毕业设计-矿井主井提升机设备的选型和设计

合集下载

煤矿主井提升设备选型设计

煤矿主井提升设备选型设计

煤矿主井提升设备选型设计选型设计的目标是选择适合煤矿主井的提升设备,以确保提升过程安全、高效、稳定。

在选型设计过程中,需要考虑以下几个关键因素:1.输送能力:根据煤矿的生产能力和日产量确定提升设备的输送能力。

一般来说,提升设备的输送能力应与煤矿的日产量相匹配,既不能过大以致浪费资源,也不能过小以致生产受限。

2.提升高度:提升设备需要能够满足煤矿主井的提升高度要求。

根据主井的深度确定提升设备的最大提升高度,同时考虑到煤炭或矿石的重量及途中的摩擦等因素,避免提升过程中出现问题。

3.运行速度:提升设备的运行速度应该适中,既要保证生产效率,又要考虑到设备的安全稳定性。

运行速度过快可能导致设备失控、安全隐患增加,运行速度过慢可能限制煤矿的生产能力。

4.可靠性与安全性:提升设备的选型应考虑到设备的可靠性和安全性。

选择具有稳定性高、故障率低、维修方便的提升设备,确保设备的安全运行。

5.经济性:选型设计过程还需要考虑到提升设备的经济性。

选择设备时要综合考虑设备的价格、维修成本、运行成本等因素,对于满足要求的设备进行经济性比较,并确定最优方案。

在实际选型设计过程中,可以采用以下步骤:1.明确需求:根据煤矿的特点、生产能力等确定提升设备的需求,包括输送能力、提升高度、运行速度等。

2.调研市场:调查市场上主要的提升设备种类和品牌,了解其性能参数、技术特点、应用范围等。

3.技术比较:对各种提升设备进行技术比较,包括设备的输送能力、提升高度、运行速度、可靠性等方面。

4.经济比较:对符合需求的提升设备进行经济性比较,包括设备的价格、维修成本、运行成本等。

5.选型决策:根据需求、技术比较和经济比较的结果,确定最适合煤矿主井的提升设备种类和参数。

6.设计安装:根据选型结果,进行设备的具体设计和安装工作,确保提升设备能够安全、高效、稳定地运行。

总之,煤矿主井提升设备的选型设计对于煤矿的正常运行和生产具有重要的影响。

通过合理选择和设计,可以提高煤矿的生产效率,确保提升过程的安全稳定,进而推动煤矿的可持续发展。

矿井提升机毕业设计.

矿井提升机毕业设计.

摘要矿井提升机是沿井筒提升煤炭、矸石、升降人员、下放材料的大型机械设备。

它是矿山井下生产系统和地面工业广场相连接的枢纽,故要求具有很高的安全性,其成本和耗电量也比较高。

因此本次在矿井提升机选型设计中, 主要是根据所给参数确定矿井提升设备,包括选择提升容器、钢丝绳、提升机、卷筒及校核提升能力,并经过多方面的技术经济比较,结合矿井的具体条件,做到设计切合实际。

保证提升机的选型及其的,确定具有经济安全合适的提升系统。

矿井排水是通过排水泵经过管路把井下的水排到地面,保证正常生产。

本次设计主要是通过计算,设计从中央泵房把水从立井中的管路排放到地面。

矿井通风是采矿科学的一个重要组成部分。

为了使井下各工作地点都有良好的通风,有足够的新鲜空气,使其中有毒,有害,粉尘不超过规定值。

矿井通风在矿业工程中占重要地位。

通风机分为轴流式和离心式,本次设计中主要是做到对通风机有合理的选型。

关键词:矿井提升机矿井排水矿井通风选型设计绪论本设计选题根据是解决煤矿矿井生产中的提升;排水及通风问题。

矿山提升设备是矿井运输中的非常重要设备,占有特殊地位,是井下与地面联系的主要工具。

矿井提升机是矿山运输中的主装式交-交变频提升机。

后者主回路和磁场回路均采用电力电子器件,实现变频和整流。

由于采集设备,是井下与地面联系的重要工具。

矿井提升机又是矿山最大的固定设备之一,它的耗电量占矿山总耗电量的30~40%。

电力电子技术较早就用于矿井提升机的传动,并且发展迅速,从60年代的模拟控制SCR-D直流提升机发展到目前最先进的同步机内用交流电机,没有电刷问题,提升机容量可以大幅度增加,例如南非帕拉波矿井内装式提升机电机功率达6300kW。

