》课程教学大纲

《数字电路》课程教学大纲

《数字电路》课程教学大纲课程编号:课程名称:数字电子技术基础总学时数:80 理论教学学时:60实验教学学时:20前修课程为高等数学,普通物理,电路分析,模拟电路。

后续课程有CPLD,数字信号处理,单片计,通讯原理等一、课程的任务与目的本课程是计算机科学和电子信息工程技术专业的一门专业基础课程。

主要任务是:1.系统的介绍数字系统的数学工具阐述数字系统的基本设计和分析方法。

2.通过数字电路的学习给后面的课程打下一定的理论和实践基础。

3.通过基本理论的学习掌握一定的数字系统的设计方法,及常用器件的应用,再结合实验、培养学生有一定的设计能力。

主要内容有:数制及转换,逻辑代数的公式、定理,逻辑函数的化简方法。

半导体二极管、三极管、MOS管的开关特性。

CMOS、TTL集成逻辑门。

组合逻辑电路的基本分析和设计方法。

加法器、比较器、编码器和译码器,数据选择器和分配器。

基本、同步、主从、边沿触发器、时钟触发器功能分类及转换。

时序电路的基本分析和设计方法。

计数器、寄存器、读/写存储器、只读存储器、序列脉冲发生器。

多谐振荡器,、施密特触发器。

数模、模数转换器。

教学重点与难点:教学重点是:逻辑代数的基本概念、公式、定理,逻辑函数的化简方法。

各种门电路的逻辑功能,两种集成逻辑门的电气特性。

各类触发器的逻辑功能及触发方式。

组合、时序电路的分析、设计方法。

常用典型组合、时序电路的功能、特点和应用。

典型中、大规模集成电路器件的功能和应用。

多谐、施密特、单稳的特点、功能、参数及应用。

数模、模数转换器的典型电路原理、输出量与输入量间的定量关系,特点、参数。

教学难点:逻辑代数的公式、定理的正确应用,逻辑函数化简的准确性。

集成逻辑门的电气特性。

组合、时序电路的设计。

触发器的触发方式以及脉冲产生,整形电路、数模、模数转换电路的工作原理。

采用的教学方法:课堂、实验、课程设计等相结合教材名称:电子技术基础数字部分康华光主编高等教育出版社2000年6月(第四版)主要参考书:1.高教出版社《数字电子技术基础》(四版)阎石编2.《数字电子技术基础》周良权高教出版社3.《数字电子技术基础简明教程》(第二版)余孟尝4.《数字电子技术基础》(第四版) 阎石高教出版社教学基本要求:第一章数字逻辑基础一、教学要求:1)掌握十、二、十六进制和8421码及其相互转换,了解八进制,余三码,GRAY和ASC Ⅱ码。

《数字电路》教学大纲

《数字电路》教学大纲

《数字电路》课程教学大纲一、课程基本信息英文名称Digital Circuit 课程代码PHYS2017课程性质专业选修课程授课对象物理学学分3学分学时54学时主讲教师修订日期2021.9指定教材康华光,《电子技术基础.数字部分》,高等教育出版社,2013年二、课程目标(一)总体目标知识目标:使学生掌握数字逻辑的基本知识及数字逻辑电路的分析方法和设计方法,以及若干典型的中、小规模集成电路的功能及应用,具备一定的数字电路分析和设计能力。

能力目标:培养学生分析电路问题和解决电路问题的能力,为以后深入学习电子技术某些领域中的内容,以及为电子技术在专业中的应用打好基础。

素质目标:掌握辩证唯物主义基本原理,建立科学的世界观和方法论,培养学生在电子技术方面的工程素养为目标。

(二)课程目标:课程目标1:掌握逻辑代数和数字逻辑电路的基础知识,能将其用于实际工程问题的分析课程目标2:具备对数字逻辑器件的特性和功能进行分析的能力,能够对组合逻辑电路和时序逻辑电路进行描述和分析。

课程目标3:具备对数字逻辑电路进行初步设计的能力,能运用基本原理和方法,根据设计要求完成数字逻辑电路(组合逻辑电路、时序逻辑电路)的设计。

(三)课程目标与毕业要求、课程内容的对应关系表1:课程目标与课程内容、毕业要求的对应关系表课程目标对应课程内容对应毕业要求课程目标1 第一章数字逻辑概论第二章逻辑代数与硬件描述语言第三章逻辑门电路第五章锁存器和触发器毕业要求3:了解物理学与其他学科、社会实践的联系。

