华农农业大学-MATLAB大作业
matlab大作业word版

2014年春季学期MATLAB 课程考查题一.必答题 (80分)1.如何设置当前目录和搜索路径,在当前目录上的文件和在搜索路径上的文件有何区别?(2)答:方法一:在MATLAB命令窗口中输入editpath或pathtool命令或通过【File】/【SetPath】菜单,进入“设置搜索路径”对话框,通过该对话框编辑搜索路径。
方法二:在命令窗口执行“path(path,…D:\Study ‟)”,然后通过“设置搜索路径”对话查看“D:\Study”是否在搜索路径中。
方法三:在命令窗口执行“addpath D:\Study- end”,将新的目录加到整个搜索路径的末尾。
如果将end改为begin,可以将新的目录加到整个搜索路径的开始。
区别:当前文件目录是正在运行的文件的目录,显示文件及文件夹的详细信息,且只有将文件设置为当前目录才能直接调用。
搜索路径中的文件可以来自多个不同目录,在调用时不用将其都设置为当前目录,为同时调用多个文件提供方便。
2.创建符号变量和符号表达式有哪几种方法?(4)答:定义符号变量:方法一:sym函数,可以定义单个符号变量,调用格式为:符号量名=sym('符号字符串');方法二,syms函数,定义多个符号变量,调用格式:syms 符号变量名1 符号变量名2 符号变量名3 符号变量名4 。
空格隔开。
定义符号表达式:方法一:用单引号定义符号表达式;方法二:用sym函数定义符号表达式;方法三:用已经定义好的符号变量组成符号表达式;3.GUIDE提供哪些常用的控件工具,各有什么功能?(5分)答:一、控件风格和外观(1)BackgroundColor:设置控件背景颜色,使用[R G B]或颜色定义。
(2)CData:在控件上显示的真彩色图像,使用矩阵表示。
(3)ForegroundColor:文本颜色。
(4)String属性:控件上的文本,以及列表框和弹出菜单的选项。
(5)Visible:控件是否可见。
华南农业大学【通信系统仿真使用Matlab实验chapter2】

Matlab通信系统仿真实验实验一熟悉基本的Matlab仿真环境一、实验目的1、熟悉Matlab仿真环境,编制简单的matlab程序,熟悉基本的调试技巧等。
认为学生已经掌握Matlab的基本语法和基本操作。
2、熟悉基本的Matlab中通信仿真工具,相关的函数和命令等的基本使用,包括基本的通信模块相关命令函数,plot相关的命令函数3、计算机通信仿真的基本的技术和方法二、知识要点1、Matlab概述Matlab是由美国的MathWorks公司推出的一种科学计算和工程仿真软件。
Matlab将高性能的科学计算、结果可视化和编程集中在一个易于操作的环境中,提供了大量的内置函数,具有强大的矩阵计算和绘图功能,适用于科学计算、控制系统、信息处理等领域的分析、仿真和设计工作。
目前,在世界范围内被科研工作者、工程技术人员和院校师生广泛采用。
2、Matlab中的通信仿真工具实现基本的Matlab通信仿真,有两种基本的途径:第一种,用matlab的基本运算和操作实现基本的通信功能模块,当然前提是对这些基本的通信功能模块的概念和原理非常的清晰。
另一种途径是,利用Matlab中提供的专业通信工具箱中的函数实现。
前提是对这些函数功能非常明确,并熟悉其使用的算法和调用的方法,尤其是参数的理解和设置。
Matlab工具箱中包括100多个Matalb函数可用于通信算法的开发、系统分析及设计。
通信工具箱能完成如下任务:1)信源编码及量化2)高斯白噪声信道模型3)差错控制编码4)调制和解调5)发送和接收滤波器6)基带和调制信道模型7)同步,包括模拟和数字锁相环8)多址接入,包括CDMA,FDMA,TDMA.9)分析结果和比较系统误码率的图形用户界面10)用于通信信号可视化图形分析和绘制,包括眼图,星座表等。
11)新增的信道可视化工具用于进行时变信道的可视化和开发。
3、Matlab中的绘图功能Matlab为用户提供了结果可视化功能,只要在命令窗口输入相应的命令,结果就会用图形4、基本的计算机通信仿真的技术和方法蒙特卡罗仿真建立在机率游戏的基础上,因此,以赌城蒙特卡罗命名。
matlab大作业实验报告,《Matlab程序设计》期末实验报告-大作业2015.doc

matlab⼤作业实验报告,《Matlab程序设计》期末实验报告-⼤作业2015.doc《MATLAB程序设计》实验报告学院: 学号: 姓名:⼀、题⽬:1、(10分)已知矩阵,⽤Matlab代码实现以下要求:(1)将矩阵赋给变量A,并在屏幕上显⽰A;(2)将A按列进列逆序重排,重排后的矩阵赋给变量B,并在屏幕上显⽰B;(3)⽤reshape命令将A重排为⼀个2⾏6列矩阵并赋给变量C;(4)将A重排为⼀个列向量,将其赋给变量D,求D的平均值,在屏幕上显⽰D和它的平均值;(5)⽤命令查看变量A的维数,并显⽰运⾏结果。