我国东欢坨、大雁、陈四楼等矿均引进了内装式提升机。

目前,全数字电力电子器件构成的国产直流提升机已占领了国内市场,并开始出口。

但是由于我国的科技和生产水平的限制,我国的矿井提升机还有很大一部分需要依赖于进口发达国家的设备。

毕业设计(论文)-矿井提升设备的选型和设计

毕业设计(论文)-矿井提升设备的选型和设计

摘要随着国内外的发展,为了提高设备能力、自动化程度和安全可靠性;对现有的提升设备不断的进行技术改造,从而由单绳缠绕式提升机发展到多绳摩擦式提升机,提升速度加快,一次提升量也日益增大。

为了节省大量电能,降低运行费用和减少厂房面积的建设,因此我矿选用了落地式多绳摩擦式提升机。

多绳摩擦式提升机在一定程度上解决了单绳缠绕式提升机在深井条件下所出现的问题,提升机采用了尾绳平衡,以减少容器两端张力差,提高运行的可靠性。

而且采用了油缸后置式盘形制动器、操纵台采用了集成信号灯和数字式深度指示器,从而更有力的提高了安全性能。

矿井提升机的发展,都在采用最新的技术、最新的工艺、最新的材料,使提升设备向大型化、高效率、安全可靠、运行准确和高度集中化、自动化方向发展。

关键词:提升机;安全;可靠;制动;目录1绪论.............................................................1.1前言......................................................................1.2设计要求.................................................................. 2矿井提升设备的选型...............................................2.1主井提升设备的选型的计算..................................................2.2开采煤时主井提升能力校核..................................................2.3副井提升设备的选型计算....................................................2.4开采煤时副井提升能力校核..................................................3 矿井提升设备的安全管理..........................................3.1对提升司机的要求..........................................................3.2操作前的准备和检查........................................................3.3对提升机的有关规定........................................................3.4提升机的检查和维护........................................................结束语............................................................ 参考文献..........................................................致谢..............................................................1 绪论前言矿井基本资料:矿井七2煤与二1煤采用分期开拓开采的方式,初期开采七2煤,后期经技术改造后开采二1煤。

最新毕业设计--矿井提升机设计

最新毕业设计--矿井提升机设计

第一章 矿井提升机的拖动系统矿井提升机是煤矿运输系统重要组成部分,人员、设备、材料、煤炭和矸石等均靠提升机输送。

提升机安全、高效和合理运行,对矿井生产及人身安全具有重发意义。

有效地合理选择电气设备是非常重要的。

第一节 提升机电动机的选择提升电动机一般分为直流和交流两种,交流电动机多采用绕线式异步电动机,目前我国矿井提升机交流拖动单机容量不超过1000KW ,双机拖动容量不超过2000KW ,其容量限制主要受主回路换向器容量的限制,交流拖动系统简单,设备价格便宜,当电动机单机容量超过1000KW ,或最大提升速度超过10m/s 时应采用直流拖动。

提升机的电动机选择时应满足功率、电压和转速三个方面的要求。

功率与提升机的一次提升质量和最大速度有关,双容器提升系统的电动机功率为:ημ1000m gkQV P = (1-1)式中 g – 重力加速度,m/s 2k - 矿井阻力系数,箕斗取1.15,罐笼提升取1.2Q - 提升机一次提升质量,kgVm - 提升机最大提升速度, m/sμ - 动力系数,取1.2~1.4η - 减速机传动效率直联传动时取1提升电动机电压,首先看电动机功率等级,功率越大电压等级越高,一般情况是,电动机功率在200kw 以下选380V 电压,250~500kw 以上选用高压6kv 电动机,200~500kw 范围内选用660v 电压,若电压等级在功率交叉范围内,最好通过技术经济比较后确定,也可由矿井供电电压决定,高压为6kv ,低压采用380v 。

