中考圆练习题及答案

合集下载

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)

中考数学总复习《圆的综合题》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.在平面直角坐标系xOy中以点(3,4)为圆心,4为半径的圆()A.与x轴相交,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离2.如图,在平面直角坐标系xOy中以原点O为圆心的圆过点A(13,0)直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22B.24C.10√5D.12√33.如图,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DCB等于()A.90°B.100°C.130°D.140°4.如图,在正五边形ABCDE中连接AD,则∠DAE的度数为()A.46°B.56°C.36°D.26°5.如图,PA、PB为∠O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交∠O 于点D.下列结论不一定成立的是()A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线6.如图,四边形ABCD内接于半径为6的∠O中连接AC,若AB=CD,∠ACB=45°,∠ACD=12∠BAC,则BC的长度为()A.6 √3B.6 √2C.9 √3D.9 √27.如图,点A,B,D,C是∠O上的四个点,连结AB,CD并延长,相交于点E,若∠BOD=20°,∠AOC=90°,则∠E的度数为()A.30°B.35°C.45°D.55°8.∠ABC中∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB,BC分别交于点E,D,则AE的长为()A.95B.125C.185D.3659.如图,AB为∠O的直径,点C在∠O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°10.两个圆的半径分别是2cm和7cm,圆心距是5cm,则这两个圆的位置关系是() A.外离B.内切C.相交D.外切11.已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.B.C.D.12.一个扇形的弧长为4π,半径长为4,则该扇形的面积为()A.4πB.6πC.8πD.12π二、填空题13.在Rt∠ABC中∠C=90°,AB=5,BC=4,求内切圆半径14.如图,∠C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内弧OB上一点,∠BMO=120°,则∠C的半径为.15.一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的侧面积为.16.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为cm.17.如图,在直角坐标系中以点P为圆心的圆弧与x轴交于A,B两点,已知P(4,2)和A(2,0),则点B的坐标是.18.下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作法:如图①作射线AB;②在射线AB取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;③以C为圆心,OC C为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.请回答:该尺规作图的依据是.三、综合题19.如图,在△ABC中AC=BC=BD,点O在AC边上,OC为⊙O的半径,AB是⊙O 的切线,切点为点D,OC=2,OA=2√2.(1)求证:BC是⊙O的切线;(2)求阴影部分的面积.20.如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若BEOD=54,求EFAC的值.21.如图,四边形ABCD 内接于∠O,BD是∠O的直径,过点A作∠O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE∠CD;(2)已知AE=4cm,CD=6cm,求∠O的半径.22.如图,∠O是∠ABC的外接圆,BC为∠O的直径,点E为∠ABC的内心,连接AE并延长交∠O 于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为∠O的切线.23.公元前5世纪,古希腊哲学家阿那克萨哥拉因“亵渎神灵罪”而被投人监狱,在狱中他对方铁窗和圆月亮产生了兴趣.他不断变换观察的位置,一会儿看见圆比正方形大,一会儿看见正方形比圆大,于是伟大的古希腊尺规作图几何三大问题之--的化圆为方问题诞生了:作一个正方形,使它的面积等于已知圆的面积(1)设有一个半径为√3的圆,则这个圆的周长为,面积为,作化圆为方得到的正方形的边长为(计算结果保留π)(2)由于对尺规作图的限制(只能有限次地使用没有刻度的直尺和圆规进行作图),包括化圆为方在内的几何三大问题都已被证明是不可能的.但若不受标尺的限制,化圆为方并非难事。

初三数学圆测试题及答案

初三数学圆测试题及答案

初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 已知圆的半径为2,圆心在原点,下列哪个点在圆上?A. (3, 0)B. (2, 2)C. (2, 0)D. (0, 2)2. 圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中a和b是圆心的坐标,r是半径。

如果圆心在(1, 1),半径为3,那么圆的方程是什么?A. (x-1)^2 + (y-1)^2 = 9B. (x+1)^2 + (y+1)^2 = 9C. (x-1)^2 + (y+1)^2 = 9D. (x+1)^2 + (y-1)^2 = 93. 已知圆的直径为6,那么圆的半径是多少?A. 3B. 6C. 9D. 124. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 圆的切线垂直于经过切点的半径,那么切线与半径的夹角是多少?A. 0°B. 90°C. 180°D. 360°6. 如果两个圆的半径分别为3和5,且它们外切,那么两圆心之间的距离是多少?A. 2B. 8C. 10D. 127. 圆的周长公式是C = 2πr,如果一个圆的周长为12π,那么它的半径是多少?A. 3B. 4C. 6D. 128. 已知圆的半径为4,圆心在点(2, 3),那么圆上一点(5, 7)到圆心的距离是多少?A. 3B. 4C. 5D. 69. 圆的面积公式是A = πr^2,如果一个圆的面积为16π,那么它的半径是多少?A. 2B. 3C. 4D. 510. 如果一个圆的半径为2,那么它的直径是多少?A. 4B. 6C. 8D. 10二、填空题(每题4分,共20分)1. 已知圆的半径为r,那么它的直径是________。

