MATLAB期末大作业模版

合集下载

MATLAB期末大作业

MATLAB期末大作业

MATLAB期末⼤作业学号:姓名:《Matlab/Simulink在数学计算与仿真中的应⽤》⼤作业1.假设地球和⽕星绕太阳运转的半径分别为r和2r,利⽤comet指令动画显⽰从地球到⽕星的转移轨迹(r可以任意取值,要求实时显⽰探测器、太阳、地球和⽕星的位置)。

解函数function comet(varargin)[ax,args,nargs] = axescheck(varargin{:});error(nargchk(1,3,nargs,'struct'));% Parse the rest of the inputsif nargs < 2, x = args{1}; y = x; x = 1:length(y); endif nargs == 2, [x,y] = deal(args{:}); endif nargs < 3, p = 0.10; endif nargs == 3, [x,y,p] = deal(args{:}); endif ~isscalar(p) || ~isreal(p) || p < 0 || p >= 1error('MATLAB:comet:InvalidP', ...'The input ''p'' must be a real scalar between 0 and 1.'); End指令 %particle_motiont = 0:5:16013;r1=6.7e6;%随便给定参数%---------------------------r2=2*r1;g=9.8;R=6.378e6;m=g*R^2;%内轨道v_inner=sqrt(m/r1);w_inner=v_inner/r1;x_inter=r1*cos(w_inner*t);y_inter=r1*sin(w_inner*t);%外轨道v_outer=sqrt(m/r2);w_outer=v_outer/r2;x_outer=r2*cos(w_outer*t);y_outer=r2*sin(w_outer*t);%控制器转移轨道a=(r1+r2)/2;E=-m/(2*a);V_near=sqrt(m*(2/r1-2/(r1+r2)));%转移轨道在近地点的速度V_far=sqrt(m*(2/r2-2/(r1+r2)));%转移轨道在远地点的速度h=r1*V_near;%由于在近地点的速度垂直于位置失量, h是转移轨道的⽐动量矩e=sqrt(1+2*E*h^2/m^2);%e为椭圆轨迹的偏⼼率TOF=pi*sqrt(a^3/m);%转移轨道是椭圆的⼀半及飞⾏时间是周期的⼀半(开普勒第三定律) w=pi/TOF;%椭圆轨迹的⾓速度c=a*e;b=sqrt(a^2-c^2);x_ellipse=a*cos(w*t)-0.5*r1;y_ellipse=b*sin(w*t);%动画显⽰运动轨迹x=[x_inter;x_outer;x_ellipse]';y=[y_inter;y_outer;y_ellipse]';comet(x,y)%---------------------------动态图像如下:2.利⽤两种不同途径求解边值问题dfdxf gdgdxf g f g=+=-+==34430001,,(),()的解.途径⼀:指令syms f g[f,g]=dsolve('Df=3*f+4*g,Dg=-4*f+3*g','f(0)=0,g(0)=1'); disp('f=');disp(f)disp('g=');disp(g)结果(Matlab 7.8版本)f=i/(2*exp(t*(4*i - 3))) - (i*exp(t*(4*i + 3)))/2g=exp(t*(4*i + 3))/2 + 1/(2*exp(t*(4*i - 3)))(Matlab 6.5版本)f=exp(3*t)*sin(4*t)g=exp(3*t)*cos(4*t)>>途径⼆:%problem2function dy=problem2(t,y)dy = zeros(2,1);dy(1) = 3*y(1)+4*y(2);dy(2) = -4*y(1)+3*y(2);[t,y] = ode45('problem2',[0 2],[0 1]);plot(t,y(:,1),'r',t,y(:,2),'b');图23.假设著名的Lorenz 模型的状态⽅程表⽰为-+-=+-=+-=)()()()()()()()()()()()(322133223211t x t x t x t x t x t x t x t x t x t x t x t x σρρβ其中,设28,10,3/8===σρβ。