毕业要求8:具有自主学习和终身学习意识和社会适应能力。

课程目标2 第四章组合逻辑电路第六章时序逻辑电路毕业要求3:了解物理学与其他学科、社会实践的联系。

毕业要求8:具有自主学习和终身学习意识和社会适应能力。

课程目标3 第四章组合逻辑电路第九章脉冲波形的变化与产生第十章时序逻辑电路毕业要求3:了解物理学与其他学科、社会实践的联系。

毕业要求7:具有课题调研、设计、数据处理和学术交流能力。

《数字电子技术基础》-阎石编著-数字电路教案

《数字电子技术基础》-阎石编著-数字电路教案

数字电路教案本课程理论课学时数为70,实验24学时。

各章学时分配见下表:第一章逻辑代数基础【本周学时分配】本周5学时。

周二1~2节,周四3~5节。

【教学目的与基本要求】1、掌握二进制数、二-十进制数(主要是8421 BCD码)2、熟练掌握逻辑代数的若干基本公式和常用公式。

3、熟练掌握逻辑函数的几种表达形式.【教学重点与教学难点】本周教学重点:1、绪论:重点讲述数字电路的基本特点、应用状况和课程主要内容。

2、逻辑代数的基本运算:重点讲述各种运算的运算规则、符号和表达式.3、逻辑代数的基本公式和常用公式:重点讲述逻辑代数的基本公式与普通代数公式的区别,常用公式的应用背景.4、逻辑函数的表示方法:重点讲述各种表示方法的特点和相互转换方法。

本周教学难点:反演定理和对偶定理:注意两者之间的区别、应用背景和变换时应注意的问题。

【教学内容与时间安排】一、绪论(约0.5学时)1、电子电路的分类。

2、数字电路的基本特点.3、数字电路的基本应用。

4、本课程的主要内容;5、本课程的学习方法和对学生的基本要求。

二、数制与码制(约1.5学时)(若前置课程已学,可作简单复习0。

5学时)1、几种不同进制(二、八、十、十六进制)。

2、几种不同进制相互转换。

3、码制(BCD码)。

三、逻辑代数1、基本逻辑运算和复合逻辑运算:与、或、非运算是逻辑代数的基本运算;还可以形成其他复合运算,常用的是与非、或非、与或非、异或、同或运算。

(约0。

5学时)2、常用公式(18个)(约0。

5学时)3、基本定理(代入定理、反演定理、对偶定理)(约0。

5学时)4、逻辑函数的概念及表示方法(约0。

5学时)5、逻辑函数各种表示方法间的转换:常用的转换包括:函数式←→真值表;函数式←→逻辑图(约1学时)【教学方法与教学手段】采用课堂讲授的方法,可组织学生讨论逻辑代数公式和普通代数公式的相同和不同之处,讨论逻辑函数各种表示方法的特点和相互转换方法。

【作业】P38 1。

数字电路课程教学大纲

数字电路课程教学大纲

数字电路课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:数字电路所属专业:微电子学课程性质:必修学分:4(二)课程简介、目标与任务;课程简介:数字电路课程是入门性质的基础课教学目的:使学生掌握数字电子技术最基本的基础知识,为今后进一步深入学习电子技术新发展和将所学知识用于本专业打下基础。

数字电路课程的主要特点:由于数字电子技术的应用领域极其广阔,具体的应用电路更是层出不穷,所以教学的重点始终应该放在数字电路的基本概念、基本原理、基本的分析方法和设计方法以及常用电子器件的使用方法上。

对于各种数字电子电路器件,在教学中主要是这些器件的基本设计方法和应用,而不是这些器件本身的设计和制造工艺。

教学重点是这些器件的外特性(包括逻辑功能和电器特性)及其应用上。

数字电路课程在微电子专业二年级第二学期开设。

课堂教学(其中包括课堂讲授、习题课、讨论课等)为每周4学时(总学时72学时)。

由于课程内容多,涉及面很广,讲授时基本概念、基本原理、、基本的分析方法和设计方法作为学生必须掌握的重点内容。

对于当代电子技术发展的前沿,可以简单介绍或者以学生自学为主,以扩大视野,激发学习兴趣,提高自学能力。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;先修课程:电路分析(电磁学中的相关部分)模拟电子电路;后续相关课程:集成电路分析与设计等相关课程(四)教材与主要参考书。

