关于圆的综合练习题
中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。
初三数学圆的综合的专项培优练习题(含答案)及答案解析

初三数学圆的综合的专项培优练习题(含答案)及答案解析一、圆的综合1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:(1)求证:CD 是⊙O 的切线;(2)若BC=4,CD=6,求平行四边形OABC 的面积.【答案】(1)证明见解析(2)24【解析】试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解.试题解析:(1)证明:连接OD ,∵OD=OA ,∴∠ODA=∠A ,∵四边形OABC 是平行四边形,∴OC ∥AB ,∴∠EOC=∠A ,∠COD=∠ODA ,∴∠EOC=∠DOC ,在△EOC 和△DOC 中,OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△DOC (SAS ),∴∠ODC=∠OEC=90°,即OD ⊥DC ,∴CD 是⊙O 的切线;(2)由(1)知CD 是圆O 的切线,∴△CDO 为直角三角形,∵S △CDO =12CD•OD , 又∵OA=BC=OD=4,∴S△CDO=12×6×4=12,∴平行四边形OABC的面积S=2S△CDO=24.2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.3.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求»AC的长度.【答案】(1)证明见解析;(2)2π.【解析】试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度.试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO,∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD;(2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三角形,∴∠AOC=60°,∴弧AC的长度=606180π⨯=2π.点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用.4.如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积.【答案】(1)详见解析;(2)32π.【解析】【分析】(1)连结OD,根据垂径定理得到OD⊥BC,根据平行线的性质得到OD⊥DF,根据切线的判定定理证明;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,证明△OBD为等边三角形,得到∠ODB=60°,3PE,证明△ABE∽△AFD,根据相似三角形的性质求出AE,根据阴影部分的面积=△BDF的面积-弓形BD的面积计算.【详解】证明:(1)连结OD,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴»»BD CD=,∴OD⊥BC,∵BC∥DF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,3,∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=123,3,在Rt△DEP中,∵37∴22(7)(3)=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,∵∠DBE=∠CAE,∠BED=∠AEC,∴△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=17,∴57∵BE∥DF,∴△ABE∽△AFD,∴BE AE DF AD=,即5757125DF=,解得DF=12,在Rt△BDH中,BH=12BD=3,∴阴影部分的面积=△BDF的面积﹣弓形BD的面积=△BDF的面积﹣(扇形BOD的面积﹣△BOD的面积)=22160(23)3123(23)23604π⨯⨯⨯--⨯ =93﹣2π.【点睛】考查的是切线的判定,扇形面积计算,相似三角形的判定和性质,圆周角定理的应用,等边三角形的判定和性质,掌握切线的判定定理,扇形面积公式是解题的关键.5.如图1,是用量角器一个角的操作示意图,量角器的读数从M点开始(即M点的读数为0),如图2,把这个量角器与一块30°(∠CAB=30°)角的三角板拼在一起,三角板的斜边AB与量角器所在圆的直径MN重合,现有射线C绕点C从CA开始沿顺时针方向以每秒2°的速度旋转到与CB,在旋转过程中,射线CP与量角器的半圆弧交于E.连接BE.(1)当射线CP经过AB的中点时,点E处的读数是,此时△BCE的形状是;(2)设旋转x秒后,点E处的读数为y,求y与x的函数关系式;(3)当CP旋转多少秒时,△BCE是等腰三角形?【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒【解析】【分析】(1)根据圆周角定理即可解决问题;(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);(3)分两种情形分别讨论求解即可;【详解】解:(1)如图2﹣1中,∵∠ACB=90°,OA=OB,∴OA=OB=OC,∴∠OCA=∠OAC=30°,∴∠AOE=60°,∴点E处的读数是60°,∵∠E=∠BAC=30°,OE=OB,∴∠OBE=∠E=30°,∴∠EBC=∠OBE+∠ABC=90°,∴△EBC是直角三角形;故答案为60°,直角三角形;(2)如图2﹣2中,∵∠ACE=2x,∠AOE=y,∵∠AOE=2∠ACE,∴y=4x(0≤x≤45).(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,∵AC⊥BC,∵EO∥AC,∴∠AOE=∠BAC=30°,∠AOE=15°,∴∠ECA=12∴x=7.5.②若2﹣4中,当BE=BC时,易知∠BEC=∠BAC=∠BCE=30°,∴∠OBE=∠OBC=60°,∵OE=OB,∴△OBE是等边三角形,∴∠BOE=60°,∴∠AOB=120°,∠ACB=60°,∴∠ACE=12∴x=30,综上所述,当CP旋转7.5秒或30秒时,△BCE是等腰三角形;【点睛】本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.6..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A 重合),⊙D与AB相切,切点为E,⊙D交射线..DC于点F,过F作FG⊥EF交直线..BC于点G,设⊙D的半径为r.(1)求证AE=EF;(2)当⊙D与直线BC相切时,求r的值;(3)当点G落在⊙D内部时,直接写出r的取值范围.【答案】(1)见解析,(2)r=3,(3)63 3r<<【解析】【分析】(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.