MATLAB期末大作业模板

MATLAB期末大作业模板

MATLAB应用技术期末大作业专业:姓名:学号:分数一、在一个图形窗口中以子图形式同时绘制正弦、余弦、正切、余切曲线。

请写下完整代码,展示图形结果。

(请标注题图和坐标轴,用不同颜色和不同线型分别绘制以上曲线)。

(15分)二、某公司员工的工资计算方法如下。

(1)工作时数超过120小时者,超过部分加发15%。

(2)工作时数低于60小时者,扣发700元。

(3)其余按每小时84元发。

根据员工的工时数,计算应发工资。

请写下完整的程序代码,并任意输入一工时数(使用input 函数),将结果展示(使用disp 函数)利用该代码进行计算工资,请写下计算结果。

(15分)三、编写一个函数文件,使其能够产生如下的分段函数:⎪⎩⎪⎨⎧≥<<≤-=66225.0,25.05.15.0)(x x x x xx f请编写完整的函数文件(保存函数文件名为hanshu.m ),并编写脚本文件代码,任意输入x 值(使用input 函数),在脚本文件中调用函数文件求)(x f ,展示结果(使用disp 函数),请写下计算结果。

(15分)四、将5个学生的6门功课的成绩存入矩阵P 中,进行如下处理:(1)分别求每门课的最高分、最低分及相应学生的序号。

(2)分别求每门课的平均分和标准差。

(3)5门课总分的最高分、最低分及相应学生序号。

(4)将5门课总分按从大到小顺序存入score 中,相应学生序号存入num 。

请将各小题的运行代码完整写下来,并写下运行结果。

(20分)五、请利用所学的MATLAB 知识,自主设计一个图形用户界面,请完整记录它的设计过程,需提供文字、代码和图片,以充分说明设计的图形用户界面可实现的功能。

(35分)。

matlab期末大作业

matlab期末大作业

matlab期末⼤作业MATLAB语⾔及控制系统仿真期末⼤作业姓名:熊睿班级:K0312417学号:K031241742⽇期:2014/10/18⼤作业题⽬:⼀、已知单位负反馈系统的开环传递函数为)10)(5(100)(++=s s s Ks G ,K 分别取0.5和3两种情况。

1、分别在MATLAB 命令窗⼝或Simulink 模型窗⼝,建⽴K 取不同值时控制系统的模型;2、在第1问建⽴的模型基础上,要求分别在MATLAB 命令窗⼝或Simulink 模型窗⼝中绘制并观察该系统的单位阶跃响应曲线、单位斜坡响应曲线和单位加速度响应曲线;(注意:要求将K 取不同值时系统的单位阶跃响应绘制在⼀张图中并进⾏必要的标注)3、计算两种K 值所对应系统的时域性能指标(包括调节时间、上升时间、超调量、峰值时间);4、绘制系统的伯德图和奈奎斯特曲线;5、判断当K 取7.8时系统的稳定性,如果不稳定,进⾏校正直到系统稳定为⽌。

(提⽰:可使⽤rltool ⼯具)要求:有详细的建模过程、绘图过程和分析过程,最后要求进⾏总结。

⼆、写⼀份800字左右的MATLAB 学习体会和总结。

⼀、已知单位负反馈系统的开环传递函数为)10)(5(100)(++=s s s Ks G ,K 分别取0.51、分别在MATLAB 命令窗⼝或Simulink 模型窗⼝,建⽴K 取不同值时控制系统的模型;根据题⽬,在simulink 中建⽴程序图,如图○1,利⽤To workspace 将数据导⼊workspace 中,在cammond window 中⽤plot 函数画出两个不同增益的系统的阶跃响应。

如图○2 命令窗⼝中的程序:plot(tout,Y,’r ’,tout ’Y2,’k ’)图○11234567891000.511.5时间(秒)幅值阶跃响应曲线K=0.5K=3图○22、在第1问建⽴的模型基础上,要求分别在MATLAB命令窗⼝或Simulink模型窗⼝中绘制并观察该系统的单位阶跃响应曲线、单位斜坡响应曲线和单位加速度响应曲线;(注意:要求将K取不同值时系统的单位阶跃响应绘制在⼀张图中并进⾏必要的标注)根据题⽬:在1中所创建的程序图的基础下,对K=0.5的系统分别接⼊单位阶跃、单位斜坡和单位加速度输⼊。