2、(10分)写代码实现以下要求:构造菜单项‘Plot’,菜单项Plot有两个⼦菜单项Plot sin(选择此项后执⾏画出曲线,线型为虚线,线条颜⾊为红⾊)和Plot cos(选择此项后执⾏画出曲线 ,线型为实线,线条宽度为2)。
3、(20分)已知,实现下列操作:(1)在同⼀个图形窗⼝,同⼀坐标系下⽤不同的颜⾊和线型绘制三条曲线,并添加图例来区分三条曲线(5分)。
(2)⽤subplot命令,以⼦图的⽅式绘制三条曲线,图形排列⽅式为三⾏⼀列(5分)。
(3) 分别⽤直⽅图(bar)、棒状图(stem)和填充图(fill)绘制三条曲线,以⼦图⽅式绘制,排列⽅式为3⾏3列,共9幅⼦图(10分)。
4、(10分)⽤surf命令绘制曲⾯图形,⽤shading interp命令进⾏插值着⾊处理并添加垂直颜⾊棒。
5、(15分)⾃2011年9⽉1⽇起,我国实⾏新的个⼈所得税征收办法,起征点为3500元,请⽤If-else if-else-end结构实现⼈⼯输⼊⽉收⼊后能计算出个⼈所得税的缴纳额并显⽰⽉收⼊10000元时应缴纳的税款。
级数应纳税所得额x(元)税率备注1x<=15003%x指⽉收⼊扣除起征点3500元之后的余额;215008000045%同上6. (10分)⽤while-end循环结构计算级数和的值,输⼊n值,能计算出f的值,并显⽰结果。
2023年MATLAB大作业题目备选

MATLAB大作业备选题目1、基于MATLAB旳有噪声语音信号处理本课题规定基于MATLAB对有噪音语音信号进行处理,综合运用数字信号处理旳理论知识对加噪语音信号进行时域、频域分析和滤波,运用MATLAB作为工具进行计算机实现。
在设计实现旳过程中,规定使用双线性变换法设计IIR数字滤波器,对模拟加噪语音信号进行低通滤波、高通滤波及带通滤波,并运用MA TLAB作为辅助工具完毕设计中旳计算与图形旳绘制。
2、基于MATLAB旳学生平均学分、绩点计算软件设计学分与绩点,是每位大学生所关怀旳重要指标之一,诸多同学辛劳学习,早出晚归,不停旳奔走于教室、图书馆、食堂、寝室之间,为旳就是可以考个好成绩,获得好旳绩点。
然而在平时我们计算学分与绩点旳时候,大都只能用计算器一种一种数据旳输入,其过程繁琐麻烦,又轻易出错。
因此,本课题规定运用所学旳MATLAB知识,来实现平均学分、绩点旳计算,并开发有关人机界面。
3、基于MATLAB旳试卷分析管理系统本设计规定基于MATLAB中GUI旳编程措施,并波及有关数据库知识。
规定通过一种简易旳顾客交互界面,实现对考试试卷旳成绩录入、查询、修改和试题整体分析等功能,以学习使用MATLAB编程为目旳,尤其是对MATLAB中G UI旳掌握,加深对MATLAB旳理解,学习用MATLAB实现实际应用。
4、基于MATLAB旳图像处理软件设计学习MATLAB GUI程序设计,运用MATLAB图像处理工具箱,设计和实现一种简易旳图像处理软件,实现如下几点功能:1)图像旳读取和保留。
2)设计图形顾客界面,让顾客可以对图像进行任意旳亮度和对比度变化调整,显示和对比变换前后旳图像。
3)设计图形顾客界面,让顾客可以用鼠标选用图像感爱好区域,显示和保留该选择区域。
4)编写程序通过近来邻插值和双线性插值等算法将顾客所选用旳图像区域进行放大和缩小整数倍旳操作,并保留,比较几种插值旳效果。
5)图像直方图记录和直方图均衡,规定显示直方图记录,比较直方图均衡后旳效果。
MATLAB大作业

M A T L A B大作业作业要求:(1)编写程序并上机实现,提交作业文档,包括打印稿(不含源程序)和电子稿(包含源程序),以班为单位交,作业提交截止时间6月24日。
(2)作业文档内容:问题描述、问题求解算法(方案)、MATLAB程序、结果分析、本课程学习体会、列出主要的参考文献。
打印稿不要求MATLAB程序,但电子稿要包含MATLAB程序。
(3)作业文档字数不限,但要求写实,写出自己的理解、收获和体会,有话则长,无话则短。
不要抄袭复制,可以参考网上、文献资料的内容,但要理解,要变成自己的语言,按自己的思路组织内容。
(4)从给出的问题中至少选择一题(多做不限,但必须独立完成,严禁抄袭)。
(5)大作业占过程考核的20%,从完成情况、工作量、作业文档方面评分。
第一类:绘制图形。