【详解】解:设圆的半径为r;(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,∴AE=EF;(2)如图2所示,连接DE,当圆与BC相切时,切点为F∠A=30°,AB=6,则BF=3,AD=2r ,由勾股定理得:(3r )2+9=36,解得:r=3; (3)①当点F 在线段AC 上时,如图3所示,连接DE 、DG ,333,3933FC r GC FC r =-==-②当点F 在线段AC 的延长线上时,如图4所示,连接DE 、DG ,333,3339FC r GC FC r ===-两种情况下GC 符号相反,GC 2相同,由勾股定理得:DG 2=CD 2+CG 2,点G 在圆的内部,故:DG2<r2,即:22(332)(339)2r r r +-<整理得:25113180r r -+<6335r <<【点睛】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.7.如图1,等腰直角△ABC 中,∠ACB=90°,AC=BC ,过点A ,C 的圆交AB 于点D ,交BC 于点E ,连结DE(1)若AD=7,BD=1,分别求DE ,CE 的长(2)如图2,连结CD ,若CE=3,△ACD 的面积为10,求tan ∠BCD(3)如图3,在圆上取点P 使得∠PCD=∠BCD (点P 与点E 不重合),连结PD ,且点D 是△CPF 的内心①请你画出△CPF ,说明画图过程并求∠CDF 的度数②设PC=a ,PF=b ,PD=c ,若(a-2c )(b-2c )=8,求△CPF 的内切圆半径长.【答案】(1)DE=1,CE=322)tan ∠BCD=14;(3)①135°;②2. 【解析】 【分析】(1)由A 、C 、E 、D 四点共圆对角互补为突破口求解;(2)找∠BDF 与∠ODA 为对顶角,在⊙O 中,∠COD=2∠CAD ,证明△OCD 为等腰直角三角形,从而得到∠EDC+∠ODA=45°,即可证明∠CDF=135°;(3)过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F ,结合圆周角定理得出∠CPD=∠CAD=45°,再根据圆的内心是三角形三个内角角平分线的交点,得出∠CPF=90°,然后根据角平分线性质得出114522DCF CFD PCF PFC ∠+∠=∠+∠=︒,最后再根据三角形内角和定理即可求解;证明∠DCF+∠CFD=45°,从而证明∠CPF 是直角,再求证四边形PKDN 是正方形,最后以△PCF 面积不变性建立等量关系,结合已知(2c )(2c )=8,消去字母a ,b 求出c 值,即求出△CPF 2c . 【详解】 (1)由图可知:设BC=x .在Rt △ABC 中,AC=BC .由勾股定理得: AC 2+BC 2=AB 2,∵AB=AD+BD ,AD=7,BD=1, ∴x 2+x 2=82, 解得:x=42.∵⊙O 内接四边形,∠ACD=90°, ∴∠ADE=90°, ∴∠EDB=90°, ∵∠B=45°,∴△BDE 是等腰直角三形. ∴DE=DB , 又∵DB=1, ∴DE=1, 又∵CE=BC-BE , ∴CE=42232-=. (2)如图所示:在△DCB 中过点D 作DM ⊥BE ,设BE=y ,则DM=12y , 又∵CE=3,∴BC=3+y , ∵S △ACB =S ACD +S DCB ,∴()1114242103y y 222⨯=+⨯+⨯, 解得:y=2或y=-11(舍去). ∴EM=1,CM=CE+ME=1+3=4, 又∵∠BCD=∠MCD ,∴tan ∠BCD=tan ∠MCD , 在Rt △DCM 中,tan ∠MCD=DM CM =14, ∴tan ∠BCD=14. (3)①如下图所示:过点D 做DH CB ⊥于点H ,以D 为圆心,DH 为半径画圆,过点P 做D e 切线PF 交CB 的延长线于点F .∵∠CAD=45°, ∴∠CPD=∠CAD=45°, 又∵点D 是CPF ∆的内心, ∴PD 、CD 、DF 都是角平分线,∴∠FPD=∠CPD =45°,∠PCD=∠DCF ,∠PFD=∠CFD ∴∠CPF=90° ∴∠PCF+∠PFC=90°∴114522DCF CFD PCF PFC ∠+∠=∠+∠=︒ ∴∠CDF=180°-∠DCF-∠CFD F=90°+45°=135°, 即∠CDF 的度数为135°. ②如下图所示过点D 分别作DK ⊥PC ,DM ⊥CF ,DN ⊥PF 于直线PC ,CF 和PF 于点K ,M ,N 三点, 设△PCF 内切圆的半径为m ,则DN=m ,∵点D 是△PCF 的内心, ∴DM=DN=DK ,又∵∠DCF+∠CFD+∠FDC=180°,∠FDC=45°, ∴∠DCF+∠CFD=45°,又∵DC ,DF 分别是∠PCF 和∠PFC 的角平分线, ∴∠PCF=2∠DCF ,∠PFC=2∠DFC , ∴∠PCF+∠PFC=90°, ∴∠CPF=90°.在四边形PKDN 中,∠PND=∠NPK=∠PKD=90°, ∴四边形PKDN 是矩形, 又∵KD=ND ,∴四边形PKDN 是正方形. 又∵∠MBD=∠BDM=45°, ∠BDM=∠KDP , ∴∠KDP=45°. ∵PC=a ,PF=b ,PD=c ,∴,∴NF=b -,CK=a -, 又∵CK=CM ,FM=FN ,CF=CM+FM , ∴CF=a b +, 又∵S △PCF =S △PDF +S △PDC +S △DCF ,∴1111ab a b (a b 2222=+++-),化简得:)2a b c c +-------(Ⅰ),又∵若(c )(c )=8化简得:()2ab a b 2c 8++=------(Ⅱ),将(Ⅰ)代入(Ⅱ)得:c 2=8,解得:c =c =-∴m=c 222==, 即△CPF 的内切圆半径长为2. 【点睛】本题考查圆的内接四边形性质,圆的内心,圆心角、圆周角,同弧(或等弧)之间的相互关系,同时也考查直角三角形,勾股定理,同角或等角的三角函数值相等和三角形的面积公式,正方形,对顶角和整式的运算等知识点;难点是作辅助线和利用等式求△CPF 的内切圆半径长.8.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高.(2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,△ABC中,AC=BC=10,cosC=35,点P是AC边上一动点(不与点A、C重合),以PA长为半径的⊙P与边AB的另一个交点为D,过点D作DE⊥CB于点E.(1)当⊙P与边BC相切时,求⊙P的半径.(2)连接BP交DE于点F,设AP的长为x,PF的长为y,求y关于x的函数解析式,并直接写出x的取值范围.(3)在(2)的条件下,当以PE长为直径的⊙Q与⊙P相交于AC边上的点G时,求相交所得的公共弦的长.【答案】(1)409R=;(2)25880320xy x xx=-++;(3)50105-.【解析】【分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC=HPCP=10RR-=45,即可求解;(2)首先证明PD∥BE,则EB BFPD PF=,即:2024588x yxxx-+--=,即可求解;(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.