电动机的转速为:D iV n m π60= (1-2)式中 i - 减速器传动比D - 提升机卷筒直径对于交流电动机确定型号,规格后,要根据力图中可能出现的最大力去校验是否满足过载能力,即 4.1m λλ=(1-3)第二节 提升系统对控制的要求无论何种提升系统,电力拖动和控制系统都为求简单经济,保证与设计的速度图和力图相符,并且在所有的情况下,提升系统都能够安全可靠工作,提升系统的电力拖动和控制系统应满足下列要求。

本科毕业论文矿井提升设备选型设计Word版

本科毕业论文矿井提升设备选型设计Word版

河北工程大学毕业设计论文专业:机械电子工程题目:矿井提升设备选型设计指导老师:目录摘要 (1)Abstract (2)第1章概述 (1)1.1 地形地貌 (1)1.2 气象 (1)1.3 井田范围 (1)1.4 可采煤层及开采技术条件 (2)1.5 可采煤层顶底板岩性 (2)1.6 提升系统及能力 (3)1.7 通风系统及能力 (3)1.8 排水系统及能力 (4)1.9 供电系统及能力 (4)1.10 地面储装系统及能力 (4)第2章工业广场布置情况 (5)第3章矿井提升设备选型设计 (5)3.1 原始数据设备选型设计 (5)3.2 提升容器的选择 (6)3.3 提升钢丝绳的选择 (7)3.4 提升机的选择 (7)3.5 提升电动机的预选 (9)3.6 提升机与井筒相对位置 (9)3.7 提升系统变位质量 (11)3.8 速度图各参数的确定 (12)3.9 提升速度图计算 (13)3.10 提升动力学计算 (14)3.11 电动机功率的验算 (15)3.12 提升设备电耗及效率设备实际年产提升能力 (16)第4章 TAK-A型提升机拖动控制系统简介 (18)4.1 加速阶段 (18)4.2 等速阶段 (19)4.3 减速阶段 (19)4.4 节爬行与停车阶段 (20)第5章设计说明..........................................21—25 第6章谢辞 (26)第7章参考文献 (27)第1章矿井概况矿井提升设备是沿井筒提升煤炭,矸石,升降人员和设备。

下放材料的大型机械设备,它是矿井井下生产系统和地面工业广场相连接的枢纽,是矿山运输的咽喉,因此,矿井提升设备在矿山的全过程中占有极其重要的地位。

随着科学技术的发展,矿井原有提升设备,其成本和耗电量比较高,所以在新的设计中要确定合理的提升系统,结合本矿的具体条件,保证提升设备在造型和运转两个方面都是合理的,经济的。