2. 圆的周长公式为C = 2πr,如果一个圆的半径为4,那么它的周长是________。

3. 圆的面积公式为A = πr^2,如果一个圆的半径为5,那么它的面积是________。

初三圆测试题及答案

初三圆测试题及答案

初三圆测试题及答案一、选择题(每题3分,共30分)1. 圆的半径为r,圆的周长为()。

A. 2πrB. πrC. 2rD. πr²2. 圆的直径为d,圆的面积为()。

A. πd²/4B. πd²C. πr²D. πr²/23. 点P在圆O的内部,则点P到圆心O的距离()。

A. 大于半径B. 等于半径C. 小于半径D. 不确定4. 圆的切线与过切点的半径垂直,切线的长度等于()。

A. 半径B. 直径C. 半径的一半D. 无法确定5. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是()。

A. 相离B. 相切C. 相交D. 内切6. 圆的内接四边形的对角互补,即()。

A. 对角和为180°B. 对角和为90°C. 对角和为360°D. 对角差为180°7. 圆的外接圆的半径等于()。

A. 边长B. 对角线的一半C. 对角线D. 无法确定8. 圆的内切圆的半径等于()。

A. 边长的一半B. 对角线的一半C. 对边之和的一半D. 无法确定9. 圆的弧长公式为()。

A. L = 2πrθ/360B. L = πrθC. L = rθD. L = 2πr10. 圆的扇形面积公式为()。

A. S = 1/2r²θB. S = r²θC. S = 1/2LD. S = 1/2rL二、填空题(每题2分,共20分)11. 圆的周长公式为C = ____________。

12. 若圆的半径为4,则圆的面积为___________。

13. 圆的切线与半径的关系是___________。

14. 圆的内接正六边形的边长等于___________。

15. 圆的外接正三角形的边长等于___________。

16. 圆的内切圆的半径等于圆的内接正六边形的边长的___________。

17. 圆的弧长公式中θ表示的是___________。

中考数学复习《圆》专题训练-附带有答案

中考数学复习《圆》专题训练-附带有答案

中考数学复习《圆》专题训练-附带有答案一、选择题1.下列有关圆的一些结论:①平分弧的直径垂直于弧所对的弦;②平分弦的直径垂直于弦;③在同圆或等圆中,相等的弦所对的圆周角相等;④同弧或等弧所对的弦相等,其中正确的有()A.①④B.②③C.①③D.②④2.在同一平面内,已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是()A.点P在⊙O圆外B.点P在⊙O上C.点P在⊙O内D.无法确定3.如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°()A.66°B.33°C.24°D.30°4.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=118°,则∠C的度数为()A.32°B.33°C.34°D.44°5.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=26°,则∠D等于()A.26°B.48°C.38°D.52°6.如图,四边形ABCD内接于⊙O,∠C=100°,那么∠A是()A.60°B.50°C.80°D.100°7.如图,AB为⊙O的直径,C是⊙O上的一点,若∠BCO=35°,AO=2,则AC⌢的长度为()A.29πB.59πC.πD.79π8.如图,点A、B、C、D、E都是⊙O上的点AC⌢=AE⌢,∠D=130°则∠B的度数为()A.130°B.128°C.115°D.116°二、填空题9.半径为6的圆上,一段圆弧的长度为3π,则该弧的度数为°.10.如图,在△ABC中,∠ACB= 130°,∠BAC=20°,BC=2.以C为圆心,CB为半径的圆交AB于点D,则BD的长为.11.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC.∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE= √2,则BD的长为.12.如图,四边形ABCD为⊙O的内接四边形,若∠ADC=85°,则∠B=.13.如图,在△ABC中∠ACB=90°,O为BC边上一点CO=2.