教材:面向21世纪课程教材《数字电路》第五版清华大学电子学教研组编闫石主编高等教育出版社参考书:《电子技术基础》数字电路部分华中理工电子学教研组编二、课程内容与安排(括号内为学时安排参考)本课程共72学时,讲授8章。

各章节的学时分配如下。

第一章数制和码制(4学时)1.1 概述1.2 几种常用的数制1.3 不同数制间的转换1.4 二进制算术运算 1.4.1 二进制算术运算的特点 1.4.2 反码、补码和补码运算1.5 几种常用的编码第二章逻辑代数基础(10学时)2.1概述2.2逻辑代数中的三种基本运算2.3逻辑代数的基本公式和常用公式 2.3.1 基本公式2.3.2 若干常用公式2.4逻辑代数的基本定理 2.4.1 代入定理2.4.1 反演定理2.4.3 对偶定理2.5逻辑函数及其表示方法 2.5.1 逻辑函数2.5.2 逻辑函数的表示方法5.3 逻辑函数的两种标准形式 2.5.4 逻辑函数形式的变换2.6 逻辑函数的化简方法 2.6.1公式化简法 2.6.2 卡诺图化简法2.7具有无关项的逻辑函数及其化简 2.7.1 约束项、任意项和逻辑函数式中的无关项 2.7.2 无关项在化简逻辑函数中的应用第三章门电路(12学时)3.1 概述3.2 半导体二极管门电路 3.2.1 半导体二极管的开关特性3.2.1 二极管与门3.2.3二极管或门3.3 CMOS门电路3.3.1 MOS管的开关特性3.3.2 CMOS反相器的电路结构和工作原理 3.3.3 CMOS反相器的静态输入特性和输出特性3.3.4 CMOS反相器的动态特性 3.3.5 其他类型的CMOS门电路 3.3.6 CMOS2电路的正确使用 3.3.7CMOS数字集成电路的各种系列3.4 其它类型的MOS集成电路(略)3.5 TTL门电路3.5.1 双极型三极管的开关特性3.5.2 TTL反相器的电路结构和工作原理 3.5.3 TTL反相器的静态输入特性和输出特性3.5.4 TTL反相器的动态特性 3.5.5 其他类型的TTL门电路3.5.6TTL数字集成电路的各种系列第四章组合逻辑电路(8 学时)4.1概述4.2 组合逻辑电路的分析方法和设计方法4.2.1 组合逻辑电路的分析方法4.2.2 组合逻辑电路的设计方法4.3 若干常用的组合逻辑电路4.3.1 编码器4.3.2 译码器4.3.3 数据选择器4.3.4加法器4.3.5 数值比较器4.4组合逻辑电路中的竞争—冒险4.4.1 竞争-冒险现象及其成因4.4.2 检查竞争-冒险现象的方法4.4.3 消除竞争-冒险现象的方法第五章触发器(6 学时)5.1概述5.2RS锁存器5.3电平触发的触发器5.4脉冲触发的触发器5.5边沿触发的触发器5.6触发器的逻辑功能及其描述5.6.1触发器按逻辑功能的分类5.6.2 触发器的电路结构和逻辑功能、触发方式的关系第六章时序逻辑电路(12学时)6.1概述6.2时序逻辑电路的分析方法6.2.1同步时序逻辑电路的分析方法6.2.2 时序逻辑电路的状态转换表、状态转换图和时序图6.2.3 异步时序逻辑的分析方法6.3若干常用的时序逻辑电路6.3.1 寄存器和移位寄存器6.3.2 计数器6.4时序逻辑电路的设计方法6.4.1 同步时序逻辑电路的设计方法6.4.2 异步时序逻辑电路的设计方法第七章半导体存储器(6课时)7.1 概述7.2 只读存储器(ROM)7.2.1 掩膜只读存储器7.2.2 可编程只读存储器(PROM)7.2.3 可擦除的可编程只读存储器(EPROM)7.3 随机存储器(RAM)7.3.1 静态随机存储器(SRAM)7.3.2 动态随机存储器(DRAM)7.4 存储器容量的扩展7.4.1 位扩展的方法7.4.2 字扩展的方法7.5 用存储器实现组合逻辑函数第八章可编程逻辑器件(略)第九章脉冲波形的产生和整形(10 课时)9.1 概述9.2 施密特触发器9.2.1 用门电路组成的施密特触发器9.2.1 集成施密特触发器9.2.3 施密特触发器的应用9.3 单稳态触发器9.3.1 用门电路组成的单稳态触发器9.3.2 集成单稳态触发器9.4 多谐振荡器9.4.1 对称式多谐振荡器9.4.2 非对称式多谐振荡器9.4.3 环形振荡器9.4,4 用施密特触发器构成的多谐振荡器9.4.5 石英晶体多谐振荡器9.5 555定时器及其应用9.5.1 555定时器的结构与功能9.5.2 用555定时器接成的施密特触发器9.5.3 用555定时器接成的单稳态触发器9.5.4 用555定时器接成的多谐振荡器第十一章数-模和模-数转换(略)期末总复习(4 课时)制定人:尹旻审定人:批准人:日期:。