1.1 地形地貌井田地表为一简单丘陵,由西向东缓慢倾斜,其坡度约为11.3‰,最高处在西部上官庄风井附近,海拔180m,最低在井田东部,海拔标高134m。

矿山机械课程设计矿井提升设备选型计算

矿山机械课程设计矿井提升设备选型计算

选择卷筒(或摩擦轮)直径D的主要原则是使钢丝绳在卷筒
(或摩擦轮)上缠绕时不致产生过大的弯曲应力,以保证钢 丝绳的一定承载能力和使用寿命。
理论和实践都证明,绕经卷筒和天轮的钢丝绳弯曲应力大小
及其使用寿命,取决于卷筒与钢丝绳直径的比值。《煤矿安全
规程》规定:
缠绕式提升机地面安装DD
80d
1200
井下安装DD
17:25
设计依据
4
⑴主井提升 ①矿井年产量An t/年; ②工作制度:年工作日br,日工作小时t。《煤矿工业设计规 范》规定,br=300天,t=14h; ③矿井开采水平数、各水平井深Hs及各水平的服务年限; ④提升方式:箕斗或罐笼; ⑤卸载水平与井口的高差(卸载高度)Hx,m; ⑥装载水平与井下运输水平的高差(装载高度)Hz,m; ⑦煤的松散密度,t/m3; ⑧矿井电压等级。
(m mz ) / n1
b ma 0 g
Hc
提升钢丝绳根数
Hx H
Hs
验算公式为 每根提升钢丝绳每米质量
H0
Qq (m mz )g / n1 mp gHc
ma
Hz Hh
A Hc
17:25
② 对于重尾绳,Δ= n2 mq-n1 mp > 0。当重容器在井口卸载位置时,主绳
在A点受最大静拉力,其值为 27
6
提升容器计算和选择 提升钢丝绳计算和选择 提升机滚筒直径的计算和选择 天轮直径的计算和选择 电动机功率初选 提升机与井筒相对位置计算 运动学及动力学计算 初选电动机功率的验算 主井提升吨煤电耗及效率计算 副井提升最大班作业时间平衡表制定
17:25
第二节 提升容器的选择计算
7
1. 小时提升量Ah

矿井提升设备的选型和设计

矿井提升设备的选型和设计矿井提升设备的选型和设计矿井提升设备是指在矿井或矿山生产中用于提升、运输物料的机械设备,具有重要的作用。

在矿山生产中,常常需要大量的机械设备来完成采矿、运输、挖掘等工作,其中矿井提升设备的重要性不言而喻。

在选择和设计矿井提升设备时,必须考虑到一系列因素,来实现设备的高效、稳定、安全运行。

本文将从矿井提升设备选型和设计的角度,探讨如何实现设备的高效、稳定、安全运行。

一、矿井提升设备选型1.1 设备的工作环境矿井提升设备的工作环境通常很恶劣,必须选择符合矿井环境的设备。

矿井深度、矿井温度、湿度、通风等因素都会影响设备的运行,因此我们需要选择具有高温、抗潮、耐磨、防爆、防腐等特性的设备。

例如,蒸汽起重机和手摇起重机通常不适用于矿井环境,可以考虑选用电动起重机或电液起重机,这些设备可靠性高,操作方便。

1.2 负荷情况负荷是指设备在工作过程中,所需承受的最大荷载。

在选型的过程中,需要考虑设备的负荷情况,来确定最适合负荷的设备。

在矿井提升设备中,钢丝绳和制动器是设备的主要受力部件,受力条件是影响设备负荷情况的重要因素。

因此,在选型和设计钢丝绳和制动器时,必须考虑设备的负荷情况,来确保设备的安全和可靠性。

1.3 运输距离运输距离是指矿井提升设备在工作过程中,需要运输物料的距离。

在选型的过程中,需要根据实际情况确定设备的运输距离,以便选择适当的提升高度和起重量。

例如,如果运输距离较短,可以选择起重量小、提升高度低的起重机,可以满足工程的需求;如果运输距离较长,需要选择起重量大、提升高度高的起重机,以满足工程的需求。

1.4 工作效率工作效率是指设备在工作过程中,完成单位工作量所需的时间。

在选型时,需要考虑设备的工作效率,来确定最适合该工程的设备。

提高设备的工作效率对于提升生产效率至关重要,在实际工程中,可以通过选用高速、高效的设备和优化设备的工作流程等方法来提高设备的工作效率。

二、矿井提升设备设计2.1 设备的结构设计矿井提升设备的结构设计对设备的运行安全和可靠性有着重要的影响。

矿井提升机毕业设计

引言近三十年来,国外提升机机械部分和电气部分都得到了飞速的发展,而且两者相互促进,相互提高。

起初的提升机是电动机通过减速器传动卷筒的系统,后来出现了直流慢速电动机和直流电动机悬臂安装直接传动的提升机。

上世纪七十年代西门子发明矢量控制的交一直一交变频原理后,标志着用同步电动机来代替直流电机实现调速的技术时代已经到来。

1981年第一台用同步机悬臂传动的提升机在德国Monopol矿问世,1988年由MAVGHH和西门子合作制造的机电一体的提升机(习惯称为内装电机式)在德国Romberg矿诞生了,这是世界上第一台机械和电气融合成一体的同步电机传动提升机。