以O为圆心,OC为半径作半圆与AB边交π,则阴影部分的面积为.于E,且OE⊥AB.若弧CE的长为43三、解答题14.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD交AC于点E,OD∥BC(1)求证:AD=CD;(2)若AC=8,DE=2,求BC的长.15.如图,AB是⊙O的直径,F为⊙O上一点,AC平分∠FAB交⊙O于点C.过点C作CD⊥AF交AF的延长线于点D.(1)求证:CD是⊙O的切线.(2)若DC=3,AD=9,求⊙O半径.⌢上一点,AG与DC的延长线交于点F.16.已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G是AC(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.17.如图,在△ABC中AB=AC,以底边BC为直径的⊙O交两腰于点D,E .(1)求证:BD=CE;⌢的长.(2)当△ABC是等边三角形,且BC=4时,求DE18.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O 于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC与⊙O的位置关系,并说明理由;(2)若FC=√3,CE=1.求图中阴影部分的面积(结果保留π).参考答案1.A2.A3.B4.C5.C6.C7.D8.C9.9010.2√311.2√212.95°π13.4√3−4314.(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OD∥BC∴∠AEO=∠ACB=90°⌢=CD⌢∴AD∴AD=CD;(2)解:∵OD⊥AC,AC=8AC=4∴AE=12设⊙O的半径为r∵DE=2∴OE=OD﹣DE=r﹣2在Rt△AEO中,AE2+OE2=AO2∴16+(r﹣2)2=r2解得:r=5∴AB=2r=10在Rt△ACB中,BC=√AB2−AC2=√102−82=6∴BC的长为6.15.(1)证明:连接OC∵AC平分∠FAB∴∠FAC=∠CAO∵AO=CO∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC∵CD⊥AF∴CD⊥OC∵OC为半径∴CD是⊙O的切线;(2)解:过点O作OE⊥AF于EAF,∠OED=∠EDC=∠OCD=90°∴AE=EF=12∴四边形OEDC为矩形∴CD=OE=3,DE=OC设⊙O的半径为r,则OA=OC=DE=r∴AE=9﹣r∵OA2﹣AE2=OE2∴r2﹣(9﹣r)2=32解得r=5.∴⊙O半径为5.16.(1)解:连接OC.设⊙O的半径为R.∵CD⊥AB∴DE=EC=4在Rt △OEC中,∵OC2=OE2+EC2∴R2=(R−2)2+42解得R=5.(2)解:连接AD∵弦CD⊥AB̂ = AĈ∴AD∴∠ADC=∠AGD∵四边形ADCG是圆内接四边形∴∠ADC=∠FGC∴∠FGC=∠AGD.17.(1)证明:∵AB=AC∴∠B=∠C⌢=BE⌢∴CD⌢=CE⌢∴BD∴BD=CE;(2)解:连接OD、OE∵△ABC 是等边三角形∴∠B =∠C =60°∴∠COD =120°∴∠COD +∠BOE =∠COE +∠DOE +∠BOD +∠DOE =240° ∴∠DOE =240°−180°=60°∵BC =4∴⊙O 的半径为 2∴DE ⌢ 的长 =60π×2180=2π3 .18.(1)解:AC 与⊙O 的相切,理由如下∵AO =DO∴∠D =∠OAD∵CF =CA∴∠CAF =∠CFA又∵∠CFA =∠OFD∴∠CAF =∠OFD∵OD ⊥BC∴∠OFD +∠ODF =90°∴∠CAF +∠OAF =90°∴OA ⊥AC∵OA 是半径∴AC 是⊙O 的切线∴ AC 与⊙O 的相切;(2)解:过A 作AM ⊥BC 于M ,如图设OA=OE=r∵FC=√3,CE=1在Rt△CAO中AO=r,AC=FC=√3,OC=OE+EC=r+1AO2+AC2=OC2∴r2+(√3)2=(r+1)2解得r=1∴OC=OE+EC=2∴AO=12 OC∴∠C=30°∴∠AOC=60°∴∠AOB=180−∠AOC=120°在Rt△CAM中AM=12AC=12FC=√32∴S△AOB=12⋅OB⋅AM=12×1×√32=√34∴S扇形AOB=120360π×1=π3∴S阴影部分=S△AOB−S扇形AOB=π3−√34.。

