n-幂等矩阵

合集下载

幂等矩阵的性质及应用(定稿)

幂等矩阵的性质及应用(定稿)

JIU JIANG UNIVERSITY毕业论文(设计)题目幂等矩阵的性质及应用英文题目Properties and Applicationof Idempotent Matrix院系理学院专业数学与应用数学姓名邱望华年级A0411指导教师王侃民二零零八年五月幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。

本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。

[关键词] 幂等矩阵,性质,幂等性,线性组合The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices.[Key Words] the idempotent, the nature, the idempotence,linear combination符号表R 实数域n R 实数域n 维列向量空间 n n R ⨯ 实数域上的n ×n 阶矩阵C 复数域n C 复数域n 维列向量空间 n n C ⨯ 复数域上的n ×n 阶矩阵A ' 矩阵A 的转置*A 矩阵A 的伴随1A - 矩阵A 的逆det()A 矩阵A 的行列式 rank()A 矩阵A 的秩()N A 矩阵A 的核空间,即}{()0,n N A x P Ax P =∈=是一个数域()R A 矩阵A 的值域,即}{(),n R A Ax x P P =∈是一个数域dim V 线性空间V 的维数 1T - 线性变换T 的逆变换TV T 的值域,即TV ={}T V ξξ∈1(0)T - T 的核,即{}1(0)0,T T V ξξξ-==∈目录第一章预备知识 (1)1.1幂等矩阵的概念及刻划 (1)1.2幂等矩阵的一些简单性质 (3)第二章相关的重要结论 (7)2.1幂等矩阵的等价条件 (7)2.2幂等变换 (14)2.3幂等矩阵线性组合的幂等性 (17)2.4幂等矩阵线性组合的可逆性 (23)2.5幂等矩阵的秩方面的有关性质 (26)结束语 (29)参考文献 (30)第一章 预备知识1.1 幂等矩阵的概念及刻划定义1[1].对n 阶方阵A ,若2A A =,则称A 为幂等矩阵.为了对一般幂等矩阵作出刻划,下面先对二阶幂等矩阵讨论,再推广到一般幂等矩阵.命题1.若A 是幂等矩阵,则与A 相似的任意矩阵是幂等矩阵. 证明:若A 相似于B (记作~A B ),则有同阶可逆矩阵P ,使B =1p -A P [1],从而2B =1p -A P ·1p -A P =1p -2A P =1p -A P =B . ▌命题2.若A 是对角分块矩阵,设A =12r A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭, 则A 是幂等矩阵⇔i A (1,2,,)i r =均是幂等矩阵.由于每个n 级复数域矩阵A 都与一个若尔当矩阵相似[1],据命题1和命题2知, 我们只需要讨论若尔当块的幂等性.若A 是一个2阶复数域矩阵,则A 的若尔当标准型有两种可能的形式:第一种: 10λ⎛⎫ ⎪λ⎝⎭,但它不是幂等矩阵.否则有210λ⎛⎫ ⎪λ⎝⎭=10λ⎛⎫⎪λ⎝⎭,有,212λ=λλ=.矛盾.第二种: 0012λ⎛⎫ ⎪λ⎝⎭,由200001122λλ⎛⎫⎛⎫= ⎪ ⎪λλ⎝⎭⎝⎭ ,有221122,λ=λλ=λ,从而有01λ=或1,20λ=或 1.于是该情况有四种可能的形式:0000⎛⎫ ⎪⎝⎭,1000⎛⎫ ⎪⎝⎭ ,1001⎛⎫ ⎪⎝⎭ ,0001⎛⎫⎪⎝⎭(1)据命题1,于是得到:定理1[19]. A 是二阶幂等矩阵,则A 是零矩阵或单位矩阵或形如1ab c a ⎛⎫ ⎪-⎝⎭.证明: 由以上讨论知A 相似于(1)式中的四个矩阵之一1若A ~0000⎛⎫ ⎪⎝⎭ ,显然有 A =0000⎛⎫⎪⎝⎭02若A ~1001⎛⎫ ⎪⎝⎭ ,显然有 A =1001⎛⎫⎪⎝⎭3若A ~1000⎛⎫⎪⎝⎭ ,则有可逆矩阵P =1234λλλλ⎛⎫⎪⎝⎭,1423(,P )λλλλ≠因为可逆 使A =14121423142313423142314231000a b P P c d λλλλλλλλλλλλλλλλλλλλλλλλ-⎛⎫-⎪--⎛⎫⎛⎫⎪== ⎪ ⎪⎪⎝⎭⎝⎭- ⎪--⎝⎭则有 1d a =- .即 A 1ab c a ⎛⎫= ⎪-⎝⎭ .对剩余的一种与此有同样的结果. ▌设112,1n n J λλλλ⎛⎫⎪⎪⎪≥= ⎪ ⎪ ⎪⎝⎭,由2n n J J = ,有2,21,λλλ==这是不可能的.于是有:命题3.当2n ≥时,n 阶若尔当块n J 不具有幂等性.即2n n J J ≠. 因此,若A 是幂等矩阵,则A 的若尔当标准型如下:12000000n r J λλλ⎛⎫⎪ ⎪= ⎪⎪⎝⎭据命题1即有2n n J J =⇒2,1,2,,i i i r λλ== .于是0i λ= 或1.于是我们得到如下定理:定理2. A 是n 阶幂等矩阵,当且仅当存在n 阶可逆矩阵P ,使 得1A PJP -=.其中J 是主对角线上元素为0或1的对角矩阵. ▌1.2 幂等矩阵的一些简单性质性质1.方阵零矩阵和单位矩阵E 是幂等矩阵. 性质2.方阵A 是幂等矩阵,且A 可逆,则A E =. 因为2A A =,则121A A A A A E --===. ▌据此易知:可逆幂等矩阵的逆矩阵是幂等矩阵.即1A -(如果存在的话)是幂等 矩阵.因为1A E A E -=⇒=.性质3.若A 是实幂等矩阵,则*,,A E A A '-都是幂等矩阵. 证明: 对A ',22()()A A A '''==. 对E A -,有22()22E A E A A E A A E A -=-+=-+=-.对*A ,先证明对任意两个幂等矩阵,A B ,有关系式***[2]()AB B A=.由Cauchy binet -公式有:*(,)()A i j AB B i j =矩阵的第行第列代数余子式=(1)det()({1,,1,1,,},{1,,1,1,,})i j AB j j n i i n +--+-+=1(1){det()({1,,1,1,,},{1,,1,1,,})ni jk A j j n k k n +=--+-+∑det()({1,,1,1,,},{1,,1,1,,})}B k k n i i n ⋅-+-+=**({},{})11.nnjk ki ki jk i j k k A B B A B A ====∑∑于是,*2*****2()()()A A AA A A A ====. ▌性质4.若A 是复数域上的幂等矩阵,则,A E A '-也是幂等矩阵. 证明:222()()()()A A AA A A '''''====.22()22E A E A A E A A E A -=-+=-+=-. ▌ 性质5.若A 是幂等矩阵,则A 的特征值只能是1或0. 即知幂等矩阵是半正定矩阵.证明:由2A A = 知2λλ= (A λ是的特征值)01λ⇒=或. ▌ 由此易知:幂等矩阵是半正定矩阵.性质6.若A 是幂等矩阵,设()ϕλ是A 的最小多项式,则()ϕλ=1λλλλ-或或(-1)从而A 可对角化,且其若尔当标准型为000rE ⎛⎫ ⎪⎝⎭. 其中r E 是r 阶单位矩阵, r 是A 的秩.证明:由于矩阵的最小多项式是该矩阵特征多项式的因式, 据性质5知()ϕλ=1λλλλ-或或(-1).又最小多项式是互素的一次因式的乘积,故可对角化. ▌性质7[17].若A 是幂等矩阵,则()()N A R E A =-,其中}{()0n N A x C Ax =∈=}{()(),n nR E A x C x E A y y C -=∈=-∈.证明:由2A A = 有()0A E A -=,立即知E A -的n 阶列向量都是0AX =的解故有()()R E A N A -⊂又对()a N A ∀∈,有0()()Aa a Aa E A a E A a =⇒=+-=-()a R E A ⇒∈-由a 的任意性知 ()()N A R E A ⊂-. 于是有 ()()N A R E A =- . ▌ 同样地,有结论 ()()N E A R A -=.性质8.若A 是幂等矩阵,对任意实数(0,1)a a ≠,则A aE +是可逆矩阵. 证明:由2A A =有2(1)(1)A A a a E a a E --+=-+()[(1)](1)A aE A a E a a E +-+=-+.又由0,1a ≠ 有1(){[(1)]}(1)A aE A a E E a a +-+=-+故A aE +可逆,且11()[(1)](1)A aE A a E a a -+=-+-+. ▌性质9.任一秩为r 的n n ⨯幂等矩阵A 可分解成A CB =,其中C 是秩为r 的n r ⨯矩阵,且r BC E = .(其中r E 是r 阶单位矩阵)证明:由性质6知, 存在n 阶可逆矩阵P 使1000rEP AP -⎛⎫= ⎪⎝⎭.则()100000rr r E E A P P P E P -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 记(),00r r E C P B E ⎛⎫== ⎪⎝⎭.显然,B C 满足要求. ▌性质10.任一幂等矩阵可写成两个实对称矩阵之积.证明:因为1100()0000rr E E A P P P P --⎛⎫⎛⎫''=⋅ ⎪ ⎪⎝⎭⎝⎭.故结论成立 ▌ 性质11.若,A B 均为n n ⨯阶幂等矩阵,且AB BA =,则AB 与A B ''均为幂等矩阵.证明:据题意有:222()AB ABAB AABB A B AB ====.2222()[()]()()()()()A B BA BA BA BABA B A BA A B ''''''''''======. ▌第二章 相关的重要结论本章按节来逐次讨论和探索幂等矩阵的多个等价条件、幂等变换、线性组合的幂等性、线性组合的可逆性、秩方面的有关性质等有关问题.2.1 幂等矩阵的等价条件经过参考多篇文献,并进行归纳和推理可以得出以下定理.定理1:设A 是n n ⨯的实矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵) 6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -=.10){}()()0N A N E A -=.11)()()n R R A R E A =⊕-.12)()()n R N A N E A =⊕-以上给出了实幂等矩阵的几个等价条件,经过研究和分析知:对复幂等矩阵也有平行的结论.定理2:设A 是n n ⨯的复矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵) 6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -=.10){}()()0N A N E A -=.11)()()n C R A R E A =⊕-.12)()()n C N A N E A =⊕-证明:1)⇔2) 由2A A =知22()()A A A '''==.反过来,222[()][()]()A A A A A ''''''====.1)⇔3)必要性: 在1.2节性质3中已经给出了证明.充分性:2()()E A E A -=- ⇒222E A A E A A A -+=-⇒=.1)⇔4)由2A A = 知1211121()P AP P AP P AP P A P P AP -----=⋅==.反过来,12111121()P AP P AP P AP P AP P A P P AP ------=⇒⋅==⇒ 2A A =.1)⇔5)由2A A =,有2B =2(2)A E -=244A A E E -+=.反过来,22244B E A A E E A A =⇒-+=⇒=.1)⇔6)必要性: 在1.2节性质7中已经给出了详细证明.充分性: 对,n a R ∀∈有()()()E A a R E A N A -∈-=,故()()E A a N A -∈于是有2[()]0()0A E A a A A a -=⇒-=.由a 的任意性得2A A =.1)⇔7)必要性: 由2A A =知()Aa R A ∀∈,有()0()E A Aa Aa N E A -=⇒∈-()()R A N E A ⇒⊂-.又()a N E A ∀∈-,有()0E A a -=.于是()a Aa E A a =+-()()()Aa R A N E A R A =∈⇒-⊂故有()()R A N E A =-.充分性: 对n a R ∀∈,有()()()Aa R A N E A Aa N E A ∈=-⇒∈-于是有2()()0()0E A Aa A A a -=⇒-=.由a 的任意性得 2A A =.1)⇔8)必要性: 由2A A =知 ()()N A R E A =-.于是有 dim ()dim ()N A R E A =-即有 rank rank()n A E A -=-亦即 rank rank()A E A n +-=.