在提升机机械和电气传动技术飞速发展的同时,电子技术和计算机技术的发展,使提升机的电气控制系统更是日新月异。

早在上世纪七十年代,国外就将可编程控制器(PLC)应用于提升机控制。

上世纪八十年代初,计算机又被用于提升机的监视和管理。

计算机和PLC的应用,使提升机自动化水平、安全、可靠性都达到了一个新的高度,并提供了新的、现代化的管理、监视手段。

特别要强调的是,此时期在国外一著名的提升机制造公司,如西门子、ABB、ALSTHOM都利用新的技术和装备,开发或完善了提升机的安全保护和监控装置,使安全保护性能又有了新的提高。

就在国外科学技术突飞猛进发展的时候,我国提升机电控系统很长时间都处于落后的状况。

直到目前为止,我国正在服务的矿井提升机电控系统大多数还是转子回路串金属电阻的交流调速系统,设备陈旧、技术落后。

国产提升机安全性、可靠性差,在关键部位—上下两井口减速区段没有配套的有效的速度监视装置,就提升机控制技术而言,依然是陈旧的,和国外相比,我们存在很大的差距。

矿井提升系统的类型很多,按被提升对象分:主井提升、副井提升;按井筒的提升道角度分:竖井(如图1.1所示为竖井井架设备)和斜井;按提升容器分:箕斗提升、笼提升、矿车提升;按提升类型分:单绳缠绕式和多绳摩擦式等。