【详解】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=35,则sinC=45,sinC =HP CP =10R R -=45,解得:R =409; (2)在△ABC 中,AC =BC =10,cosC =35, 设AP =PD =x ,∠A =∠ABC =β,过点B 作BH ⊥AC ,则BH =ACsinC =8,同理可得:CH =6,HA =4,AB =45,则:tan ∠CAB =2, BP =228+(4)x -=2880x x -+,DA =25x ,则BD =45﹣25x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,tanβ=2,则cosβ5,sinβ5, EB =BDcosβ=(525x )5=4﹣25x ,∴PD ∥BE ,∴EB BFPD PF=,即:2024588x y x xx -+--=,整理得:y 25xx 8x 803x 20-++(3)以EP 为直径作圆Q 如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q是弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP∥BD,由(2)知,PD∥BC,∴四边形PDBE为平行四边形,∴AG=EP=BD,∴AB=DB+AD=AG+AD=5设圆的半径为r,在△ADG中,AD=2rcosβ5DG5AG=2r,5=52r51+,则:DG550﹣5相交所得的公共弦的长为50﹣5【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.10.如图,四边形ABCD是⊙O的内接四边形,AC为直径,»»BD AD=,DE⊥BC,垂足为E.(1)判断直线ED与⊙O的位置关系,并说明理由;(2)若CE=1,AC=4,求阴影部分的面积.【答案】(1)ED 与O e 相切.理由见解析;(2)2=33S π-阴影. 【解析】 【分析】(1)连结OD ,如图,根据圆周角定理,由»»BD AD =得到∠BAD =∠ACD ,再根据圆内接四边形的性质得∠DCE =∠BAD ,所以∠ACD =∠DCE ;利用内错角相等证明OD ∥BC ,而DE ⊥BC ,则OD ⊥DE ,于是根据切线的判定定理可得DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,易得四边形ODEH 为矩形,所以OD =EH =2,则CH =HE ﹣CE =1,于是有∠HOC =30°,得到∠COD =60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S 扇形OCD ﹣S △OCD 进行计算即可. 【详解】(1)直线ED 与⊙O 相切.理由如下:连结OD ,如图,∵»»BD AD =,∴∠BAD =∠ACD .∵∠DCE =∠BAD ,∴∠ACD =∠DCE .∵OC =OD ,∴∠OCD =∠ODC ,而∠OCD =∠DCE ,∴∠DCE =∠ODC ,∴OD ∥BC . ∵DE ⊥BC ,∴OD ⊥DE ,∴DE 为⊙O 的切线;(2)作OH ⊥BC 于H ,则四边形ODEH 为矩形,∴OD =EH .∵CE =1,AC =4,∴OC =OD =2,∴CH =HE ﹣CE =2﹣1=1.在Rt △OHC 中,∵OC =2,CH =1,∠OHC =90°,∠HOC =30°,∴∠COD =60°,∴阴影部分的面积=S 扇形OCD ﹣S △OCD26023360π⋅⋅=-•2223=π3-.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.11.已知四边形ABCD 是⊙O 的内接四边形,∠DAB =120°,BC =CD ,AD =4,AC =7,求AB 的长度.【答案】AB =3. 【解析】 【分析】作DE ⊥AC ,BF ⊥AC ,根据弦、弧、圆周角、圆心角的关系,求得BC CD =u u u r u u u r,进而得到∠DAC =∠CAB =60°,在Rt △ADE 中,根据60°锐角三角函数值,可求得DE =23,AE =2,再由Rt △DEC 中,根据勾股定理求出DC 的长,在△BFC 和△ABF 中,利用60°角的锐角三角函数值及勾股定理求出AF 的长,然后根据求出的两个结果,由AB =2AF ,分类讨论求出AB 的长即可. 【详解】作DE ⊥AC ,BF ⊥AC ,∵BC =CD , ∴BC CD =u u u r u u u r, ∴∠CAB =∠DAC , ∵∠DAB =120°, ∴∠DAC =∠CAB =60°, ∵DE ⊥AC ,∴∠DEA =∠DEC =90°, ∴sin60°=4DE ,cos60°=4AE, ∴DE =3AE =2, ∵AC =7,∴CE =5,∴DC= ∴BC ,∵BF ⊥AC ,∴∠BFA =∠BFC =90°,∴tan60°=BF AF,BF 2+CF 2=BC 2, ∴BF,∴()2227AF +-=, ∴AF =2或AF =32, ∵cos60°=AF AB, ∴AB =2AF ,当AF =2时,AB =2AF =4,∴AB =AD ,∵DC =BC ,AC =AC ,∴△ADC ≌△ABC (SSS ),∴∠ADC =∠ABC ,∵ABCD 是圆内接四边形,∴∠ADC+∠ABC =180°,∴∠ADC =∠ABC =90°,但AC 2=49,2222453AD DC +=+=,AC 2≠AD 2+DC 2,∴AB =4(不合题意,舍去), 当AF =32时,AB =2AF =3, ∴AB =3.【点睛】 此题主要考查了圆的相关性质和直角三角形的性质,解题关键是构造直角三角形模型,利用直角三角形的性质解题.12.如图,BD 为△ABC 外接圆⊙O 的直径,且∠BAE =∠C .(1)求证:AE 与⊙O 相切于点A ;(2)若AE ∥BC ,BC =AC =2,求AD 的长.【答案】(1)证明见解析;(2)23【解析】【分析】(1)根据题目中已出现切点可确定用“连半径,证垂直”的方法证明切线,连接AO并延长交⊙O于点F,连接BF,则AF为直径,∠ABF=90°,根据同弧所对的圆周角相等,则可得到∠BAE=∠F,既而得到AE与⊙O相切于点A.(2))连接OC,先由平行和已知可得∠ACB=∠ABC,所以AC=AB,则∠AOC=∠AOB,从而利用垂径定理可得AH=1,在Rt△OBH中,设OB=r,利用勾股定理解得r=2,在Rt△ABD中,即可求得AD的长为3【详解】解:(1)连接AO并延长交⊙O于点F,连接BF,则AF为直径,∠ABF=90°,∵»»,AB AB∴∠ACB=∠F,∵∠BAE=∠ACB,∴∠BAE=∠F,∵∠FAB+∠F=90°,∴∠FAB+∠BAE=90°,∴OA⊥AE,∴AE与⊙O相切于点A.(2)连接OC,∵AE∥BC,∴∠BAE=∠ABC,∵∠BAE=∠ACB,∴∠ACB=∠ABC,∴AC=AB=2,∴∠AOC=∠AOB,∵OC=OB,∴OA⊥BC,∴CH=BH=1BC32在Rt△ABH中,AH=22AB BH-=1,在Rt△OBH中,设OB=r,∵OH2+BH2=OB2,∴(r﹣1)2+(3)2=r2,解得:r=2,∴DB=2r=4,在Rt△ABD中,AD=22BD AB-=2242-=23,∴AD的长为23.【点睛】本题考查了圆的综合问题,恰当的添加辅助线是解题关键.13.如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=12∠P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C 为顶点的三角形与△BFM相似,求DH的长度.【答案】(1)证明见解析;(2)PM=32;(3)满足条件的DH的值为632-或122311+. 【解析】【分析】(1)如图1中,作PH ⊥FM 于H .