中考数学关于圆的22道经典题

中考数学关于圆的22道经典题

中考数学关于圆的22道经典题1、如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)解:∵弦AB 和半径OC 互相平分∴OC ⊥ABOM=MC=21OC=21OA 在Rt △OAM 中,sinA=21=OA OM ∴∠A=30°又∵OA=OB ∴∠B=∠A=30° ∴∠AOB=120° ∴S 扇形=33601120ππ=⋅⋅2、如图,△ABC 内接于⊙O ,AB =6,AC =4,D 是AB 边上一点,P 是优弧BAC 的中点,连结PA 、PB 、PC 、PD.(1)当BD 的长度为多少时,△PAD 是以AD 为底边的等腰三角形?并证明; (2)若cos ∠PCB=55,求PA 的长. 解:(1)当BD =AC =4时,△PAD 是以AD 为底边的等腰三角形 ∵P 是优弧BAC 的中点 ∴弧PB =弧PC ∴PB =PC∵BD =AC =4 ∠PBD=∠PCA ∴△PBD ≌△PCA∴PA=PD 即△PAD 是以AD 为底边的等腰三角形(2)由(1)可知,当BD =4时,PD =PA ,AD =AB-BD =6-4=2过点P 作PE ⊥AD 于E ,则AE =21AD=1 ∵∠PCB=∠PAD ∴cos ∠PAD=cos ∠PCB=55=PA AE ∴PA=53、如图,AB 是⊙O 的直径,C 是的中点,CE ⊥AB 于 E ,BD 交CE 于点F .(1)求证:CF ﹦BF ;(2)若CD ﹦6, AC ﹦8,则⊙O 的半径为 ▲ ,CE 的长是 ▲ .CBDEFO 12解:(1) 证明:∵AB 是⊙O 的直径,∴∠ACB ﹦90° 又∵CE ⊥AB , ∴∠CEB ﹦90° ∴∠2﹦90°-∠A ﹦∠1又∵C 是弧BD 的中点,∴∠1﹦∠A ∴∠1﹦∠2,∴ CF ﹦BF ﹒ …………………4分 (2) ⊙O 的半径为5 , CE 的长是524﹒ ………4分(各2分)4、已知:AB 是⊙O 的弦,D 是AB 的中点,过B 作AB 的垂线交AD 的延长线于C . (1)求证:AD =DC ;(2)过D 作⊙O 的切线交BC 于E ,若DE =EC ,求sin C .证明:连BD ∵BD AD =∴∠A =∠ABD ∴AD =BD …………………2分 ∵∠A +∠C =90°,∠DBA +∠DBC =90°∴∠C =∠DBC ∴BD =DC∴AD =DC ………………………………………………………4分 (2)连接OD ∵DE 为⊙O 切线 ∴OD ⊥DE …………………………5分 ∵BD AD =,OD 过圆心 ∴OD ⊥AB又∵AB ⊥BC ∴四边形FBED 为矩形∴DE ⊥BC ……………………6分 ∵BD 为Rt △ABC 斜边上的中线∴BD =DC ∴BE =EC =DE∴∠C =45° …………………………………………………7分 ∴sin ∠C =22………………………………………………………………8分5、如图,AB 是O 的直径,C 为圆周上一点,30ABC ∠=︒,O 过点B 的切线与CO 的延长线交于点D .求证:(1)CAB BOD ∠=∠;(2)ABC ∆≌ODB ∆. (1)∵AB 是O 的直径,∴90ACB ∠=︒,由30ABC ∠=︒,∴60CAB ∠=︒BE CDAOO A D B ECDCBOA又OB OC =,∴30OCB OBC ∠=∠=︒∴60BOD ∠=︒,∴CAB BOD ∠=∠.…… 4分(2)在Rt ABC ∆中,30ABC ∠=︒,得12AC AB =,又12OB AB =,∴AC OB =. 由BD 切O 于点B ,得90OBD ∠=︒.在ABC ∆和ODB ∆中,CAB BODACB OBD AC OB ∠=∠∠=∠⎧=⎪⎨⎪⎩∴ABC ∆≌ ODB ∆ …… 8分6、如图,⊙O 的半径等于1,弦AB 和半径OC 互相平分于点M.求扇形OACB 的面积(结果保留π)解:∵弦AB 和半径OC 互相平分∴OC ⊥ABOM=MC=21OC=21OA 在Rt △OAM 中,sinA=21=OA OM ∴∠A=30°又∵OA=OB ∴∠B=∠A=30° ∴∠AOB=120° ∴S 扇形=33601120ππ=⋅⋅7、如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC 分别交于点E 、F ,且∠ACB=∠DCE .(1)判断直线CE 与⊙O 的位置关系,并证明你的结论;(2)若tan ∠ACB=22,BC=2,求⊙O 的半径.答案:1)直线CE 与⊙O 相切。