毕业论文之矿井提升及运输设备选型设计

毕业论文之矿井提升及运输设备选型设计1. 引言矿井提升及运输设备在矿山生产中起着至关重要的作用。

矿井提升设备主要用于将地下矿石提升至地表,而运输设备则用于将矿石从矿井运输到矿石处理设备或出口。

在矿井提升及运输设备的选型设计过程中,需要考虑多个因素,如矿石性质、矿山地质条件、矿井深度等。

本文将详细介绍矿井提升及运输设备的选型设计流程,并提出一种基于这些因素的选型方法。

2. 矿井提升设备选型设计2.1 矿井提升设备的种类根据矿井的深度和矿石的产量大小,矿井提升设备可分为多种类型,如井架式提升机、斜井提升机、卧井提升机等。

不同类型的提升机适用于不同的矿山情况。

在选型时,需要考虑矿山的具体情况,以确保提升设备的安全可靠运行。

2.2 提升设备选型的影响因素矿石性质、坍落地压、矿井深度、提升速度等因素将直接影响到提升设备的选型。

矿石性质主要包括矿石的粒度、含水量、黏结程度等,这些因素将直接影响到提升设备的输送能力。

坍落地压是指地下岩石形成的顶板对矿井提升设备施加的压力,它关系到提升设备的结构强度和稳定性。

矿井深度越深,压力和温度越大,提升设备的选型需考虑到这些因素。

2.3 提升设备选型的方法矿井提升设备的选型一般采用经验公式和实验数据结合的方法。

根据矿石性质和矿井地质条件,可计算出提升设备的设计参数,然后与现有提升设备的性能进行对比,以确定最佳的选型方案。

此外,还需考虑到提升设备的安全系数和成本等因素。

3. 运输设备选型设计3.1 运输设备的种类运输设备主要包括皮带输送机、螺旋输送机、斗式提升机等。

不同类型的运输设备适用于不同的矿石性质和运输距离。

选型时,需根据矿山的具体情况选择合适的运输设备。

3.2 运输设备选型的影响因素矿石的颗粒大小、湿度、运输距离等因素将直接影响到运输设备的选型。

矿石的颗粒大小将影响到运输设备的输送能力和能耗。

湿度较高的矿石将影响到运输设备的摩擦系数和耐久性。

运输距离较长时,还需考虑到设备的能耗和运维成本。

最新毕业设计--矿井提升机设计

第一章 矿井提升机的拖动系统矿井提升机是煤矿运输系统重要组成部分,人员、设备、材料、煤炭和矸石等均靠提升机输送。

提升机安全、高效和合理运行,对矿井生产及人身安全具有重发意义。

有效地合理选择电气设备是非常重要的。

第一节 提升机电动机的选择提升电动机一般分为直流和交流两种,交流电动机多采用绕线式异步电动机,目前我国矿井提升机交流拖动单机容量不超过1000KW ,双机拖动容量不超过2000KW ,其容量限制主要受主回路换向器容量的限制,交流拖动系统简单,设备价格便宜,当电动机单机容量超过1000KW ,或最大提升速度超过10m/s 时应采用直流拖动。

提升机的电动机选择时应满足功率、电压和转速三个方面的要求。

功率与提升机的一次提升质量和最大速度有关,双容器提升系统的电动机功率为:ημ1000m gkQV P = (1-1)式中 g – 重力加速度,m/s 2k - 矿井阻力系数,箕斗取1.15,罐笼提升取1.2Q - 提升机一次提升质量,kgVm - 提升机最大提升速度, m/sμ - 动力系数,取1.2~1.4η - 减速机传动效率直联传动时取1提升电动机电压,首先看电动机功率等级,功率越大电压等级越高,一般情况是,电动机功率在200kw 以下选380V 电压,250~500kw 以上选用高压6kv 电动机,200~500kw 范围内选用660v 电压,若电压等级在功率交叉范围内,最好通过技术经济比较后确定,也可由矿井供电电压决定,高压为6kv ,低压采用380v 。

电动机的转速为:D iV n m π60= (1-2)式中 i - 减速器传动比D - 提升机卷筒直径对于交流电动机确定型号,规格后,要根据力图中可能出现的最大力去校验是否满足过载能力,即 4.1m λλ=(1-3)第二节 提升系统对控制的要求无论何种提升系统,电力拖动和控制系统都为求简单经济,保证与设计的速度图和力图相符,并且在所有的情况下,提升系统都能够安全可靠工作,提升系统的电力拖动和控制系统应满足下列要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计论文题目矿井主井提升设备的选型设计 __ (院)系陕西能源学院机电系专业机电一体化班级学号学生姓名导师姓名完成日期 2011年11月10日目录第1章矿井提升设备 (2)一、提升方式 (2)二、主提升设备选型计算 (2)三、开采煤时主提升能力计算 (13)四、开采煤时主井提升能力校核 (28)五、煤井下主要运输设备选型 (31)第2章采区机械设备选型 (34)一、采区下山提升设备 (34)二、回采工作面设备 (42)结束语 (47)参考文献 (48)第一章矿井提升设备一、提升方式矿井立井单水平开采的方式,煤井设计生产能力为0.80Mt/a,采用立井开拓,井深245m,担负矿井提煤任务;二1矿井设计生产能力为0.80Mt/a,采用立井开拓,利用矿井单个提升井筒煤的单水平开采。

1。

二、主提升设备选型计算(一)设计依据开采煤时1、矿井年产量:80万吨/年2、工作制度:年工作日300d,每天净提升时间14h。

3、矿井为立井单水平开采,井筒深度为245m4、提升方式:箕斗提升。

5、卸载高度:20m6、装载高度:20m7、煤的散集密度:0.96吨/平方米(二)提升容器选择该矿井开采煤时井深245m,据《煤炭工业矿井设计规范》规定,为避免提升系统的重复改扩建,采煤时井设备统一按开采最终水平选择计算。

1、确定经济提升速度V=(0.3-0.5)取:V m =8m/s ,α1=1.0m/s 2 2、计算一次提升循环时间: T x =81+5778+10+8=98.1s 3、根据矿井年产量和一次提升循环时间即可求出一次提升量。