数字电路基础

数字电路基础

1D
C1
D
CP
D
CP
(a) D 触发器的构成
(b) D 触发器的简化电路
(c) 逻辑符号
将S=D、R=D代入同步RS触发器的特性方程,得同步D触 发器的特性方程:
Q n 1 S R Q n D DQ n D
CP=1期间有效
20
D=1/
状 态 图
波 形 图
0/
0 0/
1
1/
CP D Q Q
将S=JQn、R=KQn代入同步RS触发器的特性方程,得同 步JK触发器的特性方程:
Q n 1 S R Q n JQ n KQ n Q n
CP=1期间有效
17
JQ n K Q n
特性表
CP 0 1 1 1 1 1 1 1 1 J × 0 0 0 0 1 1 1 1 K × 0 0 1 1 0 0 1 1 Qn × 0 1 0 1 0 1 0 1 Q n+1 Q
n
功能
Q n 1 Q n 保持
0 1 0 0 1 1 1 0
Q n 1 Q n 保持
Q n 1 0 置 0
JK=00时不变
JK=01时置0
JK=10时置1 JK=11时翻转
Q
n 1
1 置 1
Q n 1 Q n 翻转
Q n 1 S R Q n JQ n KQ nQ n JQ n K Q n
Q S CP
Q R 1S C1 1R
S CP R (b) 曾用符号
S
CP
R
(c) 国标符号
25
2、主从JK触发器
Q Q

S JQ
G1 & G3 & Qm G5 & G7 & 主 从 & G2 & G4 Qm & G6 & G8 1 G9

《数字电路-分析与设计》1--10章习题及解答(部分)_北京理工大学出版社

《数字电路-分析与设计》1--10章习题及解答(部分)_北京理工大学出版社
6-16先分别将‘290接为8421和5421计数器,再分别用M=7(QDQCQBQA=0111)8421和(QAQDQCQB=1010)5421复位即可,应特别注意高低位的顺序。波形图和状态图略。
6-17先分别将‘290接为8421和5421计数器,再分别用M-1=6(QDQCQBQA=0110)8421和(QAQDQCQB=1001)5421置位即可,应特别注意高低位的顺序。波形图和状态图略。
低电平噪声容限:
甲的关门电平大,所以甲在输入低电平时的
抗干扰能力强。
3-6 试说明下列各种门电路中哪些可以将输出端并联使用(输入端的状态不一定相同)。
⑴ 具有推拉式输出级的TTL电路;
⑵ TTL电路的OCபைடு நூலகம்;
⑶ TTL电路的TS门;
⑷ 普通的CMOS门;
⑸ 漏极开路输出的CMOS门;
⑹ CMOS电路的TS门。
6-24应从RCO引出,此时不管分频比为多少,分频关系都是正确的。
6-25画出状态顺序表或状态图即可。
对于图(a),只要注意QB=0时预置,并且DCBA=QD110即可。
由状态图知,这是模6计数器。
对于图(b),只要注意QC=0时预置,并且DCBA=QD100即可。
由状态图知,这是模10计数器。
该电路设计巧妙,QD均为占空比为50%的方波。
3-5 有两个相同型号的TTL“与非”门,对它们进行测试的结果如下:
⑴ 甲的开门电平为1.4V,乙的开门电平为1.5V;
⑵ 甲的关门电平为1.0V,乙的关门电平为0.9V。
试问在输入相同高电平时,哪个抗干扰能力强?在输入相同的低电平时,哪个抗干扰能力强?
解:高电平噪声容限:
甲的开门电平小,所以甲在输入高电平时的抗干扰能力强;