充分性: 由rank rank()A E A n +-= 易知:dim ()dim ()N A R E A =- (*) 又对()a N A ∀∈,有0Aa =则有()E A a a Aa a -=-=.由()()E A a R E A -∈-知()a R E A ∈-即有 ()()N A R E A ⊂-.据(*)式知()()N A R E A =-.再由6)得2A A =.8)⇔9)必要性: 由rank rank()A E A n +-=.即知:dim ()dim ()R A R E A n +-=.又对n a R ∀∈,有()a Aa E A a =+-,而(),Aa R A ∈()()E A a R E A -∈-.故 ()()n C R A R E A =+-.又dim dim ()dim ()dim[()()]n C R A R E A R A R E A =+---n =.故有dim[()()]0R A R E A -=. 于是, {}()()0R A R E A -=.充分性: 由{}()()0R A R E A -= 有dim ()dim ()R A R E A n +-=.即有rank rank()A E A n +-=.9)⇔10)必要性: 由上面的证明知由9)有6)和7),再把6)和7)代入到9),立即得到10).充分性:同理可证.9)⇔11) 这是显然的[1].10)⇔12) 这是显然的[1]. ▌定理3.设A 是秩为r 的n n ⨯矩阵.则A 是幂等矩阵⇔存在n 阶可逆矩阵P ,使1000rE P AP -⎛⎫= ⎪⎝⎭. 证明: 必要性: 在1.2节性质6中已给出了证明.充分性: 由1000rE P AP -⎛⎫= ⎪⎝⎭,有 1000r E A P P -⎛⎫= ⎪⎝⎭. 则2111000000000rr r E E E A P P P P P P A ---⎛⎫⎛⎫⎛⎫=⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ▌ 以上是对二次幂等矩阵进行了一定的讨论.下面来对高次幂等矩阵进行有关的讨论.定理4.设,A B 是三次幂等矩阵,即33,A A B B ==,且满足AB BA =,A B ≠, 记C A B =+.则3()0C C AB A B =⇔+=.证明:由矩阵,A B 是幂等可交换的,于是可同时对角化[6]. 即存在可逆矩阵 P ,使得1112,P AP P BP --Λ=Λ=均为对角矩阵,而且它们对角元素分别是,A B 的特征值.从而有1112,.A P P B P P --=Λ=Λ进而112()C P P -=Λ+Λ.于是3C C =可以等价为322333,1,2,,i i i i i i i i i n λλμλμμλμ+++=+=.其中,i i λμ分别是12,ΛΛ的对角元.又由30,1,1x x x =⇒=-知,A B 的特征值只有0,-1,1.即333,,(1,2,,)i i i i i r λλμμ===于是3C C =等价为220,(1,2,,)i i i i i r λμλμ+==.即221212O ΛΛ+ΛΛ=. 因此3C C =等价为()0AB A B +=. ▌注:当2A A =,立即有32A A A ==,同样地,对k ∀,(2k ≥为正整数) k A A = 即任意的二次幂等矩阵均为k 次幂等矩阵.因此可得以下推论.推论: 设,A B 是二次幂等矩阵,且满足AB BA =,A B ≠,记C A B =+.则 2()0C C AB A B =⇒+=. ▌引理1[1].对任意两个同阶矩阵,A B ,有rank()rank()rank()A B A B +≤+. 引理2[1].设,A B 为n n ⨯矩阵,满足AB O =,则有rank rank A B n +≤. 定理5.设矩阵A 满足3,A A =且A 可逆.则2A E =且rank rank()rank()2A A E A E n +++-=.证明: 由3,A A =A 可逆,有-13-12A A A A A E ⋅=⋅⇒=()()A E A E O ⇒+-=.于是据引理2有rank()rank()A E A E n ++-≤ (1)又2()()E E A E A =++-据引理1有rank(2)rank[()()]n E E A E A ==++-rank()rank()E A E A ≤++-rank()rank()A E A E =++-. (2)有(1)式和(2)式有rank()rank()A E A E n ++-=.由于A 可逆知rank A n =.因此有rank rank()rank()2A A E A E n +++-=. ▌定理6.设矩阵A 满足,(2)k A A k =≥.则*,,A A A ''都是k 此幂等矩阵.证明:对A ',()()k k A A A '''==.对*,A*****()()k k k A A A A A =⋅⋅==个. 对,A '()()()k k k A A A A ''''===. ▌定理7. 设矩阵A 满足,(2)k A A k =≥.则A 的特征值为0和22cossin ,(0,1,,2)11m m m i m k k k ππε=+=---.证明: 由k A A =,有 k λλ=,其中λ是矩阵A 的特征值.解方程k λλ=可得220cossin ,(0,1,,2)11m m i m k k k ππλ=+=---以及. ▌2.2 幂等变换数域F 上n 维线性空间V 的全部线性变换组成的集合()L V 对于线性变换的加法与数量乘法构成F 上的一个线性空间,与数域F 上n 阶方阵构成的线性空间n n F ⨯同构.特别地,与幂等矩阵对应的是幂等变换.因此为了讨论和探索幂等矩阵的性质时很有必要去探索幂等变换的相关性质.定义1.设T 是线性空间V 的一个线性变换,若2T T =,则称T 是幂等变换. 由于矩阵与变换间存在一一对应的关系,因此前面所提到的性质和结论可以平 移到幂等变换上来.限于篇幅,下面只举几个例子.性质1.可逆的幂等变换是恒等变换.证明:恒等变换与单位矩阵相对应.因此该性质与“可逆的幂等矩阵为单位矩 阵”一致. ▌性质2.若T 是幂等变换,则T τ-也是幂等变换.(其中τ是恒等变换) 性质3.T 是幂等变换⇔2T τ-为对合变换. 其中线性变换T 满足2T τ=,则称T 是对合变换. 性质4.T 是线性空间V 上的幂等变换,则1(0)V TV T -=⊕.▌ 我们知道:对于一般的线性变换来说,虽然1dim dim (0)dim TV T V -+=,但未必 有1(0)V TV T -=⊕.这样的例子很多. 例如:在线性空间[]n P x 中令 (())()f x f x ϕ'=.则微分变换是一线性变换[1],其 值域为1[]n P x -,其核是子空间P .它们的维数分别是1,1n -.但显然1[]n P x -+P ≠[]n P x .性质5.设T 和U 是n 维线性空间V 上的线性变换,且22,T T U U ==. 如果2()T U T U +=+,则0TU UT ==. 证明:由2()T U T U +=+,可得0TU UT +=……………………………………①对①式左乘T 得0TU TUT +=…………………………………②对①式右乘T 得0TUT UT +=……………………………………③比较②和③得 TU UT =.代入到①式得到 20TU =.于是就有 0TU UT ==. ▌ 性质6.设T ,U 是n 维线性空间上的线性变换,且22,T T U U ==. 则 1) ,TV UV TU U UT T =⇔==.2) 11(0)(0),T U TU T UT U --=⇔==.证明:1)""⇒ 对,a V ∀∈有Ua UV TV ∈=.故,V β∃∈使Ua T β=. 从而2TUa T T Ua ββ===.因此有TU U =.同样可证得UT T =.""⇐ 据,TU U UT T ==可知, 对Ta TV V ∀∈⊂,有()Ta UTa U Ta UV ==∈,故TV UV ⊂.同样可证得UV TV ⊂.于是TV UV =. 2)""⇒ 对a V ∀∈,作向量a Ta -.据11(0)(0)T U --=,有()T a Ta -20Ta T a Ta Ta =-=-=.故11(0)(0)a Ta T U ---∈=.从而有()0U a Ta -=⇒Ua UTa =⇒UT U = 同理有TU T =.""⇐ 对1(0)a T -∀∈,有0Ta =. 据,TU T UT U ==,有10(0)Ua UTa a U -==⇒∈.即有11(0)(0)T U --⊂.同理可得11(0)(0)U T --⊂. 故有11(0)(0)T U --=. ▌2.3 幂等矩阵线性组合的幂等性在本节中,我们将给出两个幂等矩阵线性组合12P c A c B =+仍是幂等矩阵的一 些充分条件.引理1[15].设2,,0,0n n l A B C A A B B ⨯∈=≠=≠,l 为2≥的整数,且AB BA =. 则存在{}12,0c c C ∈-,使12P c A c B =+为幂等矩阵的充要条件是:22111211(2),c c A E B B B c c c λλ--=-+=. 证明:221212()P P c A c B c A c B =⇔+=+22222111212()c B c B c c A c c AB c c BA ⇔-=-++(令121c c λ-=) 221112(2)c B B A AB A E B c c λλ⇔-+=-=-.▌ 据引理1,下面将给出12P c A c B =+是幂等矩阵的十组充分条件.为了简化过程,先令{}00,s = {}111,l s x x x C -==∈,{}21,,s x x y z y z s ==+∈, 012s s s s =.定理1[8].设2,,0,0(2,)n n l A B C A A B B l l Z ⨯∈=≠=≠≥∈,AB BA =,{}12,0,c c C ∈-13121,,,,,ic u v s u v e a s c πλε-=∈≠=∈若12(,)c c 及,A B 满足下列任意一个条件,则12P c A c B =+必为幂等矩阵.(Ⅰ) ,0s λλ∈=.①.121(,)(1,)c c u =且0,()0AB B uE B =-=.证明:由0,()0AB B uE B =-=易知12()AB B uE B u-=--,又由121(,)(1,)c c u=和0λ=知(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.②.121(,)(1,)c c u=-且()0,()0E A B B uE B -=-=.证明: 由()0,()0E A B B uE B -=-=易知2122,0AB B B B u-=-=-.将它们相加得212AB B B u-=--.又由121(,)(1,)c c u=-,0λ=可得22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.③.121(,)(1,)c c u=且()()0,()0E A B uE B AB uE B --=--=.证明: 由条件易知()(),()0B uE B AB uE B AB uE B -=--+=.将它们相加后,再乘以1u-可得212AB B B u-=-+. 又由121(,)(1,),0c c uλ==知22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅱ) ,1s λλ∈=.④.121(,)(,(1)),0,1c c a a a u =-≠且()0,()0E A B A uE B -=-=.证明: 由条件易知,B AB AB uA ==.从而有22,()()B uA B uA u uA uB ====.即2B uB =.故有1121(1)1(1)a u a u B B B uB B a a a a-----+=-+=-. 结合上式有(2)22A uE B uA AB AB AB AB B -=-=-=-=- 121(1)(2)a u A uE B B B a a--⇒-=-+.从而可得(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑤.121(,)(1,)u c c v v =-,且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知uA AB =,从而(2)2A uE B uA AB -=-2uA uA uA =-=-.即(2)A uE B uA -=-.又由()()0E A B vE B --=可得2()()B vE B AB vE B vAB AB -=-=-.又因为22,()AB uA AB AB B uAB u A ====.代入上式可得:2()B vE B uvA u A -=-.即有2()B vE B A uv u-=-. 结合(2)A uE B uA -=-有()(2)B vE B A uE B u v--=-.即有12111(2)11v A uE B B B uv uv----=-+--. 又由121(,)(1,)u c c v v=-知22111(2)c A E B B B c c λ-=-+, 满足引理1.