(B级)问题一:斐波那契(Fibonacci)螺旋线,也称黄金螺旋线(Golden spiral),是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例。
斐波那契螺旋线,以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线,如图所示。
问题二:绘制谢尔宾斯基三角形(Sierpinskitriangle)是一种分形,由波兰数学家谢尔宾斯基在1915年提出,它是一种典型的自相似集。
其生成过程为:取一个实心的三角形(通常使用等边三角形),沿三边中点的连线,将它分成四个小三角形,然后去掉中间的那一个小三角形。
接下来对其余三个小三角形重复上述操作,如图所示。
问题三:其他分形曲线或图形。
分形曲线还有很多,教材介绍了科赫曲线,其他还有皮亚诺曲线、分形树、康托(G. Cantor)三分集、Julia集、曼德布罗集合(Mandelbrot set),等等。
这方面的资料很多(如),请分析构图原理并用MATLAB 实现。
问题四:模拟掷骰子游戏:掷1000次骰子,统计骰子各个点出现的次数,将结果以下表的形式显示,并绘制出直方图。
matlab大作业实验报告

matlab大作业学号姓名:年级:专业:1、产生一个10 10的随机矩阵A,要求A中元素均为整数,范围[1,50]。
1)求出A中所有元素之和S,平均值M。
2)找到所有小于平均值,且能被3整除的元素。
3)绘制出A的二维纵向柱状图,横坐标为[8 5 9 1 2 3 4 7 10 13],条形宽度为0.7的“stacked”样式。
代码如下:clc,clear all,close allA=round(rand(10,10)*50);disp(A)S=sum(sum(A));P=mean(mean(A));disp(S)disp(P)disp('所有小于平均数且能被三整除的元素')XPS=H((mod(H,3)==0)&(H<P));disp(XPS')subplot(1,1,1),bar(A,0.7,'stacked'),title('ygh');set(gca,'XTickLabel',{'8','5','9','1','2','3','4','7','10','13'})2、产生一个随机四位密码。
用户用“input”进行输入对比。
猜错提示“WRONG”,正确提示“RIGHT”同时退出程序,最多五次机会。
代码如下:clc,clear all,close alldisp('请输入密码')A=round(8999*rand(1,1))+1000;m=1;while m<=5N=input('请输入一个四位数:');if A==N;disp('RIGHT');breakelsedisp('WRONG');endm=m+1;enddisp('密码是:')disp(A)disp('输入结束')3、按照脚本文件的编程风格,用for和while循环嵌套输出如下的乘法口诀表。
MATLAB大作业
MATLAB大作业一、作业说明MATLAB,即matrix laboratory,作为强大的数学处理软件,在化学化工领域中也有着极为广泛的应用。
而作为化工专业的学生,我认为本课学习MATLAB最直接和有效的意义在于,学生能够利用MATLAB处理实验数据和图形。
而对于MATLAB本身数学逻辑与语言的理解和掌握相信在之前所上交的“高斯消元法”和“二分法改进”两次小作业中得到体现。
因此,本次大作业我选择利用MATLAB处理化工原理实验中已经做过的离心泵实验来进行数据处理和图形制作。
其中实验原始数据皆由本人进行化工原理实验时所记录,水的密度和粘度表由文献查得。
二、编程思路整个M文件的目标是,利用现有的实验做得数据,进行实验数据的处理以及图形绘制,主要分为三个步骤完成:第一部分利用插值和拟合求实验温度下水的密度和粘度值;第二部分利用公式和矩阵变换计算离心泵的扬程He和轴功率Pzhou;第三部分作图:离心泵的扬程和轴功率随流量变化的曲线(双y轴)。
具体思路已在主程序文件中进行注释。