第10章门电路和组合逻辑电路


× 1 × × × × × 0 1 1
× 1 × × × × 0 1 1 1
× 1 × × × 0 1 1 1 1
× 1 × × 0 1 1 1 1 1
× 1 × 0 1 1 1 1 1 1
× 1 0 1 1 1 1 1 1 1
1 1 0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0 1 1
第10章 门电路和组合逻辑电路
1.三位二进制(8线-3线)编码器
集成8线-3线优先编码器74LS148的外引脚图, 如图10.20所示。
16
15
14 YEX
13
I3
12 I2
11 I1
10
I0
9
Y0
+VCC YS
74LS148
I4 1 I5 2 I6 3 I7 4 S 5 Y2 6 Y1 7 GND 8
1 1 0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 1
第10章 门电路和组合逻辑电路
2. 二-十进制(10线-4线)编码器
二-十进制编码 器是 将十进制的十个数码0、1、 2、3、4、5、6、7、8、9编 成二进制代码的电路。输入 0~9十个数码,输出对应的 二进制代码,因2n≥10, n 常取4,故输出为四位二进 制代码。这种二进制代码又 称二-十进制代码,简称 BCD码。集成10线-4线先编 码器为74LS147实现了这种 编码,引脚图和逻辑符号如 图10-21a、b所示。
&
Y
图10-2 ―与”门电路
第10章 门电路和组合逻辑电路
―与”逻辑关系又称为逻辑乘,其表达式为 Y=A· =AB B ―与”逻辑真值表

第10章 脉冲波形

电路来实现。
uO的下降沿比uI的下降沿延迟了tw的时间。
数字电子技术
单稳态触发器小结
单稳态触发器可以由门电路构成,也可以由 555定时器构成。在单稳态触发器中,由一个暂稳 态过渡到稳态,其“触发”信号也是由电路内部 电容充(放)电提供的,暂稳态的持续时间即脉 冲宽度也由电路的阻容元件决定。
单稳态触发器不能自动地产生矩形脉冲,但 却可以把其它形状的信号变换成为矩形波,用途 很广。
对称式 多谐振荡器
数字电子技术
二、工作原理
假定接通电源后,由于某种原因使uI1有微小正跳变,则 必然会引起如下的正反馈过程 :
使uO1迅速跳变为低电平、uO2迅速跳变为高电平, 电路进入第一暂稳态。 此后,uO2的高电平对C1电容充电使uI2升高,电容 C2放电使uI1降低。由于充电时间常数小于放电时间常数, 所以充电速度较快,uI2首先上升到G2的阈值电压UTH, 并引起如下的正反馈过程:
为数字—模拟混合集成电路。 可产生精确的时间延迟和振荡,内部有 3 个 5KΩ的电阻分压器,故称555。
在波形的产生与变换、测量与控制、家用电
器、电子玩具等许多领域中都得到了应用。
数字电子技术
各公司生产的 555 定时器的逻辑功能与外引线 排列都完全相同。
双极型产品 单555型号的最后几位数码 双555型号的最后几位数码 优点 电源电压工作范围 负载电流 555 556 驱动能力较大 5~16V 可达200mA CMOS产品 7555 7556 低功耗、高输入阻抗 3~18V 可达4mA
数字电子技术
10.4 多谐振荡器
1. 多谐振荡器没有稳定状态,只有两个暂稳态。 • 通过电容的充电和放电,使两个暂稳态相互交替, 从而产生自激振荡。 • 输出周期性的矩形脉冲信号,由于含有丰富的谐 波分量,故称作多谐振荡器。

数字电路教案

逻辑表达式、真值表、卡诺图、逻辑图、波形图。
二、组合逻辑电路的分析方法
分析步骤
1、由逻辑电路写逻辑函数式;
2、由逻辑函数写真值表;
3、分析逻辑功能;
4、(画出波形图)
三、组合逻辑电路的设计方法
设计步骤
1、按照题目要求找出输入输出的变量;
2、写出真值表
3、由真值表写出函数表达式;
4、化简;
5、画出逻辑图
了解组合逻辑电路的设计方法。
重点
难点
教学重点:分析步骤。
教学难点:设计步骤、思路和注意事项。
教学进程
(含课堂
教学内容、
教学方法、辅助手段、
师生互动、
时间分配、
板书设计)
教学方法:课堂讲授
教具与其他教学材料:多媒体课件
新课讲解:
一、概述
(一)组合逻辑电路的概念
输入——决定——>输出(即时作用)
(二)表达方法:
教学进程
(含课堂
教学内容、
教学方法、辅助手段、
师生互动、
时间分配、
板书设计)
教学方法:课堂讲授
教具与其他教学材料:多媒体课件
新课讲解:
加法器
1、半加器
观察真值表了解输入输出关系
由真值表得出逻辑函数式
求出逻辑图
2、全加器
由功能得出真值表
了解逻辑符号和功能
了解多位加法器
3、4位串行加法器
了解电路组成
掌握运算方式
二、几种表示法之间的转换
1.真值表到逻辑图的转换
步骤:根据真值表写出函数的与或表达式或者画出函数的卡诺图;用公式法或者图形法进行化简,求出最简与或表达式;根据表达式画出逻辑图。
2.逻辑图到真值表的转换