MATLAB期末大作业

MATLAB期末大作业

学号:姓名:《Matlab/Simulink在数学计算与仿真中的应用》大作业1.假设地球和火星绕太阳运转的半径分别为r和2r,利用comet指令动画显示从地球到火星的转移轨迹(r可以任意取值,要求实时显示探测器、太阳、地球和火星的位置)。

解函数function comet(varargin)[ax,args,nargs] = axescheck(varargin{:});error(nargchk(1,3,nargs,'struct'));% Parse the rest of the inputsif nargs < 2, x = args{1}; y = x; x = 1:length(y); endif nargs == 2, [x,y] = deal(args{:}); endif nargs < 3, p = 0.10; endif nargs == 3, [x,y,p] = deal(args{:}); endif ~isscalar(p) || ~isreal(p) || p < 0 || p >= 1error('MATLAB:comet:InvalidP', ...'The input ''p'' must be a real scalar between 0 and 1.'); End指令 %particle_motiont = 0:5:16013;r1=6.7e6;%随便给定参数%---------------------------r2=2*r1;g=9.8;R=6.378e6;m=g*R^2;%内轨道v_inner=sqrt(m/r1);w_inner=v_inner/r1;x_inter=r1*cos(w_inner*t);y_inter=r1*sin(w_inner*t);%外轨道v_outer=sqrt(m/r2);w_outer=v_outer/r2;x_outer=r2*cos(w_outer*t);y_outer=r2*sin(w_outer*t);%控制器转移轨道a=(r1+r2)/2;E=-m/(2*a);V_near=sqrt(m*(2/r1-2/(r1+r2)));%转移轨道在近地点的速度V_far=sqrt(m*(2/r2-2/(r1+r2)));%转移轨道在远地点的速度h=r1*V_near;%由于在近地点的速度垂直于位置失量, h是转移轨道的比动量矩e=sqrt(1+2*E*h^2/m^2);%e为椭圆轨迹的偏心率TOF=pi*sqrt(a^3/m);%转移轨道是椭圆的一半及飞行时间是周期的一半(开普勒第三定律)w=pi/TOF;%椭圆轨迹的角速度c=a*e;b=sqrt(a^2-c^2);x_ellipse=a*cos(w*t)-0.5*r1;y_ellipse=b*sin(w*t);%动画显示运动轨迹x=[x_inter;x_outer;x_ellipse]';y=[y_inter;y_outer;y_ellipse]';comet(x,y)%---------------------------动态图像如下:2.利用两种不同途径求解边值问题dfdxf gdgdxf g f g=+=-+==34430001,,(),()的解.途径一:指令syms f g[f,g]=dsolve('Df=3*f+4*g,Dg=-4*f+3*g','f(0)=0,g(0)=1');disp('f=');disp(f)disp('g=');disp(g)结果(Matlab 7.8版本)f=i/(2*exp(t*(4*i - 3))) - (i*exp(t*(4*i + 3)))/2g=exp(t*(4*i + 3))/2 + 1/(2*exp(t*(4*i - 3)))(Matlab 6.5版本)f=exp(3*t)*sin(4*t)g=exp(3*t)*cos(4*t)>>途径二:%problem2function dy=problem2(t,y)dy = zeros(2,1);dy(1) = 3*y(1)+4*y(2);dy(2) = -4*y(1)+3*y(2);[t,y] = ode45('problem2',[0 2],[0 1]);plot(t,y(:,1),'r',t,y(:,2),'b');图23.假设著名的Lorenz 模型的状态方程表示为⎪⎩⎪⎨⎧-+-=+-=+-=)()()()()()()()()()()()(322133223211t x t x t x t x t x t x t x t x t x t x t x t x σρρβ 其中,设28,10,3/8===σρβ。