故12P c A c B =+此时为幂等矩阵. ⑥. 121(,)(,)v c c u v u v=---且()0,()()0E A B A uE B vE B -=--=. 证明: 由()0E A B -=知AB B =,从而(2)22A uE B uA AB uA B -=-=-又由()()0A uE B vE B --=展开得2()0AB u v AB uvA -++=. 又22,()AB B AB AB B B ===,结合上式可得2()0B u v B uvA -++=.故2()u v B B A uv+-=.代入到(2)2A uE B uA B -=-得(2)A uE B -=2()2u v B B B v+--. 即21(2)u v A uE B B B v v --=-. 又由121(,)(,)v c c u v u v =--- 可得2211(2)A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑦. 121(,)(,),1u c c u v v v=-+=且()0,()()0A vE B E A B vE B -=--=.证明: 由()0A vE B -=知()AB u v A =+.从而(()2)A u v E B +-()2()u v A AB u v A =+-=-+.又先把()()0E A B vE B --=展开可得2()0B vE B vAB AB --+=.又将()AB u v A =+及22()()()AB AB B u v AB u v A ==+=+.代入到上式可得2()()()0B vE B v u v A u v A --+++=.即有()()B vE B A u v u-=-+.代入到(()2)A u v E B +-()u v A =-+,可得21(()2)v A u v E B B B u u+-=-. 从而由121(,)(,),u c c u v v vλ=-+=知22111(2)c A E B B B c c λ-=-+满足引理1故12P c A c B =+此时为幂等矩阵.⑧.12(,)(,)c c u εε=-,且2()()0,()()0.A uE B uE B E A B uE B εε--=--=证明: 由()()0A uE B uE B ε--=知 22(())0A u E u u B B εε-++=. 由2()()0E A B uE B ε--=知 222()()A uB B B uE B εε-=-. 将上面两式相加并乘以1u可得 22((1))()A uE B B uE B εεεε+--=-.又3ieπε=满足22112,εεεε--=-=-,结合上式可得(2)A uE B ε-211B B uε=--.从而由12(,)(,)c c uεε=-,u λε=知2211(2)A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅲ) 2,2s λλ∈=.⑨.1,21()(1,)c c u =-,且()0,()0A uE B B uE B -=-=.证明: 由()0,()0A uE B B uE B -=-=知1(22)0()A uE B B uE B u-==-, 即21(22)()A uE B B B u -=---从而由1,21()(1,)c c u=-,2u λ=知22111(2)c A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅳ) 2,0,1,2.s λλ∈≠⑩.1,21()(,)u c c v v =-且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知AB uA = 从而22AB uAB u A ==,(()2)A u v E B +-()2()u v A AB u v A =+-=--.又由()()0E A B vE B --=展开得()()B vE B AB vE B -=-. 据22AB uAB u A ==知22()()AB vE B vAB AB uv u A -=-=-.结合上式可得2()()uv u A B vE B -=-()()B vE B A u v u-⇒=--.代入到(()2)A u v E B +-()u v A =--可得2()1(()2)B vE B v A u v E B B B u u u-+-==-. 又由1,21()(,)u c c v v=-,u v λ=+知22111(2)c A E B B B c c λ-=-+满足引理1.故12P c A c B =+此时为幂等矩阵. ▌2.4 幂等矩阵线性组合的可逆性在本节中,我们将给出两个幂等矩阵的线性组合矩阵12c A c B +可逆的一些条件,并给出一些相关的结论.引理1[3].设矩阵A 是n n ⨯阶方阵,则A 可逆{}()0N A ⇔=. ▌定理1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若存在两个非零复数1,2k k , 且120k k +≠使得12k A k B +可逆,则对所有的复数1,2c c ,满足120c c +≠,则线性组合12c A c B +都是可逆的.证明:设1212,,0,0c c C c c ∈≠≠且120c c +≠. 对12()x N c A c B ∀∈+,有12()0c A c B x += 即有 12c Ax c Bx =- ……………① 将上式两边依次左乘,A B ,可得:12c Ax c ABx =-,12c BAx c Bx =-. ……②比较上面三个式子可得:,Bx ABx Ax BAx ==. …………………………③又由于22212112122()k A k B k A k k AB k k BA k B +=+++,故22212112122()k A k B x k Ax k k ABx k k BAx k Bx +=+++.将,Bx ABx Ax BAx ==代入上式可得212()k A k B x +22112122k Ax k k ABx k k BAx k Bx =+++112212()()k k k Ax k k k Bx =+++ 1212()()k k k A k B x =++.由于12k A k B +可逆,,将上式两边左乘112()k A k B -+得121212()()k k x k A k B k Ax k Bx +=+=+, …………………④再左乘A 得:1212k Ax k Bx k Ax k ABx +=+即有Ax ABx =.代入12c Ax c ABx =-可得12()00c c Ax Ax ABx +=⇒==.注意到③式有0Bx =,因此由④式可得12()0k k x +=但120k k +≠,所以0x =因此{}12()0N c A c B +=.由引理1知12c A c B +是可逆的. ▌在定理1中令121c c ==,立即有:推论1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若A B +可逆,则 对所有的复数1,2c c ,满足120c c +≠,线性组合12c A c B +都是可逆的. ▌ 定理2[18].设矩阵,A B 均是幂等矩阵,对任意的复数1,2c c ,下列命题等价: ⑴ A B -可逆.⑵ 12c A c B +及E AB -可逆. 证明:⑴⇒⑵对12()x N c A c B ∀∈+,由定理1的证明过程知,Bx ABx Ax BAx ==. 故22222()()0A B x A AB BA B x A x ABx BAx B x -=--+=--+=.又由A B -可逆,故0x =.因此 {}12()0N c A c B +=.由引理1知 12c A c B +可逆. 同样地,对()()0x N E AB E AB x x ABx ∀∈-⇒-=⇒=.两边左乘A ,得Ax ABx x BAx Bx ==⇒=.所以 2()0A B x Ax ABx BAx Bx -=--+=. 又由A B -可逆知0x =. 所以{}()0N E AB -=. 由引理1知E AB -可逆. ⑴⇐⑵对()x N A B ∀∈-,有()0A B x -=Ax Bx ⇒= 则 ,Ax ABx BAx Bx ==. 所以121212()()()c A c B E AB x c A c B c AB c BAB x +-=+-+220c Bx c BAx =-=.0x ⇒=.由12c A c B +及E AB -可逆,知{}()0N A B -=. 由引理1知A B -可逆. ▌ 在定理2中令121c c ==,立即有:推论2.设矩阵,A B 均是幂等矩阵,下列命题等价: ⑴ A B -可逆.⑵ A B +及E AB -可逆.定理3[18]. 设矩阵,A B 均是幂等矩阵,1212,,0,0c c C c c ∈≠≠,满足120c c +≠. 则12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. 证明:由2212121212()()c A c B E A B c A c B c A c BA c AB c B +--=+----12()c AB c BA =-+.可见12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. ▌2.5 幂等矩阵的秩方面的有关性质定理1[5]. 设,A B 是n n ⨯的复幂等矩阵,则1 rank()rank rank rank rank 00A B B A A B B A B A ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭.2 rank()rank()rank A B A AB BA BAB B +=--++.3 rank()rank()rank A B B AB BA ABA A +=--++. ▌定理2.设n n A C ⨯∈为Hermite 矩阵,即A A '=.且对某个,k N ∈有2k A A =, 则 rank()()A tr A =.证明:设rank A r =,,x λ分别是矩阵A 的特征值和相应的特征向量. 则λ是实数[1].且2212k k k Ax x A x A x x λλλ-====. 从而有21(1)0k x λλ--=.又0x ≠.于是21(1)0k λλ--=.由λ是实数, 所以111,0r r n λλλλ+======,故结论成立. ▌推论1. 设n n A C ⨯∈,且2A A =,则rank()()A tr A =. 其实,该结论在1.2节中已经很明朗了. 定理2[10]. 设(1,2,,,2)n n i A C i m m ⨯∈=≥为Hermite 矩阵,且存在某个,i k N ∈使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.证明:由定理1可知rank()()i i A tr A =,11rank mmiii i AtrA===∑∑于是有1111rank()rank()mm mmiiiii i i i AtrA tr A A =======∑∑∑∑. ▌推论2. 设(1,2,,,2)n n i A C i m m ⨯∈=≥为Hermite 矩阵,且存在某个,i k N ∈使2ik ii A A =,又1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论3. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥为幂等矩阵,且1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论4. 设(1,2,,,2)n n i A C i m m ⨯∈=≥为Hermite 矩阵,且存在某个,i k N ∈使2ik ii A A =,又1mi i A E ==∑.则 11rank rank()mmi i i i A A n ====∑∑.推论5. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥为Hermite 矩阵,且1mi i A E ==∑.则 11rankrank()mmii i i AA n ====∑∑.定理3[10].设(1,2,,,2)n ni A Ci m m ⨯∈=≥及1mi i A =∑的特征值均为实数,且存在,i k N ∈使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.定理4[20]. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥及1mi i A =∑的特征值均为非负实数,且存在,(2)i i k N k ∈≥使ik i i A A =,又对某个正整数 t 有11t mmii i i AA ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑. ▌结束语本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