想办法证明∠PFH=∠PMH ,∠C=∠OFC ,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD ,PD 即可解决问题;(3)分两种情形①当△CDH ∽△BFM 时,DH CD FM BF =. ②当△CDH ∽△MFB 时,DH CD FB MF=,分别构建方程即可解决问题; 【详解】(1)证明:如图1中,作PH ⊥FM 于H .∵PD ⊥AC ,∴∠PHM =∠CDM =90°,∵∠PMH =∠DMC ,∴∠C =∠MPH ,∵∠C =12∠FPM ,∴∠HPF =∠HPM , ∵∠HFP+∠HPF =90°,∠HMP+∠HPM =90°,∴∠PFH =∠PMH ,∵OF =OC ,∴∠C =∠OFC ,∵∠C+∠CMD =∠C+∠PMF =∠C+∠PFH =90°,∴∠OFC+∠PFC =90°,∴∠OFP =90°,∴直线PA 是⊙O 的切线. (2)解:如图1中,∵∠A =30°,∠AFO =90°,∴∠AOF =60°,∵∠AOF =∠OFC+∠OCF ,∠OFC =∠OCF ,∴∠C =30°,∵⊙O 的半径为4,DM =1,∴OA =2OF =8,CD 33,∴OD =OC ﹣CD =43,∴AD =OA+OD =8+43 =123 ,在Rt △ADP 中,DP =AD•tan30°=(12﹣3 )×33 =43 ﹣1, ∴PM =PD ﹣DM =4 3﹣2. (3)如图2中,由(2)可知:BF =12BC =4,FM =3BF =43 ,CM =2DM =2,CD =3 , ∴FM =FC ﹣CM =43﹣2,①当△CDH ∽△BFM 时,DH CD FM BF = , ∴ 3432=- ,∴DH =63- ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =- ,∴DH =1223+ , ∵DN =()22443833--=- ,∴DH <DN ,符合题意,综上所述,满足条件的DH 的值为63- 或1223+. 【点睛】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.14.如图,是大半圆的直径,是小半圆的直径,点是大半圆上一点,与小半圆交于点,过点作于点. (1)求证:是小半圆的切线; (2)若,点在上运动(点不与两点重合),设,. ①求与之间的函数关系式,并写出自变量的取值范围;②当时,求两点之间的距离.【答案】(1)见解析;(2)①,,②两点之间的距离为或.【解析】【分析】(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM∥OP,只需证到CM 是△AOP的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DP•OD,进而得到y与x之间的函数关系式.由于当点P与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到-x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.【详解】(1)连接,如图1所示∵是小半圆的直径,∴即∵∴∵∴∴,∵∴,∴∴.,即∵经过半径的外端,且∴直线是小半圆的切线.(2)①∵,,∴∴∴∽∴∴∵,,,∴当点与点重合时,;当点与点重合时,∵点在大半圆上运动(点不与两点重合),∴∴与之间的函数关系式为,自变量的取值范围是.②当时,解得,Ⅰ当时,如图2所示在中,∵,∴,∴∵,∴是等边三角形∵∴∴.Ⅱ当时,如图3所示,同理可得∵∴∴过点作,垂足为,连接,如图3所示∵,∴同理在中,∵,∴综上所述,当时,两点之间的距离为或.【点睛】考查了切线的判定、平行线的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质、特殊角的三角函数值、勾股定理等知识,综合性比较强.15.如图,已知四边形ABCD内接于⊙O,点E在CB的延长线上,连结AC、AE,∠ACB=∠BAE=45°.(1)求证:AE是⊙O的切线;(2)若AB=AD,AC=32,tan∠ADC=3,求BE的长.【答案】(1)证明见解析;(2)52 BE【解析】试题分析:(1)连接OA、OB,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A 作AF ⊥CD 于点F,由AB=AD ,得到∠ACD =∠ACB =45°,在Rt △AFC 中可求得AF=3,在Rt △AFD 中求得DF =1,所以AB =AD = ,CD = CF +DF =4,再证明△ABE ∽△CDA ,得出BE AB DA CD =,即可求出BE 的长度; 试题解析:(1)证明:连结OA ,OB ,∵∠ACB =45°,∴∠AOB =2∠ACB = 90°,∵OA=OB ,∴∠OAB =∠OBA =45°,∵∠BAE =45°,∴∠OAE =∠OAB +∠BAE =90°,∴OA ⊥AE .∵点A 在⊙O 上,∴AE 是⊙O 的切线.(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°.∵AB=AD , ∴AB u u u r =AD u u u r∴∠ACD =∠ACB =45°,在Rt △AFC 中,∵AC =∠ACF =45°,∴AF=CF=AC ·sin ∠ACF =3,∵在Rt △AFD 中, tan ∠ADC=3AF DF =, ∴DF =1,∴AB AD ==且CD = CF +DF =4,∵四边形ABCD 内接于⊙O ,∴∠ABE =∠CDA ,∵∠BAE =∠DCA ,∴△ABE ∽△CDA , ∴BE AB DA CD=,∴10=,10∴5BE=.2。
圆的专项练习题

圆的专项练习题一、选择题(每题3分,共30分)1. 圆的周长公式是()。
A. C = πrB. C = 2πrC. C = 4πrD. C = πd2. 半径为5厘米的圆的周长是()厘米。
A. 31.4B. 15.7C. 62.8D. 94.23. 圆的面积公式是()。
A. S = πr²B. S = 2πrC. S = πrD. S = πd²4. 半径为3厘米的圆的面积是()平方厘米。
A. 9πB. 18πC. 28.26D. 56.525. 一个扇形的半径为4厘米,圆心角为30°,其面积是()平方厘米。
A. 2πB. 4πC. 6πD. 8π6. 圆的直径是半径的()倍。
A. 1B. 2C. 3D. 47. 圆的内接四边形的对角线()。
A. 互相垂直B. 互相平分C. 相等D. 互相垂直且相等8. 圆的切线在切点处与半径()。
A. 垂直B. 平行C. 重合D. 相交9. 圆的外切四边形的对边()。
A. 相等B. 互相垂直C. 平行D. 互相垂直且相等10. 圆的弧长公式是()。
A. L = rθB. L = πrθC. L = 2πrθD. L = πr/θ二、填空题(每题2分,共20分)11. 圆的周长是半径的________倍。
12. 如果圆的周长为40π厘米,那么它的半径是________厘米。
13. 一个圆的直径为10厘米,它的面积是________平方厘米。
14. 圆的内接正六边形的边长等于圆的________。
15. 圆的内接正三角形的边长是半径的________倍。
16. 圆的外切正六边形的边长等于圆的________。
17. 圆的外接正三角形的边长是半径的________倍。
18. 圆的切线与圆相切于一点,这一点叫做圆的________。
19. 圆的内切圆与外接圆的半径之和等于________。
20. 圆的内切正多边形的边数越多,其形状越接近于________。
2023年中考九年级数学高频考点提升练习--圆的综合题(含答案)