MATLAB期末大作业

MATLAB期末大作业

1.龟兔赛跑本题旨在可视化龟兔赛跑的过程。

比赛的跑道由周长为P面积为A的矩形构成。

每单位时间,乌龟沿跑道缓慢前进一步,而兔子信心满满,每次以一个固定的概率决定走或不走。

如果选择走,就从2-10步中等概率选择一个步长。

每个单位时间用一个循环表示。

赛跑从矩形跑道左上点(0,0)开始,并沿顺时针方向进行。

不管是乌龟或兔子,谁先到达终点,比赛就告结束。

要求:编写MATLAB程序可视化上述过程。

程序以P,A以及兔子每次休息或前进的概率为输入参量。

程序必须可视化每个时刻龟兔赛跑的进程,并以红色“*”表示乌龟,蓝色的“—”表示兔子。

测试时可取P=460,A=9000。

通过上述例子,可否从理论和实验角度估计兔子休息或前进的概率,是的兔子和乌龟在概率意义下打平手。

2.黄金分割Fibonacci数列F n通过如下递推格式定义F n=F n-1+F n-2,其中F0=F1=1要求:1.计算前51项Fibonacci数,并存入一个向量2.利用上述向量计算比值F n/F n-13.验证该比值收敛到黄金比例(1+5)/23.图像处理此题旨在熟悉图像处理的基本操作,请各位自己选择一张彩色图像pMATLAB以三维数组读取一张彩图。

该彩图上每个像素位置分别存放一个取值0-255的三维向量,其三个分量分别表示该点的红(R)绿(G)蓝(B)强度信息。

要求:编写MATLAB程序,读入原始彩色图像,并且在一个图形窗口界面下显示六张图像。

这六张图分别是原始RGB彩图,及其5各变形:RBG,BRG,BGR,GBR和GRB。

每张子图要求以其对应变形命名。

最后将图像以a.jpg形式保存并黏贴至报告中。

提示:imread, imshow, cat。

matlab综合大作业(附详细答案)

matlab综合大作业(附详细答案)