三、MATLAB主程序clearclose allformat compact,format shortecho off% 处理化工原理实验数据及图形制作% 第一部分求水的密度和粘度%已知条件:(1)实验温度为23.1℃% (2)网上查得15℃-30℃下水的密度和粘度表,记录为excel表% (3)此部分数据存放在原始数据表的sheet1和sheet2中%%主要方法:(1)MATLAB数据读入% (2)矩阵初等变换% (3)函数拟合% (4)函数插值%[num1]=xlsread('原始数据表');%读取excel表格中sheet1的数据x0=[num1(:,1)];%x0x表示温度值,sheet1的第1列y0=[num1(:,2)];%y0表示密度值,sheet1的第2列x1=x0';%进行转置,将列向量转换为相应的行向量y=y0';%进行转置,将列向量转换为相应的行向量%下面开始拟合密度随温度的变化函数n = length(y);ss = '';for k = 1:n;yy = num2str(y(k));ss = strcat(ss,['+''(' yy ')''*''x''^' num2str(n+1-k)]);%将数值转换为字符串格式,在MATLAB内将密度与温度的关系拟合为n次多项式endpause,ss%输出密度随温度变化函数式%%进行图像表示%x轴为温度,y轴为密度,表示在figure窗口的上半部分pause,subplot(2,1,1),line(x1,y,'linewidth',2),title('T-density'),xlabel('温度T/℃'),ylabel('密度/(kg?m^-3)')axis([15,30,995,1000])pause, x2=23.1,y1=interp1(x1,y,x2,'spline');%读取excel表格中sheet2的数据,接下来步骤与密度处理方法相同[num2]=xlsread('原始数据表',2);t0=[num2(:,1)];z0=[num2(:,2)];t1=t0';z=z0';n = length(z);rr= '';for k = 1:n;zz = num2str(z(k));rr = strcat(rr,['+''(' zz ')''*''t''^' num2str(n+1-k)]);endpause,rr%x轴为温度,y轴为粘度,表示在figure窗口的下半部分pause,subplot(2,1,2),line(t1,z,'linewidth',2),title('T-viscosity'), xlabel('温度T/℃'),ylabel('粘度/(Pa?s)')axis([15,30,0.0008 0.0012])pause,t2=23.1,z1=interp1(t1,z,t2,'spline');y1,z1%显示实验温度下流体的密度与粘度值,y1为密度,z1为粘度pause,close all%关闭图像窗口pause,clc% 第二部分计算离心泵的扬程He和轴功率Pzhou%%已知条件:(1)所需数据存放在原始数据表的sheet3中% (2)从左至右分别为“入口压强、出口压强、入口速度、出口速度、流量、电机功率”% (3)计算公式:He=pout-pin+0.2+(uout.^2-uin.^2)./(9.81*2);% Pzhou=P.*0.9;%%主要方法:(1)MATLAB数据读入% (2)矩阵初等运算与变换% (3)利用MATLAB进行实验数据处理%读取excel表格中sheet3的数据%“pin、pout、uin、uout、qv、P、He、Pzhou”分别表示为%“入口压强、出口压强、入口速度、出口速度、流量、电机功率、扬程和轴功率”[num3]=xlsread('原始数据表',3);pout0=[num3(:,2)];pin0=[num3(:,1)];uout0=[num3(:,4)];uin0=[num3(:,3)];qv0=[num3(:,5)];pout=pout0';pin=pin0';uout=uout0';uin=uin0';qv=qv0';He=pout-pin+0.2+(uout.^2-uin.^2)./(9.81*2);P0=[num3(:,6)];P=P0';Pzhou=P.*0.9;pause,clc%输出计算结果pause,HePzhouclose allpause,clcpause,%第三部分作图:离心泵的扬程和轴功率随流量变化的曲线(双y轴)%%pause,s1=He;s2=Pzhou;x5=qv;yWidth = 60;%设置两个y轴的间隔(像素)axesPosition = [110 40 200 200];%设置图像生成位置x5Limit = [min(x5) max(x5)];%设定自变量范围x5Offset=-yWidth*diff(x5Limit)/axesPosition(3);%建立图像,设置双变量与双坐标轴h1 = axes('Units','pixels','Position',axesPosition,...'Color','w','XColor','k','YColor','r',...'XLim',x5Limit,'YLim',[10 22],'NextPlot','add');h2 = axes('Units','pixels','Position',axesPosition+yWidth.