幂等矩阵的性质及应用

幂等矩阵的性质及应用

JIU JIANG UNIVERSITY毕业论文(设计)题目幂等矩阵的性质及应用英文题目Properties and Applicationof Idempotent Matrix 院系理学院专业数学与应用数学姓名邱望华年级 A0411指导教师王侃民二零零八年五月幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。

本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。

[关键词] 幂等矩阵,性质,幂等性,线性组合The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices.[Key Words] the idempotent, the nature, the idempotence,linear combination符号表R 实数域n R 实数域n 维列向量空间 n n R ⨯ 实数域上的n ×n 阶矩阵 C 复数域n C 复数域n 维列向量空间 n n C ⨯ 复数域上的n ×n 阶矩阵 A ' 矩阵A 的转置*A 矩阵A 的伴随1A - 矩阵A 的逆det()A 矩阵A 的行列式 rank()A 矩阵A 的秩()N A 矩阵A 的核空间,即}{()0,n N A x P Ax P =∈=是一个数域()R A 矩阵A 的值域,即}{(),n R A Ax x P P =∈是一个数域 dim V 线性空间V 的维数1T - 线性变换T 的逆变换 TV T 的值域,即TV ={}T V ξξ∈1(0)T - T 的核,即{}1(0)0,T T V ξξξ-==∈目录第一章预备知识 (1)1.1幂等矩阵的概念及刻划 (1)1.2幂等矩阵的一些简单性质 (3)第二章相关的重要结论 (7)2.1幂等矩阵的等价条件 (7)2.2幂等变换 (14)2.3幂等矩阵线性组合的幂等性 (17)2.4幂等矩阵线性组合的可逆性 (23)2.5幂等矩阵的秩方面的有关性质 (26)结束语 (29)参考文献 (30)第一章 预备知识1.1 幂等矩阵的概念及刻划定义1[1].对n 阶方阵A ,若2A A =,则称A 为幂等矩阵.为了对一般幂等矩阵作出刻划,下面先对二阶幂等矩阵讨论,再推广到一般幂等矩阵.命题1.若A 是幂等矩阵,则与A 相似的任意矩阵是幂等矩阵. 证明:若A 相似于B (记作~A B ),则有同阶可逆矩阵P ,使B =1p -A P [1],从而2B =1p -A P ·1p -A P =1p -2A P =1p -A P =B . ▌命题2.若A 是对角分块矩阵,设A =12r A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭, 则A 是幂等矩阵⇔i A (1,2,,)i r = 均是幂等矩阵.由于每个n 级复数域矩阵A 都与一个若尔当矩阵相似[1],据命题1和命题2知, 我们只需要讨论若尔当块的幂等性.若A 是一个2阶复数域矩阵,则A 的若尔当标准型有两种可能的形式:第一种: 10λ⎛⎫ ⎪λ⎝⎭,但它不是幂等矩阵.否则有210λ⎛⎫ ⎪λ⎝⎭=10λ⎛⎫⎪λ⎝⎭,有,212λ=λλ=.矛盾.第二种: 0012λ⎛⎫⎪λ⎝⎭ ,由20001122λλ⎛⎫⎛⎫= ⎪ ⎪λλ⎝⎭⎝⎭,有221122,λ=λλ=λ,从而有01λ=或1,20λ=或 1.于是该情况有四种可能的形式:0000⎛⎫ ⎪⎝⎭,1000⎛⎫ ⎪⎝⎭ ,1001⎛⎫ ⎪⎝⎭ ,0001⎛⎫ ⎪⎝⎭(1)据命题1,于是得到:定理1[19]. A 是二阶幂等矩阵,则A 是零矩阵或单位矩阵或形如1ab c a ⎛⎫ ⎪-⎝⎭.证明: 由以上讨论知A 相似于(1)式中的四个矩阵之一1若A ~0000⎛⎫ ⎪⎝⎭ ,显然有 A =0000⎛⎫ ⎪⎝⎭02若A ~1001⎛⎫ ⎪⎝⎭ ,显然有 A =1001⎛⎫⎪⎝⎭3若A ~1000⎛⎫⎪⎝⎭ ,则有可逆矩阵P =1234λλλλ⎛⎫⎪⎝⎭,1423(,P )λλλλ≠因为可逆 使A =14121423142313423142314231000a b P P c d λλλλλλλλλλλλλλλλλλλλλλλλ-⎛⎫-⎪--⎛⎫⎛⎫⎪== ⎪ ⎪⎪⎝⎭⎝⎭-⎪--⎝⎭则有 1d a =- .即 A 1ab c a ⎛⎫= ⎪-⎝⎭ .对剩余的一种与此有同样的结果. ▌设112,1n n J λλλλ⎛⎫⎪⎪⎪≥= ⎪ ⎪⎪⎝⎭,由2n n J J = ,有2,21,λλλ==这是不可能的.于是有:命题3.当2n ≥时,n 阶若尔当块n J 不具有幂等性.即2n n J J ≠.因此,若A 是幂等矩阵,则A 的若尔当标准型如下:1200000n r J λλλ⎛⎫⎪⎪= ⎪⎪⎝⎭据命题1即有2n n J J =⇒2,1,2,,i i i r λλ== .于是0i λ= 或1.于是我们得到如下定理:定理2. A 是n 阶幂等矩阵,当且仅当存在n 阶可逆矩阵P ,使 得1A PJP -=.其中J 是主对角线上元素为0或1的对角矩阵. ▌1.2 幂等矩阵的一些简单性质性质1.方阵零矩阵和单位矩阵E 是幂等矩阵. 性质2.方阵A 是幂等矩阵,且A 可逆,则A E =. 因为2A A =,则121A A A A A E --===. ▌据此易知:可逆幂等矩阵的逆矩阵是幂等矩阵.即1A -(如果存在的话)是幂等 矩阵.因为1A E A E -=⇒=.性质3.若A 是实幂等矩阵,则*,,A E A A '-都是幂等矩阵. 证明: 对A ',22()()A A A '''==. 对E A -,有22()22E A E A A E A A E A -=-+=-+=-.对*A ,先证明对任意两个幂等矩阵,A B ,有关系式 ***[2]()AB B A =.由Cauchy binet -公式有:*(,)()A i j AB B i j =矩阵的第行第列代数余子式=(1)det()({1,,1,1,,},{1,,1,1,,})i j AB j j n i i n +--+-+=1(1){det()({1,,1,1,,},{1,,1,1,,})ni jk A j j n k k n +=--+-+∑det()({1,,1,1,,},{1,,1,1,,})}B k k n i i n ⋅-+-+=**({},{})11.nnjk ki ki jk i j k k A B B A B A ====∑∑于是,*2*****2()()()A A AA A A A ====. ▌性质4.若A 是复数域上的幂等矩阵,则,A E A '-也是幂等矩阵. 证明:222()()()()A A AA A A '''''====.22()22E A E A A E A A E A -=-+=-+=-. ▌ 性质5.若A 是幂等矩阵,则A 的特征值只能是1或0. 即知幂等矩阵是半正定矩阵.证明:由2A A = 知2λλ= (A λ是的特征值)01λ⇒=或. ▌ 由此易知:幂等矩阵是半正定矩阵.性质6.若A 是幂等矩阵,设()ϕλ是A 的最小多项式,则()ϕλ=1λλλλ-或或(-1)从而A 可对角化,且其若尔当标准型为 000rE ⎛⎫ ⎪⎝⎭. 其中r E 是r 阶单位矩阵, r 是A 的秩.证明:由于矩阵的最小多项式是该矩阵特征多项式的因式, 据性质5知()ϕλ=1λλλλ-或或(-1).又最小多项式是互素的一次因式的乘积,故可对角化. ▌性质7[17].若A 是幂等矩阵,则()()N A R E A =-,其中}{()0n N A x C Ax =∈=}{()(),n nR E A x C x E A y y C -=∈=-∈.证明:由2A A = 有()0A E A -=,立即知E A -的n 阶列向量都是0AX =的解故有()()R E A N A -⊂又对()a N A ∀∈,有0()()Aa a Aa E A a E A a =⇒=+-=-()a R E A ⇒∈-由a 的任意性知 ()()N A R E A ⊂-. 于是有 ()()N A R E A =- . ▌ 同样地,有结论 ()()N E A R A -=.性质8.若A 是幂等矩阵,对任意实数(0,1)a a ≠,则A aE +是可逆矩阵. 证明:由2A A =有2(1)(1)A A a a E a a E --+=-+()[(1)](1)A aE A a E a a E +-+=-+.又由0,1a ≠ 有1(){[(1)]}(1)A aE A a E E a a +-+=-+故A aE +可逆,且11()[(1)](1)A aE A a E a a -+=-+-+. ▌性质9.任一秩为r 的n n ⨯幂等矩阵A 可分解成A CB =,其中C 是秩为r 的n r ⨯矩阵,且r BC E = .(其中r E 是r 阶单位矩阵)证明:由性质6知, 存在n 阶可逆矩阵P 使1000rEP AP -⎛⎫= ⎪⎝⎭.则()100000r r rE E A P P P E P -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.记(),00r r E C P B E ⎛⎫== ⎪⎝⎭.显然,B C 满足要求. ▌性质10.任一幂等矩阵可写成两个实对称矩阵之积.证明:因为1100()0000r r E E A P P P P --⎛⎫⎛⎫''=⋅ ⎪ ⎪⎝⎭⎝⎭.故结论成立 ▌性质11.若,A B 均为n n ⨯阶幂等矩阵,且AB BA =,则AB 与A B ''均为幂等矩阵.证明:据题意有:222()AB ABAB AABB A B AB ====.2222()[()]()()()()()A B BA BA BA BABA B A BA A B ''''''''''======.▌第二章 相关的重要结论本章按节来逐次讨论和探索幂等矩阵的多个等价条件、幂等变换、线性组合的幂等性、线性组合的可逆性、秩方面的有关性质等有关问题.2.1 幂等矩阵的等价条件经过参考多篇文献,并进行归纳和推理可以得出以下定理.定理1:设A 是n n ⨯的实矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵)6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -= .10){}()()0N A N E A -= .11)()()n R R A R E A =⊕-.12)()()n R N A N E A =⊕-以上给出了实幂等矩阵的几个等价条件,经过研究和分析知:对复幂等矩阵也有平行的结论.定理2:设A 是n n ⨯的复矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵)6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -= .10){}()()0N A N E A -= .11)()()n C R A R E A =⊕-.12)()()n C N A N E A =⊕-证明:1)⇔2) 由2A A =知22()()A A A '''==.反过来,222[()][()]()A A A A A ''''''====.1)⇔3)必要性: 在1.2节性质3中已经给出了证明.充分性:2()()E A E A -=- ⇒222E A A E A A A -+=-⇒=.1)⇔4)由2A A = 知1211121()P AP P AP P AP P A P P AP -----=⋅==.反过来,12111121()P AP P AP P AP P AP P A P P AP ------=⇒⋅==⇒ 2A A =.1)⇔5)由2A A =,有2B =2(2)A E -=244A A E E -+=.反过来,22244B E A A E E A A =⇒-+=⇒=.1)⇔6)必要性: 在1.2节性质7中已经给出了详细证明.充分性: 对,n a R ∀∈有()()()E A a R E A N A -∈-=,故()()E A a N A -∈于是有2[()]0()0A E A a A A a -=⇒-=.由a 的任意性得2A A =.1)⇔7)必要性: 由2A A =知()Aa R A ∀∈,有()0()E A Aa Aa N E A -=⇒∈-()()R A N E A ⇒⊂-.又()a N E A ∀∈-,有()0E A a -=.于是()a Aa E A a =+-()()()Aa R A N E A R A =∈⇒-⊂故有()()R A N E A =-.充分性: 对n a R ∀∈,有()()()Aa R A N E A Aa N E A ∈=-⇒∈-于是有2-=⇒-=.E A Aa A A a()()0()0由a的任意性得2A A=.1)⇔8)必要性: 由2A A=知()()=-.N A R E A于是有dim()dim()=-N A R E A即有rank rank()n A E A-=-亦即rank rank()+-=.A E A n充分性: 由rank rank()+-=易知:A E A ndim()dim()=- (*)N A R E A又对()∀∈,有a N AAa=则有-=-=.E A a a Aa a()由()()a R E A∈--∈-知()E A a R E A即有()()⊂-.N A R E A据(*)式知=-.N A R E A()()=.再由6)得2A A8)⇔9)必要性: 由rank rank()+-=.即知:A E A n+-=.dim()dim()R A R E A n又对n∀∈,有a R=+-,()a Aa E A a而(),Aa R A ∈()()E A a R E A -∈-.故 ()()n C R A R E A =+-.又dim dim ()dim ()dim[()()]n C R A R E A R A R E A =+--- n =.故有dim[()()]0R A R E A -= .于是, {}()()0R A R E A -= .充分性: 由{}()()0R A R E A -= 有dim ()dim ()R A R E A n +-=.即有rank rank()A E A n +-=.9)⇔10)必要性: 由上面的证明知由9)有6)和7),再把6)和7)代入到9),立即得到10).充分性:同理可证.9)⇔11) 这是显然的[1].10)⇔12) 这是显然的[1]. ▌定理3.设A 是秩为r 的n n ⨯矩阵.则A 是幂等矩阵⇔存在n 阶可逆矩阵P ,使1000rE P AP -⎛⎫= ⎪⎝⎭. 证明: 必要性: 在1.2节性质6中已给出了证明.充分性: 由1000rE P AP -⎛⎫= ⎪⎝⎭,有 1000r E A P P -⎛⎫= ⎪⎝⎭. 则2111000000000rr r E E E A P P P P P P A ---⎛⎫⎛⎫⎛⎫=⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ▌ 以上是对二次幂等矩阵进行了一定的讨论.下面来对高次幂等矩阵进行有关的讨论.定理4.设,A B 是三次幂等矩阵,即33,A A B B ==,且满足AB BA =,A B ≠, 记C A B =+.则3()0C C AB A B =⇔+=.证明:由矩阵,A B 是幂等可交换的,于是可同时对角化[6]. 即存在可逆矩阵 P ,使得1112,P AP P BP --Λ=Λ=均为对角矩阵,而且它们对角元素分别是,A B 的特征值.从而有1112,.A P P B P P --=Λ=Λ进而112()C P P -=Λ+Λ.于是3C C =可以等价为322333,1,2,,i i i i i i i i i n λλμλμμλμ+++=+= . 其中,i i λμ分别是12,ΛΛ的对角元.又由30,1,1x x x =⇒=-知,A B 的特征值只有0,-1,1.即333,,(1,2,,)i i i i i r λλμμ===于是3C C =等价为220,(1,2,,)i i i i i r λμλμ+== .即221212O ΛΛ+ΛΛ=.因此3C C =等价为()0AB A B +=. ▌注:当2A A =,立即有32A A A ==,同样地,对k ∀,(2k ≥为正整数) k A A = 即任意的二次幂等矩阵均为k 次幂等矩阵.因此可得以下推论.推论: 设,A B 是二次幂等矩阵,且满足AB BA =,A B ≠,记C A B =+.则 2()0C C AB A B =⇒+=. ▌引理1[1].对任意两个同阶矩阵,A B ,有rank()rank()rank()A B A B +≤+. 引理2[1].设,A B 为n n ⨯矩阵,满足AB O =,则有rank rank A B n +≤. 定理5.设矩阵A 满足3,A A =且A 可逆.则2A E =且rank rank()rank()2A A E A E n +++-=.证明: 由3,A A =A 可逆,有-13-12A A A A A E ⋅=⋅⇒=()()A E A E O ⇒+-=.于是据引理2有r a n k ()r a n k ()A E A E n ++-≤ (1)又2()()E E A E A =++-据引理1有rank(2)rank[()()]n E E A E A ==++-rank()rank()E A E A ≤++-rank()rank()A E A E =++-. (2)有(1)式和(2)式有rank()rank()A E A E n ++-=.由于A 可逆知rank A n =.因此有rank rank()rank()2A A E A E n +++-=. ▌定理6.设矩阵A 满足,(2)k A A k =≥.则*,,A A A ''都是k 此幂等矩阵.证明:对A ',()()k k A A A '''==.对*,A*****()()k k k A A A A A =⋅⋅==个. 对,A '()()()k k k A A A A ''''===. ▌定理7. 设矩阵A 满足,(2)k A A k =≥.则A 的特征值为0和22cossin ,(0,1,,2)11m m m i m k k k ππε=+=--- . 证明: 由k A A =,有 k λλ=,其中λ是矩阵A 的特征值.解方程k λλ=可得220cossin ,(0,1,,2)11m m i m k k k ππλ=+=--- 以及. ▌2.2 幂等变换数域F 上n 维线性空间V 的全部线性变换组成的集合()L V 对于线性变换的加法与数量乘法构成F 上的一个线性空间,与数域F 上n 阶方阵构成的线性空间n n F ⨯同构.特别地,与幂等矩阵对应的是幂等变换.因此为了讨论和探索幂等矩阵的性质时很有必要去探索幂等变换的相关性质.定义1.设T 是线性空间V 的一个线性变换,若2T T =,则称T 是幂等变换.由于矩阵与变换间存在一一对应的关系,因此前面所提到的性质和结论可以平 移到幂等变换上来.限于篇幅,下面只举几个例子.性质1.可逆的幂等变换是恒等变换.证明:恒等变换与单位矩阵相对应.因此该性质与“可逆的幂等矩阵为单位矩 阵”一致. ▌性质2.若T 是幂等变换,则T τ-也是幂等变换.(其中τ是恒等变换) 性质3.T 是幂等变换⇔2T τ-为对合变换. 其中线性变换T 满足2T τ=,则称T 是对合变换. 性质4.T 是线性空间V 上的幂等变换,则1(0)V TV T -=⊕.▌ 我们知道:对于一般的线性变换来说,虽然1dim dim (0)dim TV T V -+=,但未必 有1(0)V TV T -=⊕.这样的例子很多. 例如:在线性空间[]n P x 中令 (())()f x f x ϕ'=.