m a t l a b综合大作业(附详细答案)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII《MATLAB语言及应用》期末大作业报告1.数组的创建和访问(20分,每小题2分):1)利用randn函数生成均值为1,方差为4的5*5矩阵A;实验程序:A=1+sqrt(4)*randn(5)实验结果:A =0.1349 3.3818 0.6266 1.2279 1.5888-2.3312 3.3783 2.4516 3.1335 -1.67241.2507 0.9247 -0.1766 1.11862.42861.5754 1.6546 5.3664 0.8087 4.2471-1.2929 1.3493 0.7272 -0.6647 -0.38362)将矩阵A按列拉长得到矩阵B;实验程序:B=A(:)实验结果:B =0.1349-2.33121.25071.5754-1.29293.38183.37830.92471.65461.34930.62662.4516-0.17665.36640.72721.22793.13351.11860.8087-0.66471.5888-1.67242.42864.2471-0.38363)提取矩阵A的第2行、第3行、第2列和第4列元素组成2*2的矩阵C;实验程序:C=[A(2,2),A(2,4);A(3,2),A(3,4)]实验结果:C =3.3783 3.13350.9247 1.11864)寻找矩阵A中大于0的元素;]实验程序:G=A(find(A>0))实验结果:G =0.13491.25071.57543.38183.37830.92471.65461.34930.62662.45165.36640.72721.22793.13351.11860.80871.58882.42864.24715)求矩阵A的转置矩阵D;实验程序:D=A'实验结果:D =0.1349 -2.3312 1.2507 1.5754 -1.29293.3818 3.3783 0.9247 1.6546 1.34930.6266 2.4516 -0.1766 5.3664 0.72721.2279 3.1335 1.1186 0.8087 -0.66471.5888 -1.67242.4286 4.2471 -0.38366)对矩阵A进行上下对称交换后进行左右对称交换得到矩阵E;实验程序:E=flipud(fliplr(A))实验结果:E =-0.3836 -0.6647 0.7272 1.3493 -1.29294.2471 0.80875.3664 1.6546 1.57542.4286 1.1186 -0.1766 0.9247 1.2507-1.6724 3.1335 2.4516 3.3783 -2.33121.5888 1.2279 0.6266 3.3818 0.13497)删除矩阵A的第2列和第4列得到矩阵F;实验程序:F=A;F(:,[2,4])=[]实验结果:F =0.1349 0.6266 1.5888-2.3312 2.4516 -1.67241.2507 -0.17662.42861.5754 5.3664 4.2471-1.2929 0.7272 -0.38368)求矩阵A的特征值和特征向量;实验程序:[Av,Ad]=eig(A)实验结果:特征向量Av =-0.4777 0.1090 + 0.3829i 0.1090 - 0.3829i -0.7900 -0.2579 -0.5651 -0.5944 -0.5944 -0.3439 -0.1272-0.2862 0.2779 + 0.0196i 0.2779 - 0.0196i -0.0612 -0.5682 -0.6087 0.5042 - 0.2283i 0.5042 + 0.2283i 0.0343 0.6786 0.0080 -0.1028 + 0.3059i -0.1028 - 0.3059i 0.5026 0.3660 特征值Ad =6.0481 0 0 0 00 -0.2877 + 3.4850i 0 0 00 0 -0.2877 - 3.4850i 0 00 0 0 0.5915 00 0 0 0 -2.30249)求矩阵A的每一列的和值;实验程序:lieSUM=sum(A)实验结果:lieSUM =-0.6632 10.6888 8.9951 5.6240 6.208710)求矩阵A的每一列的平均值;实验程序:average=mean(A)实验结果:average =-0.1326 2.1378 1.7990 1.1248 1.24172.符号计算(10分,每小题5分):1)求方程组20,0++=++=关于,y z的解;uy vz w y z w实验程序:S = solve('u*y^2 + v*z+w=0', 'y+z+w=0','y,z');y= S. y, z=S. z实验结果:y =[ -1/2/u*(-2*u*w-v+(4*u*w*v+v^2-4*u*w)^(1/2))-w] [ -1/2/u*(-2*u*w-v-(4*u*w*v+v^2-4*u*w)^(1/2))-w] z =[ 1/2/u*(-2*u*w-v+(4*u*w*v+v^2-4*u*w)^(1/2))] [ 1/2/u*(-2*u*w-v-(4*u*w*v+v^2-4*u*w)^(1/2))]2)利用dsolve 求解偏微分方程,dx dyy x dt dt==-的解; 实验程序:[x,y]=dsolve('Dx=y','Dy=-x')实验结果:x =-C1*cos(t)+C2*sin(t)y = C1*sin(t)+C2*cos(t)3.数据和函数的可视化(20分,每小题5分):1)二维图形绘制:绘制方程2222125x y a a +=-表示的一组椭圆,其中0.5:0.5:4.5a =;实验程序:t=0:0.01*pi:2*pi; for a=0.5:0.5:4.5; x=a*cos(t); y=sqrt(25-a^2)*sin(t); plot(x,y) hold on end实验结果:2) 利用plotyy 指令在同一张图上绘制sin y x =和10x y =在[0,4]x ∈上的曲线;实验程序:x=0:0.1:4; y1=sin(x); y2=10.^x;[ax,h1,h2]=plotyy(x,y1,x,y2); set(h1,'LineStyle','.','color','r'); set(h2,'LineStyle','-','color','g'); legend([h1,h2],{'y=sinx';'y=10^x'});实验结果:3)用曲面图表示函数22z x y =+;实验程序:x=-3:0.1:3; y=-3:0.1:3; [X,Y]=meshgrid(x,y); Z=X.^2+Y.^2; surf(X,Y,Z)实验结果:4)用stem 函数绘制对函数cos 4y t π=的采样序列;实验程序:t=-8:0.1:8;y=cos(pi.*t/4); stem(y)实验结果:4. 设采样频率为Fs = 1000 Hz ,已知原始信号为)150π2sin(2)80π2sin(t t x ⨯+⨯=,由于某一原因,原始信号被白噪声污染,实际获得的信号为))((ˆt size randn x x+=,要求设计出一个FIR 滤波器恢复出原始信号。