*[-1 0 1 0],...'Color','none','XColor','k','YColor','m',...'XLim',x5Limit+[x5Offset 0],'YLim',[0.3 0.7],...'XTick',[],'XTickLabel',[],'NextPlot','add');xlabel(h1,'qv');ylabel(h2,'Pzhou');%给坐标轴命名pause,plot(h2,x5,s2,'*m');pause,plot(h1,x5,s1,'^r');四、工作日志density_viscosity(密度_粘度)clearclose allformat compact,format shortecho offss =+(999.126)*x^31+(999.05)*x^30+(998.97)*x^29+(998.888)*x^28+(998.802)* x^27+(998.714)*x^26+(998.623)*x^25+(998.53)*x^24+(998.433)*x^23+(998. 334)*x^22+(998.232)*x^21+(998.128)*x^20+(998.021)*x^19+(997.911)*x^18 +(997.799)*x^17+(997.685)*x^16+(997.567)*x^15+(997.448)*x^14+(997.327 )*x^13+(997.201)*x^12+(997.074)*x^11+(996.944)*x^10+(996.813)*x^9+(99 6.679)*x^8+(996.542)*x^7+(996.403)*x^6+(996.262)*x^5+(996.119)*x^4+(9 95.974)*x^3+(995.826)*x^2+(995.676)*x^1x2 =23.1000rr =+(0.0011404)*t^16+(0.0011111)*t^15+(0.0010828)*t^14+(0.0010559)*t^13+ (0.0010299)*t^12+(0.001005)*t^11+(0.000981)*t^10+(0.0009579)*t^9+(0.0009358)*t^8+(0.0009142)*t^7+(0.0008937)*t^6+(0.0008737)*t^5+(0.000854 5)*t^4+(0.000836)*t^3+(0.000818)*t^2+(0.0008007)*t^1t2 =23.1000y1 =997.5432z1 =9.3361e-04He =Columns 1 through 1021.7000 20.9069 19.9348 19.1688 18.7950 18.3412 17.9656 17.1311 16.2075 15.6581Columns 11 through 1415.1075 14.2847 13.4611 12.6543Pzhou =Columns 1 through 100.3240 0.3600 0.4050 0.4500 0.4770 0.5040 0.5310 0.5670 0.5940 0.6120Columns 11 through 140.6300 0.6390 0.6570 0.6750diary off五、附录附录1. 温度在15-30℃时,水的密度表附录2. 温度在15-30℃时,水的粘度表附录3. 离心泵实验原始数据记录表附录4. 生成图像。
matlab课程设计大作业
matlab课程设计大作业一、教学目标本课程的教学目标是使学生掌握MATLAB基本语法、编程技巧以及MATLAB 在工程计算和数据分析中的应用。
通过本课程的学习,学生将能够熟练使用MATLAB进行简单数学计算、线性方程组求解、函数图像绘制等。
1.掌握MATLAB基本语法和编程结构。
2.了解MATLAB在工程计算和数据分析中的应用。
3.熟悉MATLAB的函数库和工具箱。
4.能够使用MATLAB进行简单数学计算。
5.能够使用MATLAB求解线性方程组。
6.能够使用MATLAB绘制函数图像。
7.能够利用MATLAB进行数据分析和处理。
情感态度价值观目标:1.培养学生对计算机辅助设计的兴趣和认识。
2.培养学生团队合作和自主学习的能力。
二、教学内容本课程的教学内容主要包括MATLAB基本语法、编程技巧以及MATLAB在工程计算和数据分析中的应用。