则微分变换是一线性变换[1],其 值域为1[]n P x -,其核是子空间P .它们的维数分别是1,1n -.但显然1[]n P x -+P ≠[]n P x .性质5.设T 和U 是n 维线性空间V 上的线性变换,且22,T T U U ==. 如果2()T U T U +=+,则0TU UT ==. 证明:由2()T U T U +=+,可得0TU UT +=……………………………………①对①式左乘T 得0TU TUT +=…………………………………②对①式右乘T 得0TUT UT +=……………………………………③比较②和③得 TU UT =.代入到①式得到 20TU =.于是就有 0TU UT ==. ▌ 性质6.设T ,U 是n 维线性空间上的线性变换,且22,T T U U ==. 则 1) ,TV UV TU U UT T =⇔==. 2) 11(0)(0),T U TU T UT U --=⇔==.证明:1)""⇒ 对,a V ∀∈有Ua UV TV ∈=.故,V β∃∈使Ua T β=. 从而2TUa T T Ua ββ===.因此有TU U =.同样可证得UT T =.""⇐ 据,TU U UT T ==可知,对Ta TV V ∀∈⊂,有()Ta UTa U Ta UV ==∈,故TV UV ⊂.同样可证得UV TV ⊂.于是TV UV =. 2)""⇒ 对a V ∀∈,作向量a Ta -.据11(0)(0)T U --=,有()T a Ta -20Ta T a Ta Ta =-=-=.故11(0)(0)a Ta T U ---∈=.从而有()0U a Ta -=⇒Ua UTa =⇒UT U = 同理有TU T =.""⇐ 对1(0)a T -∀∈,有0Ta =.据,TU T UT U ==,有10(0)Ua UTa a U -==⇒∈.即有11(0)(0)T U --⊂.同理可得11(0)(0)U T --⊂. 故有11(0)(0)T U --=. ▌2.3 幂等矩阵线性组合的幂等性在本节中,我们将给出两个幂等矩阵线性组合12P c A c B =+仍是幂等矩阵的一 些充分条件.引理1[15].设2,,0,0n n l A B C A A B B ⨯∈=≠=≠,l 为2≥的整数,且AB BA =. 则存在{}12,0c c C ∈-,使12P c A c B =+为幂等矩阵的充要条件是:22111211(2),c c A E B B B c c c λλ--=-+=. 证明:221212()P P c A c B c A c B =⇔+=+22222111212()c B c B c c A c c AB c c BA ⇔-=-++(令121c c λ-=) 221112(2)c B B A AB A E B c c λλ⇔-+=-=-.▌ 据引理1,下面将给出12P c A c B =+是幂等矩阵的十组充分条件.为了简化过程,先令{}00,s = {}111,l s x x x C -==∈,{}21,,s x x y z y z s ==+∈, 012s s s s = .定理1[8].设2,,0,0(2,)n n l A B C A A B B l l Z ⨯∈=≠=≠≥∈,AB BA =,{}12,0,c c C ∈-13121,,,,,i c u v s u v e a s c πλε-=∈≠=∈ 若12(,)c c 及,A B 满足下列任意一个条件,则12P c A c B =+必为幂等矩阵.(Ⅰ) ,0s λλ∈=.①.121(,)(1,)c c u=且0,()0AB B uE B =-=.证明:由0,()0AB B uE B =-=易知12()AB B uE B u-=--,又由121(,)(1,)c c u=和0λ=知(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.②.121(,)(1,)c c u=-且()0,()0E A B B uE B -=-=.证明: 由()0,()0E A B B uE B -=-=易知2122,0AB B B B u-=-=-. 将它们相加得212AB B B u-=--. 又由121(,)(1,)c c u=-,0λ=可得22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.③.121(,)(1,)c c u=且()()0,()0E A B uE B AB uE B --=--=.证明: 由条件易知()(),()0B uE B AB uE B AB uE B -=--+=.将它们相加后,再乘以1u-可得212AB B B u-=-+. 又由121(,)(1,),0c c uλ==知22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅱ) ,1s λλ∈=.④.121(,)(,(1)),0,1c c a a a u=-≠且()0,()0E A B A uE B -=-=.证明: 由条件易知,B AB AB uA ==.从而有22,()()B uA B uA u uA uB ====.即2B uB =.故有1121(1)1(1)a u a u B B B uB B a a a a-----+=-+=-. 结合上式有(2)22A uE B uA AB AB AB AB B -=-=-=-=-121(1)(2)a u A uE B B B a a--⇒-=-+.从而可得(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑤.121(,)(1,)u c c v v=-,且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知uA AB =,从而(2)2A uE B uA AB -=-2uA uA uA =-=-.即(2)A uE B uA -=-. 又由()()0E A B vE B --=可得2()()B vE B AB vE B vAB AB -=-=-.又因为22,()AB uA AB AB B uAB u A ====.代入上式可得:2()B vE B uvA u A -=-.即有2()B vE B A uv u -=-.结合(2)A uE B uA -=-有()(2)B vE B A uE B u v--=-.即有12111(2)11v A uE B B B uv uv----=-+--. 又由121(,)(1,)u c c v v=-知22111(2)c A E B B B c c λ-=-+, 满足引理1.故12P c A c B =+此时为幂等矩阵. ⑥. 121(,)(,)v c c u v u v=---且()0,()()0E A B A uE B vE B -=--=. 证明: 由()0E A B -=知AB B =,从而(2)22A uE B uA AB uA B -=-=-又由()()0A uE B vE B --=展开得2()0AB u v AB uvA -++=. 又22,()AB B AB AB B B ===,结合上式可得2()0B u v B uvA -++=.故2()u v B B A uv+-=.代入到(2)2A uE B uA B -=-得(2)A uE B -=2()2u v B B B v+--. 即21(2)u v A uE B B B v v --=-. 又由121(,)(,)v c c u v u v=--- 可得2211(2)A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑦. 121(,)(,),1u c c u v v v=-+=且()0,()()0A vE B E A B vE B -=--=.证明: 由()0A vE B -=知()AB u v A =+.从而(()2)A u v E B +-()2()u v A AB u v A =+-=-+.又先把()()0E A B vE B --=展开可得2()0B vE B vAB AB --+=.又将()AB u v A =+及22()()()AB AB B u v AB u v A ==+=+.代入到上式可得2()()()0B vE B v u v A u v A --+++=.即有()()B vE B A u v u-=-+.代入到(()2)A u v E B +-()u v A =-+,可得21(()2)v A u v E B B B u u+-=-. 从而由121(,)(,),u c c u v v v λ=-+=知22111(2)c A E B B B c c λ-=-+满足引理1故12P c A c B =+此时为幂等矩阵.⑧.12(,)(,)c c u εε=-,且2()()0,()()0.A uE B uE B E A B uE B εε--=--=证明: 由()()0A uE B uE B ε--=知 22(())0A u E u u B B εε-++=. 由2()()0E A B uE B ε--=知 222()()A uB B B uE B εε-=-. 将上面两式相加并乘以1u可得 22((1))()A uE B B uE B εεεε+--=-.又3i eπε= 满足22112,εεεε--=-=-,结合上式可得(2)A uE B ε-211B B uε=--. 从而由12(,)(,)c c uεε=-,u λε=知2211(2)A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅲ) 2,2s λλ∈=.⑨.1,21()(1,)c c u=-,且()0,()0A uE B B uE B -=-=.证明: 由()0,()0A uE B B uE B -=-=知1(22)0()A uE B B uE B u-==-, 即21(22)()A uE B B B u -=---从而由1,21()(1,)c c u=-,2u λ=知22111(2)c A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅳ) 2,0,1,2.s λλ∈≠⑩.1,21()(,)u c c v v=-且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知AB uA = 从而22AB uAB u A ==,(()2)A u v E B +-()2()u v A AB u v A =+-=--.又由()()0E A B vE B --=展开得()()B vE B AB vE B -=-. 据22AB uAB u A ==知22()()AB vE B vAB AB uv u A -=-=-.结合上式可得2()()uv u A B vE B -=-()()B vE B A u v u-⇒=--.代入到(()2)A u v E B +-()u v A =--可得2()1(()2)B vE B v A u v E B B B u u u-+-==-. 又由1,21()(,)u c c v v =-,u v λ=+知22111(2)c A E B B B c c λ-=-+满足引理1.故12P c A c B =+此时为幂等矩阵. ▌2.4 幂等矩阵线性组合的可逆性在本节中,我们将给出两个幂等矩阵的线性组合矩阵12c A c B +可逆的一些条件,并给出一些相关的结论.引理1[3].设矩阵A 是n n ⨯阶方阵,则A 可逆{}()0N A ⇔=. ▌定理1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若存在两个非零复数1,2k k , 且120k k +≠使得12k A k B +可逆,则对所有的复数1,2c c ,满足120c c +≠,则线性组合12c A c B +都是可逆的.证明:设1212,,0,0c c C c c ∈≠≠且120c c +≠. 对12()x N c A c B ∀∈+,有12()0c A c B x += 即有 12c Ax c Bx =- ……………① 将上式两边依次左乘,A B ,可得:12c Ax c ABx =-,12c BAx c Bx =-. ……②比较上面三个式子可得:,Bx ABx Ax BAx ==. …………………………③又由于22212112122()k A k B k A k k AB k k BA k B +=+++,故22212112122()k A k B x k Ax k k ABx k k BAx k Bx +=+++.将,Bx ABx Ax BAx ==代入上式可得212()k A k B x +22112122k Ax k k ABx k k BAx k Bx =+++ 112212()()k k k Ax k k k Bx =+++ 1212()()k k k A k B x =++.由于12k A k B +可逆,,将上式两边左乘112()k A k B -+得121212()()k k x k A k B k Ax k Bx +=+=+, …………………④再左乘A 得:1212k Ax k Bx k Ax k ABx +=+即有Ax ABx =.代入12c Ax c ABx =-可得12()00c c Ax Ax ABx +=⇒==.注意到③式有0Bx =,因此由④式可得12()0k k x +=但120k k +≠,所以0x =因此{}12()0N c A c B +=.由引理1知12c A c B +是可逆的. ▌在定理1中令121c c ==,立即有:推论1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若A B +可逆,则 对所有的复数1,2c c ,满足120c c +≠,线性组合12c A c B +都是可逆的. ▌ 定理2[18].设矩阵,A B 均是幂等矩阵,对任意的复数1,2c c ,下列命题等价: ⑪ A B -可逆.⑫ 12c A c B +及E AB -可逆. 证明:⑪⇒⑫对12()x N c A c B ∀∈+,由定理1的证明过程知,Bx ABx Ax BAx ==. 故22222()()0A B x A AB BA B x A x ABx BAx B x -=--+=--+=.又由A B -可逆,故0x =.因此 {}12()0N c A c B +=.由引理1知 12c A c B +可逆. 同样地,对()()0x N E AB E AB x x ABx ∀∈-⇒-=⇒=.两边左乘A ,得Ax ABx x BAx Bx ==⇒=.所以 2()0A B x Ax ABx BAx Bx -=--+=. 又由A B -可逆知0x =. 所以{}()0N E AB -=. 由引理1知E AB -可逆. ⑪⇐⑫对()x N A B ∀∈-,有()0A B x -=Ax Bx ⇒= 则 ,Ax ABx BAx Bx ==. 所以121212()()()c A c B E AB x c A c B c AB c BAB x +-=+-+ 220c Bx c BAx =-=.0x ⇒=.由12c A c B +及E AB -可逆,知{}()0N A B -=. 由引理1知A B -可逆. ▌ 在定理2中令121c c ==,立即有:推论2.设矩阵,A B 均是幂等矩阵,下列命题等价: ⑪ A B -可逆.⑫ A B +及E AB -可逆.定理3[18]. 设矩阵,A B 均是幂等矩阵,1212,,0,0c c C c c ∈≠≠,满足120c c +≠. 则12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. 证明:由2212121212()()c A c B E A B c A c B c A c BA c AB c B +--=+----12()c AB c BA =-+.可见12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. ▌2.5 幂等矩阵的秩方面的有关性质定理1[5]. 设,A B 是n n ⨯的复幂等矩阵,则1rank()rank rank rank rank 00A B B A A B B A B A ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭.2 rank()rank()rank A B A AB BA BAB B +=--++.3 rank()rank()rank A B B AB BA ABA A +=--++. ▌定理2.设n n A C ⨯∈为Hermite 矩阵,即A A '=.且对某个,k N ∈有2k A A =, 则 rank()()A tr A =.证明:设rank A r =,,x λ分别是矩阵A 的特征值和相应的特征向量. 则λ是实数[1].且2212k k k Ax x A x A x x λλλ-====. 从而有21(1)0k x λλ--=.又0x ≠.于是21(1)0k λλ--=.由λ是实数,所以111,0r r n λλλλ+====== ,故结论成立. ▌ 推论1. 设n n A C ⨯∈,且2A A =,则rank()()A tr A =. 其实,该结论在1.2节中已经很明朗了.定理2[10]. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.证明:由定理1可知rank()()i i A tr A =,11rank mmiii i AtrA===∑∑于是有1111rank()rank()mm mmiiiii i i i AtrA tr A A =======∑∑∑∑. ▌推论2. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论3. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 为幂等矩阵,且1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论4. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又1m i i A E ==∑.则 11rank rank()m mi i i i A A n ====∑∑.推论5. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 为Hermite 矩阵,且1mi i A E ==∑.则 11rankrank()mmii i i AA n ====∑∑.定理3[10].设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 及1mi i A =∑的特征值均为实数,且存在,i k N ∈使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.定理4[20]. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 及1mi i A =∑的特征值均为非负实数,且存在,(2)i i k N k ∈≥使ik i i A A =,又对某个正整数 t 有11t mmii i i AA ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑. ▌结束语本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