《科学计算与MATLAB》期末大作业

《科学计算与MATLAB》期末大作业

杭州电子科技大学信息工程学院《科学计算与MATLAB》期末大作业给出程序、图、作业分析,程序需加注释。

1. 试编写名为fun.m 的MATLAB 函数,用以计算下述的值:⎪⎩⎪⎨⎧-<->=t t n t t t n t f 的)4/sin()(si 对所有)4/sin(其他情况)sin(的)4/sin()(si 对所有)4/sin()(ππππ绘制t 关于函数f(t)的图形,其中t 的取值范围为ππ66≤≤-t ,间距为10/π。

function y=fun()%定义函数%t=-6*pi:pi/10:6*pi; %定义变量范围 y =(sin(pi/4)).*(sin(t)>sin(pi/4))+(sin(-pi/4)).*(sin(t)<sin(-pi/4))+(sin(t)).*((sin(t)<=sin(pi/4))&(sin(t)>=sin(-pi/4)));%函数表示 plot(t,y); %画图 end2.解以下线性方程组⎪⎩⎪⎨⎧=+=++=--353042231321321x x x x x x x xA=[2 -1 -1;1 1 4;3 0 5];%输入矩阵 B=[2;0;3]; %输入矩阵 X = A\B %计算结果3.已知矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44434241343332312423222114131211A 求: (1)A(2:3,2:3)(2)A(:,1:2) (3)A(2:3,[1,3])(4)[A,[ones(2,2);eye(2)]]A=[11 12 13 14;21 22 23 24;31 32 33 34;41 42 43 44];%输入矩阵A(2:3,2:3) %输出矩阵A(:,1:2) %输出矩阵A(2:3,[1,3]) %输出矩阵[A,[ones(2,2);eye(2)]] %输出矩阵4.数学函数()2222sinyxyxz++=定义在区域[-8,8]×[-8,8]上。

matlab期末大作业题目及答案

matlab期末大作业题目及答案

matlab 期末大作业(30分,每题6分)1. 积分运算(第四数值和五章符号)(1)定积分运算:分别采用数值法(quad ,dblquad )和符号运算(syms, int )一重定积分π⎰1. 数值法(quad )a) 运行代码:b) 运行结果:2. 符号运算(syms )a) 运行代码:b) 运行结果:二重定积分112200()x y dxdy+⎰⎰1.数值法(dblquad):a)运行代码:b)运行结果:2.符号运算(syms):a)运行代码:b)运行结果:(2) 不定积分运算sin dxdy ⎰⎰((x/a)+b/y) i.运行代码:ii.运行结果:2. 用符号法和数值法求解线性代数方程 (第五章和第二章)⎩⎨⎧=+=+12*22x *213*12x *a11y a a y a (1) 用syms 定义待解符号变量x,y 和符号参数a11,a12,a21,a22,用符号solve 求x,y 通解 1. 运行代码:2. 运行结果:(2) 用subs 带入a11=2,a12=4,a21=6,a22=8,求x 和y 特解,用vpa 输出有效数值4位的结果 1. 运行代码:2. 运行结果:(3) 采用左除(\)和逆乘法求解符号参数赋值后的方程 ⎩⎨⎧=+=+12*8x *63*4x *2y y1. 运行代码:2. 运行结果:3.数值法和符号法求解非线性方程组(第四数值和五章符号 )(1)采用数值法(fsolve )求解初始估计值为x0 = [-5; -5]的数值解1. 运行代码:2. 运行结果:21x 21x 21e x 2x e x x 2--=+-=-(2)符号法(solve )的符号结果用eval 或double 转化为数值结果.1. 运行代码:2. 运行结果:4. 解二阶微分方程 (第四数值和五章符号 )⎪⎩⎪⎨⎧===++6)0(',0)0(09322y y y dx dy dx y d(1)数值ode 求特解,用plot (x,y) 画t 在[0,10]范围内(x ,y )数值曲线 1. 运行代码:2. 运行结果:(2)符号运算dsolve求通解,用ezplot画t在[0,10]范围内(x,y)符号曲线1. 运行代码:2. 运行结果:5. 三维绘图(第六章)已知:x和y都在[-8,8]范围内,采用subplot(3,1,x)绘制三个子图,它们分别是用meshgrid和mesh绘制网格图、用c=contour 绘制等位线和用surf 绘制曲面图1.运行代码:2.运行结果:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学号:
《MATLAB》
期末大作业
学院土木工程与建筑学院
专业
班级
姓名
指导教师李琳
2018年5月16日
题目2:问题描述:在[0 2π]范围内绘制二维曲线图y=cos(5x)*sin(x)
(1)问题分析
这是一个二维绘图问题,先划定x的范围与间距,再列出y的表达式,利用plot函数绘制二维曲线。