Q j =450000 1.2 1.298.1360033016⨯⨯⨯⨯⨯=3.3t据此提升容器选择JDS-4/55×4Y 型标准多绳箕斗(钢丝绳罐道),箕斗自重Q Z =6500kg (含连接装置),载重量Q=4000kg ,提升钢丝绳4根,平衡尾绳2根,钢丝绳间距300mm 。

(三)钢丝绳选择 1、绳端荷重Q d =Q Z +Q=6500+4000=10500kg 2、钢丝绳悬垂长度H c =H-H Z +H h +H X +H g +H r +0.75R T +e=577-30+11.008+12+6.5+10.9+0.75×0.925+5=593.1m式中:H g ---过卷高度 H g =6.5mH h ---尾绳环高度 H h =H g +0.5+2S=6.5+0.5+2×2.004=11.008mH r ---容器高度 H r =10.9m R T ---天轮半径e---上下天轮垂直距离 e=5m S---提升容器中心距 H X ---卸载高度 H X =20m3、首绳单位长度重量计算PK´ =110()BcQn Hmδ-d=105001101674(593.1)7⨯⨯-=1.29kg/m式中:δB—钢丝绳计算抗拉强度,取1670MPam—钢丝绳安全系数,取7根据以上计算,首绳选用22ZAB-6V×30+FC-1670-307型钢丝绳左右捻各两根。

其技术参数如下:钢丝绳直径d k=22mm,钢丝破断拉力总和Q q=307200N,钢丝绳单位长度质量为P k=1.96kg/m。

4、尾绳单位长度重量计算q k´=nn'P k=42×1.96=3.92kg/m式中:n—首绳钢丝绳根数n=4n´—尾绳钢丝绳根数n´=2根据以上计算,尾绳选用88×15NAT-P8×4×7-1360型扁钢丝绳2根,单重q=3.82kg/m。

(四)提升机选择1、主导轮直径D´≥90d=90×22=1980(mm)2、最大静拉力和最大静拉力差最大静拉力:F j=Q+Q c+nP k H c=6500+4000+4×1.96×593.1=15150kg最大静张力差:F c=Q=4000kg据此主井提升装置选用JKMD-2.25×4(I)E型落地式多绳摩擦式提升机,其主要技术参数为:摩擦轮直径D=2250mm,天轮直径D T=2250mm,最大静张力215kN,最大静张力差65kN,钢丝绳根数4根,摩擦轮钢丝绳间距300mm,提升速度V=6.5 m/s,减速比i=10.5,提升机旋转部分变位质量m j=6500kg,天轮变位质量m t=2300kg,衬垫摩擦系数μ=0.23。

(五)提升系统的确定(见图6-1-1)1、井架高度H j=H X+H r+H g+0.75R T+e=12+10.9+6.5+0.75×1.125+5=35.2m取H J=36m2、提升机摩擦轮中心线距井筒中心线距离L S≥0.6H j+3.5+D=0.6×36+3.5+2.25=27.35m取L S=28m3、钢丝绳弦长下弦长L X1=39.8m上弦长L X=44.9M式中:H J1---井架下层天轮高度C0---摩擦轮中心与地平距离4、钢丝绳的出绳角 下出绳角β下=arctan1022j t H C D s Ls ---+arcsin 12tx D D L + =ARCTAN 310.82822---+ARCSIN 2.25 2.25239.8+⨯=52°39´9"上出绳角 β上=arcsinj xH C L -=51°37´28"5、围包角а的确定 经计算围包角а=181°1´4" (六)提升容器最小自重校核 1、按静防滑条件容器自重为 Q Z ´≥[11(12)(1)j w w e μαδ++-]Q-nP k H c =D 1Q-nP k H c=2.359×4000-4×1.96×593.1 =4786.1kg经查表,当围包角а=181°1´4"时D 1=2.359 式中:w 1---箕斗提升时矿井阻力系数 w 1=0.075 δj ---静防滑安全系数 δj =1.75 2、按动防滑条件Q Z ´≥[1111(12)()121(1)1gg w w g e g e μαμασασα+++--+-]Q+[11(1)121(1)1gg ge g e μαμασασα+--+-]G d -nP k H c =A 1Q+C 1G d -nP k H c =2.2115×4000+0.1533×2300-4×1.96×593.1 =4548.7kg经查表,当围包角а=181°1´4",加速度a 1=0.5时,A 1=2.2115, C 1=0.1533。