1.MATLAB基本语法:介绍MATLAB的工作环境、基本数据类型、运算符、编程结构等。
2.MATLAB编程技巧:讲解MATLAB的函数调用、脚本编写、函数文件编写等编程技巧。
3.MATLAB在工程计算中的应用:介绍MATLAB在数值计算、线性方程组求解、图像处理等方面的应用。
4.MATLAB在数据分析中的应用:讲解MATLAB在数据采集、数据分析、数据可视化等方面的应用。
三、教学方法本课程采用讲授法、案例分析法、实验法等多种教学方法相结合的方式进行教学。
1.讲授法:通过讲解MATLAB的基本语法、编程技巧以及应用案例,使学生掌握MATLAB的基本知识和技能。
2.案例分析法:通过分析实际工程案例,使学生了解MATLAB在工程计算和数据分析中的应用。
3.实验法:安排上机实验,使学生在实际操作中巩固所学知识,提高实际编程能力。
四、教学资源本课程的教学资源包括教材、实验设备、多媒体资料等。
1.教材:选用《MATLAB教程》作为主要教材,辅助以相关参考书籍。
2.实验设备:为学生提供计算机实验室,配备有MATLAB软件的计算机。
MATLAB大作业
MATLAB大作业作业要求:(1)编写程序并上机实现,提交作业文档,包括打印稿(不含源程序)和电子稿(包含源程序),以班为单位交,作业提交截止时间6月24日。
(2)作业文档内容:问题描述、问题求解算法(方案)、MATLAB程序、结果分析、本课程学习体会、列出主要的参考文献。
打印稿不要求MATLAB程序,但电子稿要包含MATLAB 程序。
(3)作业文档字数不限,但要求写实,写出自己的理解、收获和体会,有话则长,无话则短。
不要抄袭复制,可以参考网上、文献资料的内容,但要理解,要变成自己的语言,按自己的思路组织内容。
(4)从给出的问题中至少选择一题(多做不限,但必须独立完成,严禁抄袭)。
(5)大作业占过程考核的20%,从完成情况、工作量、作业文档方面评分。
第一类:绘制图形。
(B级)问题一:斐波那契(Fibonacci)螺旋线,也称黄金螺旋线(Golden spiral),是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例。
斐波那契螺旋线,以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线,如图所示。
问题二:绘制谢尔宾斯基三角形(Sierpinskitriangle)是一种分形,由波兰数学家谢尔宾斯基在1915年提出,它是一种典型的自相似集。
其生成过程为:取一个实心的三角形(通常使用等边三角形),沿三边中点的连线,将它分成四个小三角形,然后去掉中间的那一个小三角形。
接下来对其余三个小三角形重复上述操作,如图所示。
问题三:其他分形曲线或图形。
分形曲线还有很多,教材介绍了科赫曲线,其他还有皮亚诺曲线、分形树、康托(G. Cantor)三分集、Julia集、曼德布罗集合(Mandelbrot set),等等。
这方面的资料很多(如/content/16/0103/14/5315_525141100.shtml),请分析构图原理并用MATLAB实现。
MATLAB大作业
M A T L A B大作业作业要求:(1)编写程序并上机实现,提交作业文档,包括打印稿(不含源程序)和电子稿(包含源程序),以班为单位交,作业提交截止时间6月24日。
(2)作业文档内容:问题描述、问题求解算法(方案)、MATLAB程序、结果分析、本课程学习体会、列出主要的参考文献。
打印稿不要求MATLAB程序,但电子稿要包含MATLAB程序。
(3)作业文档字数不限,但要求写实,写出自己的理解、收获和体会,有话则长,无话则短。
90问题五:利用MATLAB软件绘制一朵鲜花,实现一定的仿真效果。
提示:二维/三维绘图,对花瓣、花蕊、叶片、花杆等的形状和颜色进行详细设置。
第二类:插值与拟合。
(B级)问题一:有人对汽车进行了一次实验,具体过程是,在行驶过程中先加速,然后再保持匀速行驶一段时间,接着再加速,然后再保持匀速,如此交替。
注意,整个实验过程中从未减速。
在一组时间段50个时间点的速度。
(2)绘制插值图形并标注样本点。
问题二:估算矩形平板各个位置的温度。
已知平板长为5m,宽为3m,平板上3×5栅格点上的温度值为44,25,20,24,30;42,21,20,23,38;25,23,19,27,40。
(1)分别使用最近点插值、线性插值和三次样条插值进行计算。
(2)用杆图标注样本点。
(3)绘制平板温度分布图。
对a,b,c,d的值。
提示:曲线拟合并绘图分析第三类:定积分问题。