(2)软件说明及源代码
>> x = 0:pi/10:2*pi;
>>y = cos(5*x).*sin(x);
>>plot(x,y)
(3)实验结果
题目4:问题描述:创建符号函数并求解,要求写出步骤和运行结果
(1)创建符号函数f=ax2+bx+c
(2)求f=0的解
(1)问题分析
这是一个符号函数显示以及符号函数的求解问题,第一问先定义常量与变量,在写出f表达式,利用pretty函数显示f。

第二问利用solve函数求解f=0时的解。

(2)软件说明及源代码
第一问
>> syms a b c x;
>> f=a*x^2+b*x+c;
>> pretty(f)
第二问
>>syms a b c x;
>>f=a*x^2+b*x+c;
>> solve(f)
(3)实验结果
1、
2、
题目5:问题描述:求积分
(1)问题分析
这是一个利用符号函数求积分的问题,先定义变量x,再列出I1表达式,利用int函数求在范围0到Pi/2上的积分。

(2)软件说明及源代码
>> syms x;
>> I1=(1-2*sin(2*x))^0.5;
>> int(I1,0,0.5*pi)
(3)实验结果
题目6:问题描述:分别随机产生一个6×6的整数矩阵(元素可在[-20,20]之间),求该随机阵的秩,特征值和特征向量。

(1)问题分析
这是一个矩阵运算问题,先利用rand函数产生一个6*6的元素在-20到20
之间的整形矩阵,再利用rank、eig两个函数分别求该随机阵的秩,特征值和特征向量。

(2)软件说明及源代码
>> a=round(-20+40*rand(6));
>> rank(a);
>> [X,B]=eig(a)
(3)实验结果
题目9:问题描述:按水平和竖直方向分别合并下述两个矩阵:
(1)问题分析
这是一个矩阵基本操作问题,先输入矩阵A与B,再使用水平和竖直方向合并矩阵。

(2)软件说明及源代码
>> A=[1 0 0;1 1 0;0 0 1];
>> B=[2 3 4;5 6 7;8 9 10];
>> C=[A,B];
>> D=[A;B]
(3)实验结果
题目12:问题描述:读入RGB图像pepper.png,并把它转换为灰度图,在同一个图像窗口的第一个子图显示原图,在第二个子图显示其灰度图。

(1)问题分析
这是一个三维绘图问题,先用imread函数读取图片,再利用figure生成一个窗口,利用subplot函数使在一个窗口里显示两个子图,利用imshow显示图片。

(2)软件说明及源代码
>> peppers = imread ('F:\Desktop\peppers.png');
>> figure;
>> I = rgb2gray(peppers);
>> subplot(1,2,1);imshow(peppers);
>> subplot(1,2,2);imshow(I)
(3)实验结果
题目14:问题描述:利用switch函数编写脚本文件。