2023年中考九年级数学高频考点提升练习--圆的综合题1.如图,在⊙ O中,弦AC,BD相交于点M,且∠OAC=∠OBD.(1)求证:AC=BD;(2)若OA=4,∠OAC=30°,当AC⊥BD时,求:①图中阴影部分面积.②弧CD的长.2.已知⊙O中,弦AB=AC,⊙BAC=120°(1)如图①,若AB=3,求⊙O的半径.(2)如图②,点P是⊙BAC所对弧上一动点,连接PB、PA、PC,试请判断PA、PB、PC之间的数量关系并说明理由.3.如图(1),已知矩形ABCD中,AB=6cm,BC=2√3cm,点E为对角线AC 上的动点.连接BE,过E作EB的垂线交CD于点F.(1)探索BE与EF的数量关系,并说明理由.(2)如图(2),过F作AC垂线交AC于点G,交EB于点H,连接CH.若点E从A出发沿AC方向以2√3cm/s的速度向终点C运动,设E的运动时间为ts.①是否存在t,使得H与B重合?若存在,求出t的值;若不存在,说明理由;②t为何值时,△CFH是等腰三角形;③当CG=GH时,求△CGH的面积.4.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD是⊙O的切线;(2)求证:⊙C=2⊙DBE.(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)5.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,⊙ABC中,点D 是BC边上一点,连结AD,若AD2=BD⋅CD,则称点D是⊙ABC中BC边上的“好点”.(1)如图2,⊙ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)⊙ABC中,BC=9,tanB=43,tanC=23,点D是BC边上的“好点”,求线段BD的长.(3)如图3,⊙ABC是⊙O的内接三角形,OH⊙AB于点H,连结CH并延长交⊙O于点D.①求证:点H是⊙BCD中CD边上的“好点”.②若⊙O的半径为9,⊙ABD=90°,OH=6,请直接写出CHDH的值.6.如图,⊙O为等边⊙ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B 重合),连接DA,DB,DC.(1)求证:DC是⊙ADB的平分线;(2)设四边形ADBC的面积为S,线段DC的长为x,试用含x的代数式表示S;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,⊙DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.7.在⊙ABC中,D,E分别是⊙ABC两边的中点,如果弧DE(可以是劣弧、优弧或半圆)上的所有点都在⊙ABC的内部或边上,则称弧DE为⊙ABC的中内弧.例如,图1中弧DE是⊙ABC其中的某一条中内弧.(1)如图2,在边长为4 √3的等边⊙ABC中,D,E分别是AB,AC的中点.画出⊙ABC的最长的中内弧DE,并直接写出此时弧DE的长;(2)在平面直角坐标系中,已知点A(2 √3,6),B(0,0),C(t,0),在⊙ABC中,D,E分别是AB,AC的中点.①若t=2 √3,求⊙ABC的中内弧DE所在圆的圆心P的纵坐标的取值范围;②请写出一个t的值,使得⊙ABC的中内弧DE所在圆的圆心P的纵坐标可以取全体实数值.8.如图,⊙O是⊙ABC的外接圆,AC是直径,过点O作OD⊙AB于点D,延长DO 交⊙O于点P,过点P作PE⊙AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若⊙POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.9.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=32CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ=,DF=.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)当点P在点A右侧时,作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长.10.如图,⊙ABC中,⊙ACB=90°,D是边AB上一点,且⊙A=2⊙DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.11.已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM 在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持⊙ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:ABPB=OMBM;(3)若AO=2 √6,且当MO=2PO时,请直接写出AB和PB的长.12.(问题情境)如图①,小区A、B位于一条笔直的道路l的同侧,为了方便A,B两个小区居民投放垃圾,现在l上建一个垃圾分类站C,使得C与A,B的距离之比为2:1.(1)(初步研究)在线段AB上作出点C,使CACB=2.如图,做法如下:第一步:过点A作射线AM,以A为圆心,任意长为半径画弧,交AM于点P1;以P1为圆心,AP1长为半径画弧,交AM于点P2;以P2为圆心,AP1长为半径画弧,交AM于点P3.第二步:连接BP3,作∠AP2C=∠AP3B,交AB于点C.则点C即为所求.请证明所作的点C满足CACB=2.(2)(深入思考)如图,点C在线段AB上,点D在直线AB外,且DADB=CACB=2.求证:DC是∠ADB的平分线.(3)(问题解决)如图,已知点A,B和直线l,点C在线段AB上,且CACB=2.用直尺和圆规完成下列作图.(保留作图痕迹,不写作法)(⊙)在直线AB上作出点E(异于点C),使EAEB=2;(⊙)在直线l上作出点F,使FAFB=2.13.在矩形ABCD中,BC=2AB,点E是对角线AC上任意一点,过点E作AD的垂线分别交AD,BC于点F,G,作FH平行AC交CD于点H.(1)证明:EF=CH.(2)连结GH交AC于点K,若AE:CK=3,求AE:EK的值.(3)作⊙FGH的外接圆⊙O,且AB=1.①若⊙O与矩形的边相切时,求CH的长.②作点E关于GH的对称点E',当E'落在⊙O上时,直接写出⊙FGH的面积。
小学六年级圆的练习题综合

小学六年级圆的练习题综合圆单元练题(一)一、完成下表。
圆的半径r | 2cm | 4cm | 8cm |圆的直径d | 4cm | 8cm | 16cm |圆的周长C | 12.56cm | 25.12cm | 50.24cm |圆的面积S | 12.56cm² | 50.24cm² | 201.06cm² |二、想一想,填一填。
1、当圆规两脚间的距离为4厘米时,画出圆的周长是(12.56)厘米。
2、在一张长8厘米,宽12厘米的长方形纸上画一个最大的圆,这个圆的直径是(8cm),面积是(16π)平方厘米,周长是(8π)厘米。
3、一个车轮的直径是55厘米,车轮转动一周,大约前进(172.7)米。
4、一个环形的外圆直径是10cm,内圆直径是8cm,它的面积(9.42)cm²。
5、一个圆的半径扩大2倍,它的周长扩大(2)倍,面积扩大(4)倍。
6、把一个圆分成若干等份,剪开拼成一个近似的长方形。
这个长方形的长相当于(圆的周长),长方形的宽就是圆的(直径)。
因为长方形的面积是(πr²),所以圆的面积是(πr²)。