数字电路 课程教学大纲

数字电路课程教学大纲一、课程的基本信息适应对象:本科,电子科学与技术、电子信息工程、通信工程课程代码:A7D00514学时分配:64赋予学分:4先修课程:电路分析、模拟电子技术后续课程:单片机原理、微机原理、自动控制原理、EDA技术二、课程性质与任务《数字电路》是电子信息类和电气类(包括电子类、电气类、自动控制类)各专业的专业基础课程,是一门实践性很强的技术基础课。

课程的任务是使学生获得数字电子技术方面的基本理论、基本知识和基本技能,培养学生分析问题和解决问题的能力。

即通过本课程的学习,使学生在理解数字电路的基本概念、基本电路的工作原理和基本分析方法的基础上,能熟悉数字集成电路的工作原理、外特性和功能,掌握数字电路的分析方法,具备正确运用数字集成电路设计和调试数字系统的能力,为深入学习后续相关课程以及今后从事专业工作打下良好的基础三、教学目的与要求1、课程教学目的:数字电路课程是电子科学与技术专业本科生的技术基础课程,它涉及数字技术中的基本原理、基本概念和基本方法,具有很强的工程实践性。

设置本课程的目的是使学生通过该课程的学习,理解和掌握数字电路的基本原理,基本概念和基本数字电路的分析和设计方法,掌握常用的中、小规模集成逻辑器件的功能应用,学会使用各种数字集成芯片设计各种数字电路,并通过实验学会使用常用电子仪器测量和调试各种数字电路的方法,更好地培养学生在工程实践方面独立分析问题和解决问题的能力。