幂等矩阵的性质及其应用

幂等矩阵的性质及其应用

0引言幂等矩阵是一类性质特殊的矩阵,不仅在高等代数中有着重要的应用,在其它课程中,如计量经济学、统计学课程中也有着重要应用。

在代数学中,线性变换的许多问题都可以转化为幂等矩阵来解决。

但是在通常的高等代数的教材中关于幂等矩阵的讨论是比较少的。

因此本文对幂等矩阵的性质做出相关讨论。

本文主要给出幂等矩阵特征值、特征子空间和Jordan标准型的基本性质,同时给出了一些相关的应用。

1主要结果首先给出幂等矩阵的定义和基本性质。

定义1:若n阶方阵A满足A2=A,则称A为幂等矩阵。

下面给出关于幂等矩阵的一些简单的性质。

定理1:幂等矩阵A的特征值只能是0或者1。

证明:设A为任意一个幂等矩阵。

由A2=A,可得λ2=λ其中λ为A的特征值。

于是有λ=1或0,命题得证。

推论:可逆的幂等矩阵的特征值均为1。

证明:设A为一可逆的幂等矩阵。

由A2=A可得A2A-1=AA-1即A=E。

此时有λE-E=0即λ=1其中,λ为A的特征值。

命题得证。

定理2:任意的幂等矩阵A都相似于对角阵,即存在可逆阵P,使得:P-1AP=Er0 00 (),其中r=R(A)。

证明:A为任意幂等矩阵,J为其Jordan标准型,即存在可逆矩阵P,使得P-1AP=J=J10⋱0J s (),其中J i=λi1…0⋱┋⋱1 0λi ⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟。

由此可得J2=J。

于是有,J i2=J i。

此时,J i只能为数量矩阵λi E。

又因为A2=A,所以λi=0或1,且r=R(A)。

命题得证。

定理3:幂等矩阵的特征值为1的特征子空间为其值域,特征值为0的特征子空间为其零(核)空间。

证明:(i)A为一n阶幂等矩阵。

α为其特征值1对应的特征向量。

则有,Aα=α。

由此可得α属于A的值域。

反之,对于任意一个A的值域中的向量α,总能找到一个向量β,使得Aβ=α,于是有Aα=A2β=β,即α=β。

综上可知,幂等矩阵的特征值为1的特征子空间与其值域等价。

(ii)A为一n阶幂等矩阵。

幂等变换

幂等变换

摘要幂等变换是一类特殊的线性变换,它不是孤立存在的,而是与其它线性变换紧密相连,在物理、化学等学科中也有着广泛的应用,极大地推动和丰富了它们的发展,许多新的理论、技巧和方法的诞生与发展都是幂等变换理论的应用与推广.本文首先简要叙述了一般线性变换的基本理论,在此基础上给出幂等变换的定义,并指出几类特殊的幂等变换;其次,归纳总结了幂等变换的性质,如幂等矩阵的形式、幂等变换的特征值与特征向量、特征多项式、秩与迹及幂等变换的对角化问题,讨论过程由浅入深,层层推进,对幂等变换的相关知识形成了较为完整的知识体系,对幂等变换的一些特殊的性质理解深刻;最后,结合幂等变换的概念与性质,给出常见的习题及解题技巧,并举例说明幂等变换与其它线性变换的联系与转化.关键词:幂等变换;幂等矩阵;性质;应用AbstractIdempotent transformations are a special type of linear transformation.It's not isolated,but closely connected with other linear transformation.In physics,chemistry,and other disciplines also has a wide range of applications,greatly promote and enrich their development.Birth of many new theories,techniques and methods are idempotent transformations and development application and popularization of the theory.This paper begins with a brief description of the basic theory of linear transformations,on this basis for idempotent transformation defined,the idempotent transformation and pointed out that some kinds of special.Second,discussed the nature of power transform,idempotent matrix of the form,idempotent transformation characteristic value and characteristic vector,characteristic polynomial,diagonalization of rank and track and idempotent transformation problems,discussion easy-to-digest,layers of promoting.For idempotent transformation knowledge formed a relatively complete system of knowledge,some special properties for idempotent transformation understand deep.Finally,with idempotent transformation and the concept of nature,out common problems and problem-solving skills,descriptions and examples of power-link,and other linear transforms and transformation.Key words: Idempotent transformation; Idempotent matrix; Nature; Application目录摘要 (I)Abstract .................................................................................................................................... I I绪论 (1)第1章幂等变换的基本概念 (2)第2章幂等变换的性质 (3)2.1 幂等变换的运算性质 (3)2.2 幂等变换与幂等矩阵的关系 (4)2.2.1 幂等变换的特征值与特征向量 (10)2.2.2 幂等变换的特征多项式、秩与迹 (15)2.2.3 幂等变换的对角化 (20)第3章幂等变换的应用 (23)3.1 幂等变换性质的应用 (23)3.2 幂等变换与其它线性变换 (25)结论 (32)参考文献 (33)致谢........................................................................................................... 错误!未定义书签。