7、圆的直径是6厘米,它的周长是(18.84)厘米,面积是(28.27)平方厘米。
8、圆的周长是25.12分米,它的面积是(50.24)平方分米。
9、甲圆半径是乙圆半径的3倍,甲圆的周长是乙圆周长的(3)倍,甲圆面积是乙圆面积的(9)倍。
10、一个圆的半径是8厘米,这个圆面积的3/4是(48π)平方厘米。
11、周长相等的长方形、正方形、圆,(圆)面积最大。
12、圆的半径由6厘米增加到9厘米,圆的面积增加了(63π-36π=27π)平方厘米。
13、要在一个边长为10厘米的正方形纸板里剪出一个最大的圆,剩下的面积是(100-25π)平方厘米。
14、用圆规画一个圆,如果圆规两脚之间的距离是7厘米,画出的这个圆的周长是(14π)厘米。
这个圆的面积是(49π)平方厘米。
初三圆的综合练习题

初三圆的综合练习题练习一:计算圆的面积和周长题目1:一个圆的半径是4cm,求它的面积和周长。
解析:圆的半径为4cm,可以根据圆的面积和周长的公式来计算。
面积公式:S = πr²,其中r为半径,π取值3.14周长公式:C = 2πr代入半径r=4cm,可得到:面积S = 3.14 * 4² = 50.24 cm²周长C = 2 * 3.14 * 4 = 25.12 cm练习二:求解圆的直径和半径题目2:一个圆的周长为31.4cm,求它的直径和半径。
解析:已知圆的周长为31.4cm,可以利用周长公式和直径、半径的关系求解。
周长公式:C = 2πr,其中C为周长,r为半径直径和半径的关系:直径d = 2r设圆的半径为r,则周长C = 31.4cm,代入周长公式可得:31.4 = 2πr解方程可以得到:r = 31.4 / (2π) ≈ 4.99 cm代入半径r,可以计算直径:d = 2 * 4.99 ≈ 9.98 cm练习三:判断点是否在圆内题目3:已知圆心坐标为(2, 3),半径为5,判断点P(5, 6)是否在圆内。
解析:根据点到圆心的距离与半径的关系,可以判断点是否在圆内。
点到圆心的距离公式:d = √[(x2 - x1)² + (y2 - y1)²]其中,(x1, y1)为圆心坐标,(x2, y2)为点P的坐标代入圆心坐标(2, 3)和点P坐标(5, 6),可以计算距离d:d = √[(5 - 2)² + (6 - 3)²] = √(9 + 9) = √18 ≈ 4.24比较距离d与圆的半径5,可以判断点P是否在圆内。
因为d < 5,所以点P(5, 6)在圆内。
练习四:求解两个圆的交点题目4:已知圆A的圆心坐标为(3, 4),半径为5;圆B的圆心坐标为(7, 2),半径为3。
求解两个圆的交点坐标。
解析:利用两个圆的方程求解交点坐标。
备考2020年中考数学复习专题 《圆》综合练习题(含答案)

备考2020年中考数学复习专题《圆》综合练习题一.选择题1.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是()A.4 B.5 C.6 D.102.如图,在⊙O中,弦AB长6cm,圆心O到AB的距离是3cm,⊙O的半径是()A.3cm B.C.4cm D.3.如图为球形灯笼的截面图,过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,则⊙O半径为()A.2dm B.dm C.dm D.dm4.下列判断中不正确的是()A.半圆是弧,但弧不一定是半圆B.平分弦的直径垂直于弦C.在平面内,到圆心的距离等于半径的点都在圆上D.在同圆或等圆中,相等的圆心角所对的弦相等5.如图,点A、B、C在⊙O上,D是的中点,若∠ACD=20°,则∠AOB的度数为()A.60°B.70°C.80°D.90°6.在菱形ABCD中,记∠ABC=∠α(0°<∠α<90°),菱形的面积记作S,菱形的周长记作C,若AD=2,则()A.C与∠α的大小有关B.当∠α=45°时,S=C.A,B,C,D四个点可以在同一个圆上D.S随∠α的增大而增大7.如图在一次游园活动中有个投篮游戏,活动开始时四个人A、B、C、D在距篮筐P都是5米处站好,篮球放在AC和BD的交点O处,已知取篮球时A要走6米,B要走3米,C要走2米,则D要走()A.2米B.3米C.4米D.5米8.⊙O半径为5,圆心O的坐标为(0,0),点P的坐标为(3,4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.点P在⊙O上或外9.给定下列条件可以确定一个圆的是()A.已知圆心B.已知半径C.已知直径D.不在同一直线上三点10.如图,△ABC是⊙O的内接三角形,半径OE⊥AB,垂足为点F,连结弦AE,已知OE =1,则下面的结论:①AE2+BC2=4 ②sin∠ACB=③cos∠B=,其中正确的是()A.①②B.①③C.②③D.②11.若半径为5m的圆,其圆心到直线的距离是5m,则直线和圆的位置关系为()A.相离B.相交C.相切D.无法确定12.如图,圆上有A、B、C三点,直线l与圆相切于点A,CD平分∠ACB,且与l交于点D,若=80°,=60°,则∠ADC的度数为()A.80°B.85°C.90°D.95°二.填空题13.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的半径为2cm,则此时M、N两点间的距离是cm.14.如图,⊙O的半径OA垂直于弦BC,垂足是D,OA=5,AD:OD=1:4,则BC的长为.15.在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在墙壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”问题题意为:如图,有一圆柱形木材埋在墙壁中,不知其直径大小.用锯去锯这木材,锯口深1寸(即CD=1寸),锯道长1尺(即AB=1尺),问这圆形木材直径是多少?(注:1尺=10寸)由此,可求出这圆形木材直径为为寸.16.′如图,在平面直角坐标系xOy中,扇形OAB的圆心角∠AOB=60°,点A在x轴正半轴上且OA=2,带你C为弧AB的中点,D为半径OA上一点,点A关于直线CD的对称点为E,若点E落在扇形OAB内(不含边界),则点E的横坐标x取值范围为.17.如图,以等边△ABC的一边AB为直径的半圆O交AC于点D,交BC于点E,若AB =4,则阴影部分的面积是.18.在一个圆内接四边形ABCD中,已知∠A=100°,则∠C的度数为.三.解答题19.如图AB=3cm,用图形表示:到点A的距离小于2cm,且到点B的距离不小于2cm 的所有点的集合(用阴影表示,注意边界上的点是否在集合中,如果在,用实线表示,如果不在,则用虚线表示).20.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.21.一条排水管的截面如图所示,已知排水管的半径OA=10m,水面宽AB=12m,某天下雨后,水管水面上升了2m,求此时排水管水面的宽CD.22.如图,已知⊙O的弦AB,E,F是弧AB上两点,=,OE、OF分别交于AB于C、D两点,求证:AC=BD.23.如图,CD为⊙O的弦,P为⊙O上一点,OP∥CD,∠PCD=15°(1)求∠POC的度数;(2)若=,AB⊥CD,点A在CD的上方,直接写出∠BPA的度数.24.如图,四边形ABCD内接于⊙O,∠ABC=135°,AC=4,求⊙O的半径长.25.已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.参考答案一.选择题1.解:因为五边形的各边长都和小圆的周长相等,所以小圆在每一边上滚动正好一周,在五条边上共滚动了5周.