(B级)问题一:地球密度随着离中心(r=0)距离的变化而变化,不同半径处的密度如表所示,试估问题二:河道平均流量Q(m3/s)可使用速度和深度的乘积的积分来计算(河道横截面不规则),公式如下。
其中V(x)是离岸x(m)距离处的水速(m/s),H(x)是离岸x距离处的水深(m)。
根据收集到过5(1(2(3(Q,单位是m(1(2(1(2(3)将节点1的力改为方向向上,计算这种改变对H2和V2的影响。
(4)将节点1的力撤销,而在节点1和2处施加1500N的水平外力,求节点3处垂直反作用力(V3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机床主 轴机构优化设计机床主轴是机床中重要的零件之一,一般多为支撑空心阶梯轴。
为了便于使用材料力学进行结构分析,常常将阶梯轴简化成以当量直径表示的等截面轴。
如图0.1所示是一个已经简化处理的专用机床双主轴的力学模型。
从机床主轴制造成本较低和加工精度较高的要求出发,需要考虑主轴的自重和外身段挠度这样两个重要因素。
对于专用机床来说,并不追求过高的加工精度。
因此选取零件自身重量轻为设计目标,将主轴的刚度作为约束条件。
一、 设计变量和目标函 数当主轴的材料选定之后,与主轴重量设计方案有关设计变量主轴的外径D 、孔径d 、两支承跨度l 、和外伸段长 度a ,如图0.1所示。
由于机床主轴的孔径主要取决于待加工棒料的直径,不能作为设计变量处理。
因此,设计变量为[][]TT321a D l x x x X ==机床主轴重量最轻优化设计目标函数为))(()(22231d x x x 41X f -+=πρ二、 约束条件1. 刚度性条件机床的加工质量在很大程度上取决于主轴的刚度,主轴刚度是一个很重要的性能指标。
因此,要求主轴悬臂端挠度不超过给定的变形量y 0 。
根据材料力学可知,主轴悬臂端挠度为)()()(44231232d x E 3x x Fx 64EJ 3a l Fa y -+=+=π式中,)(44d -D 64J π=是空 心主轴的惯性矩;E=2.1x105MPa 是主轴的弹性模量;F 是作用主轴外伸端的力。
整理得到主轴刚度的约束条件为0d x E 3x x Fx 64X g 442312301≥-+-=)()()(πy2.设计边界条件三个设计变量的边界约束条件为m ax m in l l l ≤≤m ax m in D D D ≤≤m axm in a a a ≤≤3.具体算例已知某机床主轴悬臂端受到的切削力F=15000N ,主轴内径d=30mm ,悬臂端许用挠度y 0=0.05mm 。
要求主轴两支承跨度mm l mm650300≤≤,外径mm D mm 14060≤≤,悬臂 长度 mm a mm 15090≤≤。
建立优化的数学模型)30)((7854.0)(22231++=x x x X fTT a D l x x x X ],,[],,[321==0)30()(7009.91)(..44231231≥-+⨯-=x x x x X g t s01300/)(12≥-=x X g0650/1)(13≥-=x X g0160/)(24≥-=x X g0140/1)(25≥-=x X g0190/)(36≥-=x X g0150/1)(37≥-=x X g4.基于matlab 程序的复合形法实现优化(1)算法原理复合形法来源于无约束优化问题的单纯形法,通过构造复合形来求得最优解,新的复合形通过替换旧的复合形中的坏 点(目标函数最大或次大的点)得到,替换方式仍是单纯性法中的反应、压缩、扩展这几个基本方法。
(2)算法步骤其程序框图如下:(3)算法的MATLAB 实现在MATLAB 中利用编程语句编写实现复合形法的函数,命名:jiangfun.m 功能:用复合形法求解 约束多为函数的极值调用格式:[x,minf]= jiangfun(f,g,X,alpha,sita,gama,beta,var,eps) 其中符号表示如下:由目标函数级约束条件,取初始复合形)100,90,325(0=x )95,120,380(1=x )120,100,500(2=x )130,135,600(3=x取α(反射系数)=1.2,β(收缩系数)=0.3,θ(紧缩系数)=0.5,γ(扩展系数)=2。