2、课程教学基本要求在《数字电路》理论课程教学过程中,理论课程教学内容要新颖,信息量要大。

课程讲授要把握两个淡化:淡化电路的内部结构,强调电路的外部特性;淡化逻辑表达式的化简,强调电子设计自动化的优化作用。

三个注意:注意新技术的发展,引入可编程逻辑器件;注意描述方法的变化,引入Verilog HDL描述语言;注意系统分析方法,引入数字系统设计。

在《数字电路》实验课程教学过程中,实验课程内容的技术性、综合性和探索性的关系要做到处理得当。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
基于芯片的设计方法 可编程器件 芯片设计
当然,仅有硬件还不够,还要有EDA软件。本章只介绍硬件。
2.基于PLD设计流程
基于可编程逻辑器件设计分为三个步骤:设计输入、设计 实现、编程。其设计流程如下图。
设计输入 原理图 硬件描述语言 设计实现 优化 合并、映射 布局、布线
功能仿真
时 序 仿 真
器件 编程
OMUX选中1端, DFF的Q端输出
FMUX选中 DFF的Q端
29
(4)反馈组合输出组态:AC0=AC1(n)=1,且SYN=1
和专用输出 组态比,有 两点不同:
1.三态门使能端 接第一与项; 2.输出信号反 馈到与阵列。 (5)时序电路中的组合输出AC0=AC1(n),且SYN=0 这时其他OLMC中至少有一个工作在寄存器组态,而该 OLMC作为组合电路使用。 与(4)不同在于CLK和OE端作为公共信号使用。 GAL的输入,输出电路和特性留给同学自学。
3
二、电子设计自动化(EDA-Electronic Design Automation)简介 1.PLD是实现电子设计自动化的硬件基础: 传统的数字系统设计方法是“固定功能集成块+连线”,见图。 EDA是“基于芯片的设计方法”: 传统电子系统设计方法 固定功能元件 电路板的设计 电路板的设计 电子 系统 电 子 系统
本级输入信号却来自另一 27 相邻宏单元。
(2) 专用组合输出组态【AC0=0 , AC1(n) = 0】:如下图所示:
PTMUX选择1,第 一与项送入或门
TSMUX选择VCC
OMUX选 择0,跨过 DFF FMUX选择接地,本单元和相 邻单元的反馈信号均被阻断
28
(3) 寄存器组态:当AC1(n)=0,AC0=1时,如下图所示。 CLK、OE作为时 钟和输出缓冲器 的使能信号,是 器件的公共端 (TSMUX选中 OE端)
第八章
本章的重点:
可编程逻辑器件
1.PLD的基本特征,分类以及每种类型的特点; 2.用PLD设计逻辑电路的过程和需要用的开发工具。 本章的重点在于介绍PLD的特点和应用,PLD内部的 详细结构和工作过程不是教学重点。
本章的难点:
在本章的重点内容中基本没有难点。但在讲授PLD 开发工具时,如能与实验课配合,结合本校实验室配 备的开发工具讲解更好。
30
四、GAL的特点
(一)优点: GAL是继PAL之后具有较高性能的PLD,和PAL相 比,具有以下优点: (1) 有较高的通用性和灵活性:它的每个逻辑宏单元可以根据 需要任意组态,既可实现组合电路,又可实现时序电路。
(2) 利用率高:GAL采用电可擦除 CMOS技术,可以用电压 信号擦除并可重新编程。因此,可反复使用。
19
4. 带异或门的寄存器型输出结构: 两个或项在触发器的输入 把与项分割 端异或之后,在时钟上升 增加了一 个异或门 成两个或项 沿到来时存入触发器内
有些PAL器件是由数个同一结构类型组成,有的则是由 不同类型结构混合组成。 如由8个寄存器型输出结构组成的PAL器件命名为 PAL16R8,由8个可编程I/O结构组成的PAL器件则命名为 PAL16L8。
7
第一节
可编程逻辑器件PLD概述
PLD是70年代发展起来的新型逻辑器件,相继出现了 PROM、FPLA、PAL、GAL、EPLD 和 FPGA及iSP 等。前四种 属于低密度PLD,后三种属高密度PLD。 它们组成结构基本相似: 一、PLD的基本结构
输入信号
PLபைடு நூலகம்主体
可直接 输出
输出函数
输入 电路
器件测试
设计实现:生成下载所需的各种文件。
器件编程:即“下载”和“配置”,即将编程数据放到具体的可编 5 器件中。
3.用PLD设计数字系统的特点
采用PLD设计数字系统和中小规模相比具有如下特点: (1) 减小系统体积:单片PLD有很高的密度,可容纳中 小规模集成电路的几片到十几片。(低密度PLD小于700门/片, 高密度PLD每片达数万门,最高达25万门)。 (2) 增强逻辑设计的灵活性:使用PLD器件设计的 系统,可以不受标准系列器件在逻辑功能上的限制;用户 可随时修改。
11
三、PLD的结构类型
PLD基本结构大致相同,根据与或阵列是否可编程分为三类: (1)与固定、或编程:PROM (2)与或全编程:FPLA
(3)与编程、或固定:PAL、GAL、EPLD、FPGA 1. 与固定、或编程:(PROM)
A 0 0 0 0 0 1 0 1 0 B C
A
B
C
连接点编 程时,需画 一个叉。
25