由于每次小圆从五边形的一边滚动到另一边时,都会翻转72°,所以小圆在五个角处共滚动一周.因此,总共是滚动了6周.故选:C.2.解:如图所示,由题意知OC=3,且OC⊥AB,∵AB=6,∴AC=AB=3,则OA===3,故选:B.3.解:∵过圆心的CD垂直弦AB于D,AB=2dm,CD=4dm,∴BD=AD=1dm,在Rt△ODB中,OD2+DB2=OB2,即(4﹣r)2+12=r2,解得:r=dm,故选:C.4.解:A、半圆是弧,但弧不一定是半圆,正确;B、平分弦的直径垂直于弦,不正确.需要添加条件:此弦非直径;C、在平面内,到圆心的距离等于半径的点都在圆上,正确;D、在同圆或等圆中,相等的圆心角所对的弦相等,正确,故选:B.5.解:连接OD,∴∠AOD=2∠ACD,∵D是的中点,∴∠AOB=2∠AOD=4∠ACD=80°,故选:C.6.【解答】解:A、错误.菱形的周长=8,与∠α的大小无关;B、错误,∠α=45°时,菱形的面积=2•2•sin45°=2;C、错误,A,B,C,D四个点不在同一个圆上;D、正确.∵0°<α<90°,S=菱形的面积=2•2•sinα,∴菱形的面积S随α的增大而增大.故选:D.7.解:根据题意得:A、B、C、D在以P为圆心,半径是5米的圆上.∴OA•OC=OB•OD,即6×2=3×OD.解得OD=4.故选:C.8.解:∵点P的坐标为(3,4),∴由勾股定理得,点P到圆心O的距离==5,∴点P在⊙O上,故选B.9.解:A、不能确定.因为半径不确定,故不符合题意;B、不能确定.因为圆心的位置不确定,故不符合题意;C、不能确定,因为圆心的位置不确定,故不符合题意;D.不在同一直线上三点可以确定一个圆.故符合题意;故选:D.10.解:连接AO,延长AO交⊙O于M,连接BM、CM、EM.∵AM是直径,∴∠AEM=90°,∴AE2+EM2=AM2,∴AE2+EM2=4,显然无法判定BC=EM,故①错误,∵∠ACB=∠AMB,∴sin∠ACB=sin∠AMB==,故②正确,∵∠ABC=∠AMC,∴cos∠ABC=cos∠AMC==,显然无法判断CM=AE,故③错误,故选:D.11.解:根据圆心到直线的距离等于圆的半径,则直线和圆相切.故选:C.12.解:设圆心为O,连接OA、OC,∵=80°,=60°,∴∠AOC=140°,∠ACB=40°,∵OA=OC,∴∠OAC=20°,∵直线l与圆相切于点A,∴OA⊥l,∴∠OAD=90°,∴∠CAD=70°,∵CD平分∠ACB,∴∠ACD=∠ACB=20°,∴∠ADC=180°﹣∠CAD﹣∠ACD=90°,故选:C.二.填空题(共6小题)13.解:根据题意得:EF=BC,MN=EF,把该正方形纸片卷成一个圆柱,使点A与点D重合,则线段BC形成一半径为2cm的圆,线段BC是圆的周长,BC=EF=2π×2=4π,∴的长=EF==,∴n=120°,即∠MON=120°,∵OM=ON,∴∠M=30°,过O作OG⊥MN于G,∵OM=2,∴OG=1,MG=,∴MN=2MG=2,故答案为:2.14.解:连接OB,∵OA=5,AD:OD=1:4,∴AD=1,OD=4,OB=5,在Rt△ODB中,由勾股定理得:OB2=OD2+BD2,52=42+BD2,解得:BD=3,∵OD⊥BC,OD过O,∴BC=2BD=6,故答案为:6.15.解:延长CD,交⊙O于点E,连接OA,由题意知CE过点O,且OC⊥AB,则AD=BD=AB=5(寸),设圆形木材半径为r,则OD=r﹣1,OA=r,∵OA2=OD2+AD2,∴r2=(r﹣1)2+52,解得r=13,所以⊙O的直径为26寸,故答案为:26.16.解:当点E落在半径OA上时,连接OC,如下图1所示,∵∠ADC=90°,∠AOB=60°,点C为弧AB的中点,点A(2,0),∴∠COD=30°,OA=OC=2,∴CD=OC•sin30°=2×=1,∴OD=O C•cos30°=2×=,∴AD=OA﹣OD=2﹣,∵DE=DA,∴OE=OD﹣OE=﹣(2﹣)=2﹣2,即点E的坐标为(2﹣2,0);当点E落在半径OB上时,连接OC,CD,如图2所示,由已知可得,CE=CA=CB,由上面的计算可知,OE=2﹣2,∴点E的横坐标为:(2﹣2)×cos60°=﹣1,点E的纵坐标为:(2﹣2)×sin60°=3﹣,∴E(﹣1,3﹣),∴满足条件的点E的横坐标x取值范围为﹣1<x<2﹣2.故答案为﹣1<x<2﹣2.17.解:如图,连接OD,OE,DE.∵△ABC是等边三角形,∴∠A=∠B=60°,∵OA=OD=OB=OE=2,∴△AOD,∠EOB都是等边三角形,∴∠AOD=∠EOB=60°,∴∠DOE=60°,△DOE是等边三角形,∴∠DOE=∠EOB,∴弓形DE与弓形BE的面积相等,∵CD=DE=CE=2,∴△CDE是等边三角形,∴S阴=S△CDE=×22=,故答案为.18.解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠C=180°﹣100°=80°.故答案为:80°三.解答题(共7小题)19.解:到点A的距离小于2cm,且到点B的距离不小于2cm的所有点的集合如图所示:20.解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.21.解:如图:作OE⊥AB于E,交CD于F,∵AB=12m,OE⊥AB,OA=1m,∴OE=8m.∵水管水面上升了2m,∴OF=8﹣2=6m,∴CF==8m,∴CD=16m.22.证明:连接OA、OB,∵OA=OB,∴∠A=∠B,∵=,∴∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD,∴AC=BD.23.解:(1)∵OP∥CD,∴∠OPC=∠PCD=15°,∵OP=OC,∴∠OPC=∠OCP=15°,∴∠OCD=30°.(2)①如图1中,当AB在点O的左侧时,连接PA,PB,OD,OA,OB.∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,∵=,∴∠AOB=∠COD=120°,∴∠APB=∠AOB=60°.②如图2中,当AB在点O的右侧时,同法可得∠ACB=60°,∵∠APB+∠ACB=180°,∴∠APB=120°,综上所述,∠APB=60°或120°.24.解:∵四边形ABCD内接于⊙O,∠ABC=135°,∴∠D=180°﹣∠ABC=45°,∴∠AOC=2∠D=90°,∵OA=OC,且AC=4,∴OA=OC=AC=2,即⊙O的半径长为2.25.解:(1)连接AD、BC.∵∠A=∠C,∠D=∠B,∴△ADM∽△CBM∴即AM•MB=CM•MD.(2)连接OM、OC.∵M为CD中点,∴OM⊥CD在Rt△OMC中,∵OC=3,OM=2 ∴CD=CM===由(1)知AM•MB=CM•MD.∴AM•MB=•=5.。
关于圆的练习题初三含答案

关于圆的练习题初三含答案一、选择题1. 下列说法中,关于圆的说法正确的是:A. 圆是由无数直线组成的B. 圆是所有点到一个固定点的距离相等的图形C. 圆是一个半径为1的正方形D. 圆是与坐标轴平行的图形答案:B2. 在平面上,如果一个圆的圆心到圆上的任意一点的距离等于半径的长度,那么这个点一定在圆的:A. 外部B. 内部C. 边界D. 中心答案:C3. 若O为圆心,半径为r的圆,P为圆上一点,且角POQ的度数为60°,则弧PQ的弧度数是:A. π/3B. π/4C. π/6D. π/2答案:C二、填空题1. 已知圆O的半径为5cm,点A在圆上,则弧OA的长为_________cm。
答案:5π cm2. 已知圆O的半径为7cm,则圆O的直径为_________cm。