线性代数中的幂等矩阵与幂等算子

线性代数中的幂等矩阵与幂等算子

线性代数中的幂等矩阵与幂等算子线性代数是研究向量空间与线性变换的数学分支。

在线性代数中,存在一类特殊的矩阵和算子,称为幂等矩阵和幂等算子。

本文将介绍幂等矩阵和幂等算子的定义、性质以及应用。

一、幂等矩阵的定义和性质在线性代数中,幂等矩阵是指矩阵和自身相乘后仍然保持不变的矩阵。

具体地,对于一个n×n的矩阵A,如果满足A^2=A,那么A就是一个幂等矩阵。

幂等矩阵有以下性质:1. 幂等矩阵的特征值只能是0或1。

设A是一个幂等矩阵,λ是A 的特征值,那么有A^2x=Ax=λx。

将A^2x=Ax代入到Ax=λx中可得A(Ax)=λ(Ax),即A^2x=λ^2x,由于A是幂等矩阵,即A^2=A,所以有λ^2x=λx,即(λ^2-λ)x=0。

因为x不为0,所以必然有(λ^2-λ)=0,即特征值λ满足λ(λ-1)=0,所以λ=0或λ=1。

2. 幂等矩阵的秩等于其迹。

设A是一个幂等矩阵,根据特征值的性质,A的特征值只能是0或1。

设A的特征值1的个数为r,那么0的个数为n-r,由于特征值的个数等于矩阵的秩,所以A的秩为r。

又因为迹等于特征值之和,所以A的迹为r×1+(n-r)×0=r。

3. 幂等矩阵具有不变子空间。

设A是一个幂等矩阵,对于任意非零向量x,由A^2x=Ax可知Ax在不变子空间中。

不变子空间是线性代数中一个重要的概念,表示矩阵作用下保持不变的向量组成的空间。

幂等矩阵的不变子空间是其所有特征值为1对应的特征向量张成的空间。

二、幂等算子的定义和性质幂等算子是指线性变换与自身复合后仍然保持不变的线性变换。

可以看出,幂等算子的定义与幂等矩阵的定义是相似的。

幂等算子的定义如下:对于一个向量空间V上的线性变换T,如果满足T^2=T,那么T就是一个幂等算子。

幂等算子也有一些类似于幂等矩阵的性质:1. 幂等算子的特征值只能是0或1。

与幂等矩阵类似,设T是一个幂等算子,λ是T的特征值,那么有T^2v=Tv=λv。

n阶幂零矩阵

n阶幂零矩阵

n阶幂零矩阵一、引言零矩阵是线性代数中常见的一个概念,它在矩阵运算和线性方程组的求解中起到重要的作用。

在研究矩阵的性质和运算规律时,零矩阵也是一个重要的基础概念。

本文将重点讨论n阶幂零矩阵,包括定义、性质以及与其他矩阵的关系。

二、定义n阶幂零矩阵是一个n行n列的矩阵,其中所有的元素都是0。

换句话说,n阶幂零矩阵的每个元素都是0,在数学符号中表达为O_n,下标n表示这是一个n阶的矩阵。

例如,一个二阶幂零矩阵可以表示为:O_2 = [0, 0; 0, 0]三、性质1. n阶幂零矩阵的任意两个元素的乘积仍然是0。

这是因为n阶幂零矩阵的所有元素都是0,0乘以任何数都等于0,因此n阶幂零矩阵的元素乘积仍然是0。

2. n阶幂零矩阵的转置矩阵仍然是n阶幂零矩阵。

转置矩阵的定义是将矩阵的行和列互换位置得到的新矩阵,对于n阶幂零矩阵来说,由于所有元素都是0,转置矩阵的每个元素仍然是0,因此转置矩阵也是n阶幂零矩阵。

3. n阶幂零矩阵乘以任意矩阵的结果仍然是n阶幂零矩阵。

通过矩阵乘法的定义,我们可以得出n阶幂零矩阵与任意矩阵相乘后的结果仍然是n阶幂零矩阵。

这是因为n阶幂零矩阵的每个元素都是0,与任意矩阵相乘后,计算每个元素的结果仍然是0。

四、与其他矩阵的关系1.幂零矩阵与单位矩阵的关系:单位矩阵是一个对角线上的元素都为1,其他元素都为0的矩阵,记作I。

我们可以发现,单位矩阵与任意幂零矩阵相乘后的结果仍然是原幂零矩阵。

这是因为单位矩阵乘以任意矩阵后,保持矩阵不变,而幂零矩阵的所有元素都是0,因此乘积的结果仍然是幂零矩阵。

2.幂零矩阵与对称矩阵的关系:对称矩阵定义为矩阵与其转置矩阵相等的矩阵。

由于幂零矩阵的转置矩阵仍然是幂零矩阵,我们可以得出结论:幂零矩阵和其转置矩阵是对称矩阵。

3.幂零矩阵与可逆矩阵的关系:可逆矩阵是一个特殊的矩阵,其行列式不为0,可以求得逆矩阵。

对于任意幂零矩阵来说,其行列式显然为0,因此幂零矩阵不可逆。

幂等变换和幂等矩阵的性质

幂等变换和幂等矩阵的性质中文摘要:本文在已有文献资料的基础上,对幂等变换和幂等矩阵的性质作了归纳。

关键词:幂等变换,幂等矩阵,性质正文:(一)定义及说明定义1.设σ是数域P 上线性空间V 上的线性变换,且2σσ=,则称σ为V 上的幂等变换。

定义2.设A 是数域P 上的n 级方阵,若2A A =,则称A 为V 上的幂等矩阵。

因为数域P 上n 维线性空间V 的全部线性变换组成的集合()()n L V P 对于线性变换的加法和数量乘法构成的P 上的线性空间与数域P 上的n 级方阵构成的线性空间n n P ⨯同构,即()()n n n L V P P ⨯≅。

所以幂等变换σ对应于幂等矩阵A ,2A A =.(二)幂等变换的一个性质及其推广[1]定理1.设σ是数域P 上线性空间V 的线性变换,且2σσ=,则有(1)()Ker σ={}()|V ξσξξ-∈,Im()σ={}()|V ξσξξ=∈(2)()Im()V Ker σσ=⊕(3)若τ是V 的一个线性变换,则()Ker σ和Im()σ都在τ之下不变的充要条件是σττσ=将幂等变换的定义加以推广:设σ是数域P 上线性空间V 上的线性变换,且n σσ=,则称σ为V 上的幂等变换。

对于满足n σσ=的线性变换有类似性质定理2. 设σ是数域P 上线性空间V 的线性变换,且n σσ=(2n ≥),则有(1)()Ker σ={}1()|n V ξσξξ--∈,Im()σ={}1()|n V ξσξξ-=∈(2)()Im()V Ker σσ=⊕(3)若τ是V 的一个线性变换,则()Ker σ和Im()σ都在τ之下不变的充要条件是11n n σττσ--=证明:已知n σσ=(1):(),()0Ker ασσα∀∈=即122()(())(0)0n n n σσσσασ---⇒===1()n αααα-∴=-∈{}1()|n V ξσξξ--∈因此()Ker σ⊆{}1()|n V ξσξξ--∈反之,1()n ασα-∀-∈{}1()|n V ξσξξ--∈, 由1(())()()()()0n n σασασασασασα--=-=-=⇒1()n ασα--∈()Ker σ因此{}1()|n V ξσξξ--∈⊆()Ker σ从而()Ker σ={}1()|n V ξσξξ--∈Im(),,V ασβασβ∀∈∃∈=使得()11,()(())()()n n n n σσσασσβσβσβα--=∴====α∴∈{}1()|n V ξσξξ-=∈因此Im()σ⊆{}1()|n V ξσξξ-=∈反之,{}11()()|,n n V V ασαξσξξα--∀=∈=∈∈,有 2(())Im()n ασσασ-=∈因此{}1()|n V ξσξξ-=∈⊆Im()σ从而Im()σ={}1()|n V ξσξξ-=∈(2):由(1),,V ααασασα∀∈∈n-1n-1有=(-())+()()Ker σ+Im()σV ∴⊆()Ker σ+Im()σ从而V =()Ker σ+Im()σ又设β∀∈()Ker σIm()σ由β∈()Ker σ()0σβ⇒=又由β∈Im()σ={}1()|n V ξσξξ-=∈122()(())(0)0n n n βσβσσβσ---⇒====即()Ker σIm()σ={}0∴()Im()V Ker σσ=⊕(3):""⇒假设()Ker σ,Im()σ都在τ之下不变V α∀∈,由(2),存在唯一的β∈()Ker σ,唯一的γ∈Im()σ,使得αβγ=+ 则由假设,()τβ∈()Ker σ,()τγ∈Im()σ122()((()))(0)0n n n στβσστβσ---∴===,11()(())()n n στγστγτγ--==(由(1)) 111()()()0()()n n n σταστβστγτγτγ---⇒=+=+=又122()(())(0)0n n n σβσσβσ---===,1()n σγγ-=(由(1))1111()()(())(())n n n n τσατσβγτσβτσγ----⇒=+=+(0)()()ττγτγ=+=11()()n n στατσα--∴=由α的任意性,11n n σττσ--=""⇐若11n n σττσ--=,α∀∈()Ker σ即()0σα=,且由(1),V β∃∈使得1()n αβσβ-=- 1(())(())n σταστβσβ-⇒=- =11()()()()()()n n n στβστσβστβσστβστβστβ---=-=-=()()στβστβ-=0 ∴()τα∈()Ker σ即()Ker σ在τ之下保持不变Im()ασ∀∈,由(1),1()n ασα-= 11(())(())()n n στατσατα--∴==即1(())()n στατα-=由(1),Im()σ={}1()|n V ξσξξ-=∈ ∴()τα∈Im()σ即Im()σ也在τ之下保持不变 证毕定理1是定理2当n=2时的情形,当然也成立。