式中: G d ---天轮的变位质量。

经计算满足防滑条件的箕斗最小自重均小于所选箕斗自重,防滑条件满足要求。

(七)钢丝绳安全系数与提升机的校验 1、首绳安全系数校验m=qc nQ (Q Q +)k c nP H g+=4307200(650040004 1.96593.1)9.8⨯++⨯⨯⨯=8.3>7.2-0.0005H=6.9 满足要求2、最大静张力和最大静张力差 最大静拉力:F j =15150kg=148kN<215kN 最大静张力差: F c =4000kg=39kN<65kN 满足要求(八)预选电动机 1、电动机估算功率 P′=1000KQgV j η×Φ=1.1540009.8 6.510000.92⨯⨯⨯⨯×1.2=382.2kW 式中:K ——矿井阻力系数,取K=1.15;Q ——一次提升实际货载量;Φ——提升系统运转时,加减速度及钢丝绳重力因素影响系数;ηj ——减速器传动效率,ηj =0.92;2、电动机估算转数n =60V i D π⋅⋅=60 6.510.52.253.14⨯⨯⨯=579.6r/min 据此主井绞车电机选用Z450-3A 型直流电动机,660V ,500kW ,其额定转速为n e =611r/min ,转动惯量m d =50.5kg •m 2。

3、确定提升机的实际最大提升速度 V m =60eDn iπ=3.14 2.256116010.5⨯⨯⨯=6.9(m/s)(九)提升运动学及提升能力计算经计算得初加速度a 0=0.48m/s 2,V 0=1.5m/s ,卸载曲轨行程h 0=2.35m,主加速度a 1=0.50m/s 2,提升减速度a 3=0.50m/s 2。

(提升速度图力图见图6-1-2)1、初加速度阶段卸载曲轨初加速时间:t 0=o o V a =1.50.48=3.13s 箕斗在卸载中曲轨内的行程:h 0=2.35m 2、正常加速度阶段 加速时间:t 1=01m V V a -=6.9 1.50.5-=10.8s 加速阶段行程:h 1=02m V V +×t 1=6.9 1.52+×10.8=45.4m 3、正常减速阶段 减速阶段时间:t 3=43m V V a -=6.90.50.5-=12.8s 减速阶段行程:h 3=42m V V +×t 3=6.90.52+×12.8=47.4m 4、爬行阶段 爬行时间:t 4=44h V =30.5=6s 爬行距离:h 4=3m5、抱闸停车时间t 5=1s6、等速阶段等速阶段行程:h 2=H t -h 0-h 1-h 3-h 4=569.9-2.35-45.4-47.4-3=471.8m 式中:H t ---提升高度H t =H-H Z +H X +H r =577-30+12+10.9=569.9m等速阶段时间:t 2=2m h V =471.86.9=68.4s7、一次提升循环时间Tx=t 0+t 1+t 2+t 3+t 4+t 5+θ=3.13+10.8+68.4+12.8+6+1+12=114.1s 式中: θ—休止时间取12s 8、提升设备年实际提升量An′=36004330161.2114.1⨯⨯⨯⨯=56万t/a提升能力富裕系数为 a f =An An '=5645=1.2 提升能力满足要求(十)提升系统动力学计算 1、提升系统总变位质量 ∑m=m+2m z +4P k L p +2m t +m j +m d=4000+2×6500+4×1.96×1212+2×2300+6500+4399 =42001kg式中:L p ——钢丝绳全长L p =1212m (包括尾绳)。

相关文档
最新文档