答案:14 cm3. 半径为6cm的圆的面积为_________cm²。
答案:36π cm²三、解答题1. 已知圆O的直径AB的长度为16cm,求圆O的周长和面积。
解析:圆的周长是圆的一部分,即2πr,其中r为半径。
圆的面积是整个圆的面积,即πr²。
半径r = 直径AB的长度 / 2 = 16cm / 2 = 8cm周长= 2πr = 2π * 8cm ≈ 50.27cm面积= πr² = π * 8cm * 8cm ≈ 201.06cm²所以,圆O的周长约为50.27cm,面积约为201.06cm²。
2. 如图,O为一个半径为6cm的圆的圆心,点A、B、C分别是圆上的三个点,弧AB的弧度数为1.5π弧度,弧BC的弧度数为0.5π弧度。
求线段AC的长度。
解析:由于弧AB的弧度数为1.5π,弧BC的弧度数为0.5π,所以弧AC的弧度数为1.5π + 0.5π = 2π弧度,即一圈。
对于一圈的弧度,弧长等于圆的周长。
圆的周长= 2πr = 2π * 6cm ≈ 37.69cm所以,线段AC的长度约为37.69cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于圆的综合练习题
1.如图,AC 为⊙O 的直径,B 是⊙O 外一点,AB 交⊙O 于E 点,过E 点作⊙O 的切线,交BC 于D 点,DE =DC ,作EF ⊥AC 于F 点,交AD 于M 点。
(1)求证:BC 是⊙O 的切线;
(2)EM =FM 。
2.如图,以正方形ABCD 的边AB 为直径,在正方形内部作半圆,圆心为O ,CG 切半圆于E ,交AD 于F ,交BA 的延长线于G ,GA =8。
(1)求∠G 的余弦值; (2)求AE 的长。
3.如图,已知△ABC 中,AC =BC ,∠CAB =α(定值),⊙O 的圆心O 在AB 上,并分别与AC 、BC 相切于点P 、Q 。
(1)求∠POQ ;
(2)设D 是CA 延长线上的一个动点,DE 与⊙O 相切于点M ,点E 在CB 的延长线上,试判断∠DOE 的大小是否保持不变,并说明理由。
4、如图,抛物线y=ax 2
+bx+c 与x 轴相交于A 、B 两点(A 、B 分别在原点左、右两侧),与y
轴正半轴交于点C ,OA :OB :OC=1:4:4,△ABC 的面积为20。
1.求A 、B 、C 三点的坐标;
2.求抛物线的解析式;
3.若以抛物线上一点P 为圆心的圆恰与直线BC 相切于点C ,求点P 的坐标
∙ 1 图
M
F
O E
D C
B A
∙ 2图
G F E
O D
C B
A
3图
N
Q
P E
O D
C
B
A
5. 21.如图 9,在三角形ABC 中,∠BAC=900,AB=AC=22,圆A 的半径为1,若点O 在B 上,运动,(与B 、C 点不重合),设BO=x ,△AOC 的面积为y 。
(1)求y 关于x 的函数解析式
(2)以点O 为圆心,BO 长为半径作⊙O ,求当⊙O 与⊙A 相切 时,△ABC 的面积.
6. 已知:如图所示,直线l 的解析式为
334
y x =
-,并且与x 轴、y 轴分别交于点A 、B 。
(1)求A 、B 两点的坐标;
(2)一个圆心在坐标原点、半径为1的圆,以0.4个单位/秒的速度向x 轴正方向运动,问在什么时刻与直线l 相切;
(3)在题(2)中,若在圆开始运动的同时,一动点P 从B 点出发,沿BA 方向以0.5个单位/秒的速度运动,设t 秒时点P 到动圆圆心的距离为s ,求s 与t 的关系式; (4)问在整个运动过程中,点P 在动圆的圆面(圆上和圆内部)上,一共运动了多长时间? 7. 如图,⊙O 与⊙A 相交于C 、D 两点,A 点在⊙O 上,过A 点的直线与CD 、 ⊙A 、⊙O 分别交于F 、E 、B .求证:AB AF AE ⋅=2
.
8.如图所示,在圆O 的内接等边三角形ABC 中,经过A 点的弦与弦BC 和 BC 弧分别交于点D 和P ,连结PB 、PC 。
求证:PA2=BC2+PB*PC 。
_l
_y
_x
_O
_B
_A B
C
(5图)
A
9.如图, AB 是⊙O 的直径,CD 切⊙O 于E ,AC ⊥CD 于C ,BD ⊥CD 于D ,交⊙O 于F .连结AE 、EF .
(1)求证:AE 是∠BAC 的平分线.
(2)若∠ABD =60°,问:AB 与EF 是否平行?
· A
B
C
D
E
O
G
10.如图,⊙O 的两条割线AB 、AC 分别交圆O 于 D 、B 、E 、C ,弦DF//AC 交 BC 于C . (1)求证:CG BC FG AC ⋅=⋅;
(2)若CF =AE .求证:△ABC 为等腰三角形.
11.如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,P A 是过A 点的直线,∠P AC =∠B . (l )求证:PA 是⊙O 的切线;
(2)如果弦CD 交AB 于E ,CD 的延长线交P A 于F ,AC =8,CE :ED =6:5,AE :EB =2:3,求AB 的长和∠ECB 的正切值.
·
·
1
O 2O P
A
B C
D
E
12. 已知:如图,⊙1O ;和⊙2O 内切于点P ,过点P 的直线交⊙1O 于点D ,交⊙2O 于点E ;DA 与⊙2O 相切,切点为C .
(1)求证:PC 平分∠APD ; (2)若PE =3,PA =6,求PC 的长.
·
A B
E
C
D
O F
.
A
B
C
D
P
O
E F
13.如图1、2,已知AB 为半圆O 的直径, AP 为过点A 的半圆的切线.在 AB 上任取一点C (点C 与A,B 不重合),过点C 作半圆的切线CD 交AP 于点D ;过点C 作CE ⊥AB ,垂足为E .连结BD ,交CE 于点F .
(l )当点C 为 AB 的中点时(如图1)
,求证:CF =EF ; (2)当点C 不是 AB 的中点时(如图2),试判断CF 与EF 的相等关系是否保持不变,并证明你的结论.
14.如图,以等腰△ABC 的一腰AB 为直径的⊙O 交BC 于D ,过D 作DE ⊥AC 于E ,可得结论:DE 是⊙O 的切线.问:
(1)若点O 在AB 上向点B 移动,以O 为圆心,OB 长为半径的圆仍交BC 于D ,DE ⊥AC 的条件不变,那么上述结论是否还成立?请说明理由; (2)如果AB =AC =5㎝,5
3sin =
,那么圆心O 在AB 的什么位置时,⊙O 与AC 相切?
15.已知:如图,AB 是半圆O 的直径,C 为AB 上一点,AC 为半圆O '的直径,BD 切半圆O '于点D , CE ⊥AB 交半圆O 于点E . (1)求证:BD =BE ;
(2)若两圆半径的比为3:2,试判断∠EBD 是直角、锐角还是钝角?并给出证明.
16.如图,正方形ABCD 中,有一直径为BC 的半圆,BC =2cm .现有两点E 、F ,分别从点B 、点A 同时出发,点E 沿线段BA 以1cm/s 的速度向点A 运动,点F 沿折线A -D -C 以2cm/s 的速度向点C 运动.设点E 离开点B 的时间为t (秒).
· A B C O P D
E
F ( )A
B
C O
P D F
( 图1 )
E ( 图2 )
·
A
B
C
O D
E
·
· · O 'O
E
D
C
B
A
(l)当t为何值时,线段EF与BC平行?
(2)设1<t<2,当t为何值时,EF与半圆相切?
(3)当l≤t<2时,设EF与AC相交于点P,问点E、F运动时,点P的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP:PC的值.
A
D
B C。