幂等矩阵的行列式

幂等矩阵的行列式什么是幂等矩阵?在线性代数中,幂等矩阵是指满足以下条件的方阵:1.矩阵的平方等于它自身,即 A^2 = A;2.矩阵的行列式为 0 或 1。

简单来说,幂等矩阵就是一个方阵,它自己乘以自己得到的结果还是它自己,并且其行列式值为 0 或 1。

幂等矩阵的性质幂等矩阵具有一些特殊的性质和特点,下面我们将介绍其中一些重要的性质。

性质一:幂等矩阵的特征值对于任意一个幂等矩阵 A,其特征值只能为 0 或 1。

这是因为根据定义可知,A自己乘以自己得到 A,即有 A^2 = A。

假设λ 是 A 的一个特征值,则存在非零向量 x 使得Ax = λx。

将这个式子两边同时乘以 A,则有:A(Ax) = λ(Ax) A^2x = λAx Ax = λAx由于 x 非零,所以Ax ≠ 0。

而根据定义可知Ax = λx。

因此,λ 只能等于 0 或 1。

性质二:幂等矩阵的秩幂等矩阵的秩等于其迹(trace)的值。

迹是指矩阵主对角线上元素的和。

证明如下:设 A 是一个 n 阶幂等矩阵,其迹为 tr(A)。

我们知道,一个方阵的迹等于其特征值之和。

根据性质一可知,A 的特征值只能为 0 或 1。

假设 A 中特征值为 1 的个数为 r,则特征值为 0 的个数为 n-r。

因此,tr(A) = r * 1 + (n-r) * 0 = r又因为 A 是幂等矩阵,所以 A^2 = A。

对两边同时取迹,则有 tr(A^2) = tr(A)。

由于 A^2 = A,则有 (A2)T = A^T。

其中 ^T 表示转置操作。

再次利用迹的性质 tr(AB) = tr(BA),可得 tr(A^TA) = tr((A T)TA^T)由于 (A T)TA^T = AA,则有 tr(AA) = tr(A)综上所述,tr(AA) = tr(A),即幂等矩阵的秩等于其迹的值。

性质三:幂等矩阵的幂等分解任意一个幂等矩阵 A 都可以进行幂等分解,即可以表示为两个幂等矩阵的乘积。

幂等矩阵的概念及性质


# # 幂等矩阵具有其广泛的应用背景, 但有关此方 面问题的讨论尚不多见, 本文就幂等矩阵的性质给 予系统的归纳、 分析和证明:
!! ! " !! % " … " !!) " & 即方程组 !+ " & 有 ) 组解: !! , !% , … !) , 设秩 ( !) " ,, 则 !! , …, 即秩 !% , !) 可用 ) - , 个向量线性表出, ( $)’ ) - ,, 所以 DEFG ( !)( DEFG ( $)’ , (( ) - , ) " )# 引理 ’# 方阵 !、 $ 的秩满足如下关系: DEFG (! ( $) ( !)( DEFG ($) ’ DEFG 证明: 设 "! , "% , …, ") 与 !! , !% , …, ! ) 分别是 !、 $ 的列向量组, 且 DEFG ( !) " , , DEFG ( $) " . , "! , "% , …, ", 与 !! , !% , …, !. 分别是 "! , "% , …, ") 与 !! , !% , …, ! ) 的极大线性无关组# 则 ( ! ( $)的列向量组可 用 "! , …, …, 而 "% , ", 与 !! , !% , ! . 线性表出, DEFG ( "! , …, …, "% , ",, !! , !% , ! . )’ # DEFG ( "! , "% , …, ", )( DEFG ( !! , !% , …, !. ) 所以 DEFG (! ( $) ’ DEFG ( !)( DEFG ($) # 引理 ?# 设 ! 是 ) 维线性空间 & 的线性变换, 则 ! 的秩 ( ! 的零度 " )# ! 证明: 设 ! 的零度为 ,, 在核 !( &)中取一组基 …, 并把它扩充为 & 的 一组基 #! , …, #! , #% , #, , #% , #, , …, #) , !& 是由基象组 !# ! , !# % , …, !#, , …, !# ) 生成的, 但是 !#/ " & (/ " !, %, …, ) , 所以 !& 由

幂等矩阵概念

幂等矩阵概念
幂等矩阵是指一个矩阵与自己相乘等于自己的方阵。

具体来说,一个
n×n 的方阵 A 是幂等矩阵,当且仅当 A∗A=A。

幂等矩阵的一个显然的例子是单位矩阵,因为单位矩阵乘以自己的结
果仍然是单位矩阵。

但幂等矩阵并不一定得是单位矩阵。

例如,下面
这个矩阵



1 0
0 0



也是一个幂等矩阵,因为它乘以自己的结果还是它本身。

幂等矩阵在数学和工程学中有许多应用。

例如,在矩阵代数中,幂等
矩阵可以用来形成正交矩阵和投影矩阵。

在计算机科学中,幂等矩阵
也有诸多应用。

例如,在关系型数据库中,幂等矩阵可以用来确保事
务执行的幂等性,即多次执行同一事务所产生的结果与一次执行相同。

除此之外,幂等矩阵还可以用于可重入算法的设计中。

由于在可重入算法中,多次执行该算法的效果将等同于一次执行该算法。

因此,使用幂等矩阵可以确保算法的正确性和可重入性。

总之,幂等矩阵作为一种特殊类型的矩阵,在数学和工程学中有着广泛的应用。

它不仅是理论研究中的基础,也为工程应用和计算机科学中的问题提供了便利。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l 1 0 1
《 0 o 0 O
但 是
1 O
O 一1
] =
收稿 日期 : 2 0 1 3 - 0 7 — 1 8
基金项 目: 陇南师范高等专科学校重点课 程建设项 目, 陇南师范高等专科 学校教学改革项 目 作者简介 : 何 东林 ( 1 9 8 3 一) , 女, 甘肃 白银人 , 讲师 . 研究方 向: 同调代数.
n n
充分性

设 A. ( = 1 , 2 , …, m) 都是 n 一 幂等矩 阵 , 则存 在正 整


所 以同阶可交换 n 一 幂等矩阵的乘积仍为 n 一 幂等矩 阵.


数n 2 , 使 得A : ; A . ( l , 2 , …, m ) . 于 是 A
】 9 78 .
n- i d e mp o t e n t Ma t r i x HE Do n g - l i n

\、, 0 O
何 东林
( 陇南师范高等专科学校 数学系 , 甘肃成县

l 生质 .
7 4 2 5 0 0 )
O 1 O O O
、 ● ● _ _、
要: 给出n 一 幂等矩 阵的定 义, 并在 实数范 围 内研 究 n 一 幂等矩 阵. 进 而讨论并证 明 了 n 一 幂等矩 阵的若干

[ 3 】 张俊敏 . 幂等矩 阵线性组合的可逆性【 J 】 . 纯粹数 学与应
用数 学, 2 0 0 7 , 1 9 ( 2 ) : 8 9 — 9 2 .
A^
. .
Am
] ,
[ 4 】张慧.对幂等矩 阵的研 究 【 J 】 .陕西科技 大学学报,
2 0 1 2 , 3 0 ( 6 ) : 1 3 9 — 1 4 6 .
阵的构造 , 文献[ 3 】 研究 了幂 等矩 阵线性组 合 的可逆 性, 文献
[ 4 】 研究 了幂等矩阵若 干性 质及应用等等 . 本文 主要研 究幂等 矩阵的一个重要推广——n 一 幂等矩 阵 , 并在 实数 范围内研 究 n 一 幂等矩 阵. 进而并证 明 n 一 幂等矩阵的若 干性质 .

乙 A 一
\ O O
关键词 : 矩阵 ; 幂等矩 阵; n 一 幂等矩阵
中图分类号 : O1 5 1 . 2 1 文献标志码 : A 文章编号 : 1 0 0 8 — 9 0 2 0 ( 2 0 1 3 ) 0 5 - 0 0 8 — 0 2
矩阵 在线性代数 中的角色 就如 同实数 在 中小 学数学 中 的角色一样 ,很多相对复杂 的问题都 可以用矩 阵来表达 , 从 而用有关矩阵的理论 与方法来解决.幂等矩阵是一种特殊的 矩阵, 它具有较好 的性质和 实际应用 , 幂等 矩阵在可 对角化

第 1 8 卷第 5 期( 2 0 1 3 )
何 东林 : n 一 幂等矩 阵
V o 1 . 1 8 N o . 5 ( 2 0 1 3 )
( A 曰 ) ’ ' = 《 旦 2 i 垦 2 i 垦 2 : : : ( 垦 j = 4 丝墨 鱼 霉 : : : 旦 一 = A
[ 5 】 张禾瑞, 郝锅新 . 高等代数 [ M】 . 北京: 高等教 育 出版社,
1 9 9 9 .
从而 A
等矩阵.
( = 1 , 2 , …, m) . 因此 A ( 扛1 , 2 , …, m) 也都是 n 一 幂
[ 6 】 北京大学数 学系. 高等代数[ M】 . 北京: 高等教 育 出版社,
幂等矩阵是一种特殊的矩阵它具有较好的性质和实际应用幂等矩阵在可对角化矩阵的分解中具有重要的作用同时也为空间的投影过程提供了一种工具
第1 8 卷 第5 期 ( 2 0 1 3 )
甘 青高 旰 拒
V o 1 . 1 8 N o . 5 ( 2 0 1 3 )

幂 等矩 阵


= 一
织 高校基础科学学报 , 2 0 0 8 , 2 1 ( 2 ) : 2 5 5 — 2 5 6 .
[ 2 】 王建平. 坡上幂等矩阵的构造[ J 】 . 纺织 高校基础科 学学
报, 2 0 0 8 , 2 1 ( 3 ) : 2 3 — 2 6 .
以A , I = l


[ A ‘ A ^ . . A ) r
、 ● ● ● 尸 ● ●
、● 所 ●
_ _ 『


从 而 A是 n 一 幂等矩阵 参考文献 :
n 2 , 使得 A . 因为 A为对角分块矩阵且
( I A .


【 1 】 周航 , 樊旭辉 . n次幂等正交矩阵集 中的等价关 系【 J 】 . 纺
显然幂等矩阵一定是 n 一 幂等矩阵 , 但是下面这个 例子说
明了n 一 幂 等矩 阵不一定是幂等矩阵.
0 0 一 1 0 0 )
反 例
l o …
J l 。 …j
0 0 l O O 一1
l o 1 o I
l 1 0
矩阵 的分解 中具有 重要 的作 用 , 同时也为空 间的投影 过程提 供 了一种工具.
] ; A
幂等矩 阵在 数学领域 以及其他许 多领域 应用都 非常 广 泛, 因此对幂等矩阵 的研究具有很重要 的意义. 文献[ 1 】 研究 了 次幂等正交矩阵集 中的等价关 系; 文献[ 2 】 研 究了坡上幂等矩
h m
命题 8 设 A为对 角分 块矩 阵且 A=
其中 A ( 1 , 2 , …, m) 均 为方阵 . 则 A是 n 一 幂 等矩 阵. 当且 仅 当A i _ ( i - 1 , 2 , …, m) 都是 n 一 幂等矩阵.
证明 必要性 由 为 n 一 幂等矩 阵可

定义 1 I 羽 设 为 m ̄ n阶矩阵 , 如果 A 2 - _ A, 则称 A 为幂 等矩阵 .
受此启发 , 我们 给出 n 一 幂等矩阵的定义. 定义 2 设 A为 r l  ̄  ̄ n阶矩阵 , 如果存在正整数 n 2 , 使 得A = A, 则称 A为 n 一 幂等矩阵.
相关文档
最新文档