在MATLAB 中输入下列命令 >>syms s t r>>f=0.7854*(s+r)*(t^2-900);>>g=[1-9.7009*r^2*(s+r)/(t^4-30^4);s/300-1;1-s/650;t/60-1;1-t/140;r/90-1;1-r/150];>>X=[325 380 500 600; 90 120 100 135;100 95 120 130]; >>[x,minf]=jiangfun(f,g,X,1.2,0.5,8,0.3,[s t r])所得结果为:x =300.035775.244290.0013Minf = 1458663.2594可以得出结论当l=300.0357mm,D=75.2442mm,a=90.0013mm时可以在满足刚度性能的条件下,得到最小的结构体积Minf=1458663.2594mm3 再乘以所选材料的密度,即可得出最小质量。
5、总结复合形法作为求解最优化问题的一种算法,较为适合解决有约束优化问题。
使用该法仅需比较目标函数值即可决定搜索方向,算法较简单,对目标函数的要求不苛刻。
同时利用MATLAB实现该方法的程序设计,较之C语言互换性以及通用性强,使用方便。
引用:《优化设计应用》——电子工业出版社附录I:MATLAB实现复合形算法源程序下载吧附录I:MATLAB实现复合形算法源程序function [x,minf]= jiangfun(f,g,X,alpha,sita,gama,beta,var,eps)%目标函数:f%约束函数:g%初始复合形:X%反射系数:alpha%紧缩系数:sita%扩展系数:gama%收缩系数:beta%自变量向量:var%自变量精度:eps%目标函数最小值时的自变量值:x%目标函数的最小值:minfif nargin == 8eps = 1.0e-6;endN = size(X);n = N(2);FX = zeros(1,n);while 1for i=1:nFX(i) = subs(f,var,X(:,i));end %将复合形法的顶点排序[XS,IX] = sort(FX);Xsorted = X(:,IX);px = sum(Xsorted(:,1:(n-1)),2)/(n-1); %复合形前n个点的中心 Fpx= subs(f,var,px);SumF = 0;for i=1:nSumF = SumF + (FX(IX(i))-Fpx)^2;endSumF = sqrt(SumF/n);if SumF <= epsx = Xsorted(:,1); %精度判断break;elsebcon_1 = 1;cof_alpha = alpha;while bcon_1x2 = px + cof_alpha*(px - Xsorted(:,n));%反射条件gx2 = subs(g,var,x2);if min(gx2)>=0bcon_1 = 0;elsecof_alpha = sqrt(cof_alpha); %以开方的方式减小反射系数 endendfx2 = subs(f,var,x2);if fx2 < XS(1)cof_gama = gama;bcon_2 = 1;while bcon_2x3 = px + cof_gama*(x2 - px); %扩展操作gx3 = subs(g,var,x3);if min(gx3)>=0bcon_2 = 0;elsecof_gama = sqrt(cof_gama); %采用开方的方式减小扩展系数 endendfx3 = subs(f,var,x3);if fx3 < XS(1)Xsorted(:,n) = x3;X = Xsorted;continue;elseXsorted(:,n) = x2;X = Xsorted;continue;endelseif fx2 < XS(n-1)Xsorted(:,n) = x2;X = Xsorted;continue;elseif fx2 < XS(n)Xsorted(:,n) = x2;endcof_beta = beta;bcon_3 = 1;while bcon_3x4 = px + cof_beta*(Xsorted(:,n) - px);%收缩操作 gx4 = subs(g,var,x4);if min(gx4)>=0bcon_3 = 0;elsecof_beta = cof_beta/2; %减小收缩系数endendfx4 = subs(f,var,x4);FNnew = subs(f,var,Xsorted(:,n));if fx4 < FNnewXsorted(:,n) = x4;X = Xsorted;continue;elsex0 = Xsorted(:,1);for i=1:nXsorted(:,j) = x0 + sita*(Xsorted(:,j) - x0); %对复合形进行收缩endendendendendX = Xsorted;endminf = subs(f,var,x)。