用户输入ch值,当ch=1时,产生[-1, 1]之间均匀分布的随机数;ch=2时,产生大小为5x5的对角阵,其中每个元素在[0, 1]之间随机数;当ch=3时,产生大小为5x5的单位矩阵;当ch=4时,产生3阶魔方阵;当ch=5时,直接退出。

(1)问题分析
这是一个脚本编辑与矩阵基本操作的问题,先利用input函数获取用户输入的ch值,再在使用switch判断用户输入的值,1时,利用randi产生[-1, 1]之间均匀分布的随机数;2时,利用diag函数与rand函数,产生大小为5x5的对角阵,其中每个元素在[0, 1]之间随机数;3时,利用eye函数产生大小为5x5的单位矩阵;4时,利用magic函数,产生3阶魔方阵。

(2)软件说明及源代码
ch = input('Enter the value of "ch":');
switch ch
case 1
y = randi([-1,1]);
case 2
y = diag(rand(1,5));
case 3
y = eye(5);
case 4
题目18:问题描述:编制m文件,等待键盘输入,输入密码20171026,密码正确,显示输入密码正确,程序结束;否则提示,重新输入。

(1)问题分析
这是一个while循环编程问题,先利用input获取用户输入的a的值,利用while循环判断a是否等于20171026,错误时重新输入,正确时退出循环,利用if语句判断a值并输出密码正确。

(2)软件说明及源代码
a=input('输入密码:')
while a~=20171026
disp('密码错误:')
clear
a=input('输入密码:')
end
if a==20171026
disp('密码正确·!')
end
题目21:问题描述:从键盘输入若干个数,当输入0时结束输入,求这些数的平均值以及平方和。

(1)问题分析
这是一个数组操作问题,先生成一个空数组,再利用input函数获取用户输入的值,利用while循环来使用户输入更多的值,并将值放入数组末端,当用
户输入0则循环停止,利用mean函数求平均值,利用sum求数值的平方和。

(2)软件说明及源代码
data=[];%建立空数组
in=input('输入数据:');%输入一个数据
while (isempty(in)||in~=0)%空数据或数值不为0进入循环
data=[data in];%将新数据放入原来数据的末端
in=input('输入数据:');%要求再次输入数据
end
mean(data)%求平均
sum(data.^2)%求平方和
题目3:某河流边有两个化工厂,流经第一座化工厂的河水流量是每天500万立方米,在两个工厂之间有一条流量为200万立方米的支流,如下图所示。

第一个化工厂每天排放工业污水2万立方米,第二个化工厂每天排放工业污水1.4万立方米,从第一个化工厂排出的污水流到第二个化工厂之前,有20%可以自然进化,根据环保要求,河流中工业污水的含量不应大于0.2%。

因此两个化工厂都必须各自处理净化一部分污水,第一个化工厂处理污水的成本是0.1元每立方米,第二个化工厂处理污水的成本是0.08元每立方米,问在满足环保要求的条件下,各化工厂每天应处理多少污水,才能使两厂总的处理污水费用最少?
(1)问题分析:这是一个单目标优化问题。

设x1,x2分别表示第一第二化工厂每天处理的污水量,则易得目标函数为f=1000x1+800x2。

约束条件为
{(2−x1)
500
≤0.2%
0.8(2−x1)+(1.4−x2)
700≤0.2%
x1≤2
x2≤1.4
可将该题线性规划模型归结为:minf=1000x1+800x2
s.t.
{−x1≤−1
−0.8x1−x2≤−1.6
x1≤2
x2≤1.4
x1,x2≥0
输入参数f,A,b,lb;利用linprog函数求解(2)软件说明及源代码
>> f=[1000 800];
A=[-1 0;-0.8 -1;1 0;0 1];
b=[-1;-1.6;2;1.4];
lb=zeros(2,1);。

相关文档
最新文档