二 GAL输出逻辑宏单元OLMC的组成 输出逻辑宏单元OLMC 由或门、异或门、D触发器、多路选 择器MUX、时钟控制、使能控制和编程元件等组成,如下图:
组合输出
时序输出
26
三 . 输出逻辑宏单元OLMC组态 输出逻辑宏单元由对AC1(n) 和AC0进行编程决定PTMUX、 TSMUX、OMUX和FMUX的输出,共有5种基本组态: 专用输入组态、专用输出组态、复合输入/输出组态、寄 存器组态和寄存器组合I/O组态。8个宏单元可以处于相同的 组态,或者有选择地处于不同组态。 (1) 专用输入组态 :如下图所示: 此时AC1(n)=1,AC0=0, 使TSMUX输出为0,三态 输出缓冲器的输出呈现高 电阻,本单元输出功能被 禁止, I/O可以作为输入端,提供 给相邻的逻辑宏单元。
(3) 缩短设计周期:由于可完全由用户编程,用PLD设
计一个系统所需时间比传统方式大为缩短;
6
(4) 提高系统处理速度:用PLD与或两级结构实现任何逻辑 功能,比用中小规模器件所需的逻辑级数少。这不仅简化了系 统设计,而且减少了级间延迟,提高了系统的处理速度; (5) 降低系统成本:由于PLD集成度高,测试与装配的量大 大减少。PLD可多次编程,这就使多次改变逻辑设计简单易行, 从而有效地降低了成本;
1
第八章
概述
第一节 第二节 第三节 第四节
可编程逻辑器件
可编程逻辑器件PLD概述 可编程逻辑阵列PLA(略) 可编程阵列逻辑(PAL) 通用阵列逻辑(GAL)
第五节
第六节
可擦除可编程逻辑器件(EPLD)
现场可编程门阵列(FPGA)
2
概述 一、数字集成电路按逻辑功能分类 目前集成电路分为通用型和专用型两大类。 通用集成电路:如前面讲过的SSI,MSI,PIO,CPU等。特点: 1.可实现予定制的逻辑功能,但功能相对简单; 2. 构成复杂系统时,功耗大、可靠性差,灵活性差。 3.用户不可编程。 专用型集成电路(ASIC)分为定制型和半定制型。特点: (一)定制型:由用户提出功能,交工厂生产。其特点是 1.体积小、功耗低、可靠性高, 2.批量小时成本高,设计制造周期长。 (二)半定制型:是厂家作为通用产品生产,而逻辑功能由用户自 行编程设计的ASIC芯片。如可编程逻辑器件(PLD)。其特点是 1.用户可编程,可加密,因此使用方便; 2.组成的系统体积小,功耗低,可靠性高,集成度高; 3. 适合批量生产。
F2=B+C+D
9
下图列出了连接的三种特殊情况:
1.输入全编程,输出为0。 2.也可简单地在对应的与门中画叉,因此E=D=0。 3.乘积项与任何输入信号都没有接通,相当与门输出为1。
10
下图给出最简单的PROM电路图,右图是左图的简化形式。 编程连接点 固定连接点 (或) (与)
实现的函数为:
F1 A B A B F2 A B A B F3 A B
3. A
4. A+B 5. B 6. A B 7. A B 8. A+B
11. 0
12. A B 13. A⊙ B 14. A B 15. B
16. A+B
22
第四节 通用阵列逻辑GAL器件
采用E2CMOS工艺和灵活的输出结构,有电擦除、可反复编 程的特性。 与PAL相比,GAL的输出结构配置了可以任意组态的输出逻辑 宏单元OLMC(Output Logic Macro Cell)。因此,同一型号的 GAL器件可满足多种不同的需要。
16
1. 专用输出结构
输入信号 四个乘积项
四个乘积项通过 或非门低电平输出。
I I
一个输入
如输出采用或门,为高电平有效PAL器件。 若采用互补输出的或门,为互补输出器件。
17
2. 可编程I/O输出结构
当最上面的乘积项为高电平时,三 态门开通,I/O可作为输出或反馈;乘积 项为低电平时,三态门关断,作为输入。 8个乘积项
可编程逻辑器件PLD
LDPLD (低密度 PLD)
HDPLD (高密度PLD)
PROM
FPLA
PAL
GAL
EPLD
iSP
FPGA
15
第三节 可编程阵列逻辑器件(PAL)
PAL采用双极型熔丝工艺,工作速度较高(10-35ns)。 PAL是由可编程的与阵列、固定的或阵列和输出电路三部 分组成。有些PAL器件中,输出电路包含触发器和从 触发器 输出端到与阵列的反馈线,便于实现时序逻辑电路。同一型号 的PAL器件的输入、输出端个数固定。本节介绍PAL的五种基 本结构。 PAL的基本结构 PAL器件的型号很多,它的典型输出结构通常有五种,其 余的结构是在这五种结构基础上变形而来。
(6) 提高系统的可靠性:用PLD器件设计的系统减少了芯片 数量和印制板面积,减少相互间的连线,增加了平均寿命, 提高 抗干扰能力,从而增加了系统的可靠性;
(7)系统具有加密功能:多数PLD器件,如GAL或高密度可 编程逻辑器件,本身具有加密功能。设计者在设计时选中加密 项,可编程逻辑器件就被加密。器件的逻辑功能无法被读出, 有效地防止电路被抄袭。
在这种结构中,与阵列可编程,或阵列中每个或门所 连接的乘积项是固定的,见下页图。其中EPLD和FPGA 的结构还要复杂得多,我们将在后面介绍。
相关文档
最新文档