初三圆单元测试题及答案

初三圆单元测试题及答案

初三圆单元测试题及答案一、选择题(每题2分,共10分)1. 半径为1的圆的周长是多少?A. 2πB. 3πC. 4πD. 6π2. 圆的内接四边形的对角线之间的关系是什么?A. 互相垂直B. 互相平行C. 互相平分D. 长度相等3. 圆的切线与半径在切点处的关系是什么?A. 垂直B. 平行C. 相交D. 重合4. 圆的面积公式是什么?A. πr²B. 2πrC. r²D. r³5. 圆心角、弧长、半径三者之间的关系是什么?A. 弧长 = 半径× 圆心角(弧度制)B. 弧长 = 半径× 圆心角(度制)C. 半径 = 弧长 / 圆心角(弧度制)D. 半径 = 弧长× 圆心角(弧度制)二、填空题(每题2分,共10分)6. 半径为2的圆的直径是________。

7. 圆的周长与直径的比值称为________。

8. 圆的内切角等于________度。

9. 圆的外切角等于________度。

10. 圆的切线与半径在切点处的关系是________。

三、计算题(每题5分,共20分)11. 已知圆的半径为3,求圆的周长和面积。

12. 已知圆心角为60°,半径为4,求对应的弧长。

13. 已知圆的周长为12π,求圆的半径。

14. 已知圆的面积为9π,求圆的半径。

四、解答题(每题10分,共20分)15. 证明:圆的内接四边形的对角线互相平分。

16. 已知点A、B、C是圆上的三点,且AB=AC,求证:点B、C关于圆心对称。

五、综合题(每题15分,共30分)17. 已知圆O的半径为5,点P在圆O上,PA、PB是点P到圆O的两条切线,PA=PB=8。

求切线PA、PB的长度。

18. 已知圆O的半径为6,点A在圆上,PA垂直于OA,PA=4。

求点A 到圆O的切线长。

答案:一、选择题1. C2. C3. A4. A5. A二、填空题6. 47. 圆周率8. 909. 6010. 垂直三、计算题11. 周长:6π,面积:9π12. 弧长:2π13. 半径:614. 半径:3四、解答题15. 略16. 略五、综合题17. 切线PA、PB的长度为:√(8² - 5²) = √(64 - 25) = √3918. 点A到圆O的切线长为:√(6² - 4²) = √(36 - 16) = 2√5结束语:本测试题旨在帮助学生巩固圆的基本概念、性质和计算方法,通过不同类型的题目,检验学生对圆单元知识的掌握程度。

数学初三圆的试题及答案

数学初三圆的试题及答案

数学初三圆的试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是圆的标准方程?A. (x-a)²+(y-b)²=r²B. x²+y²=rC. x²+y²=r²D. (x-a)²+(y-b)²=r答案:A2. 圆心为(2,3),半径为5的圆的方程是什么?A. (x-2)²+(y-3)²=25B. (x-2)²+(y-3)²=5C. x²+y²=25D. x²+y²=5答案:A3. 已知圆C的圆心为(1,1),半径为2,点P(4,3)在圆C上,那么点P 到圆心的距离是多少?A. 2B. 3C. 4D. 5答案:B4. 圆的直径是10,那么它的半径是多少?A. 5B. 10C. 20D. 15答案:A5. 圆心在原点,半径为3的圆的方程是?A. x²+y²=9B. (x-0)²+(y-0)²=3C. x²+y²=3D. (x-3)²+(y-3)²=9答案:A6. 圆的周长公式是?A. C=2πrB. C=πrC. C=2rD. C=r答案:A7. 圆的面积公式是?A. A=πr²B. A=2πrC. A=r²D. A=2r答案:A8. 圆的切线与半径垂直,那么切线与圆心的距离是多少?A. rB. 2rC. πrD. 0答案:A9. 圆的弧长公式是?A. L=rθB. L=2πrC. L=rθ/180D. L=2πrθ/360答案:D10. 圆的扇形面积公式是?A. S=1/2r²θB. S=1/2r²C. S=rθD. S=2πrθ/360答案:D二、填空题(每题4分,共20分)1. 圆心在(-2,4),半径为3的圆的方程是:(x+2)²+(y-4)²=________。

初三圆单元测试题及答案

初三圆单元测试题及答案

初三圆单元测试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为r,则圆的面积为()A. πr²B. 2πrC. πrD. 4πr²2. 圆的周长公式为()A. 2πrB. πrC. 2πr²D. πr²3. 圆的直径是半径的()A. 1倍B. 2倍C. 3倍D. 4倍4. 圆的切线垂直于()A. 半径B. 直径C. 弦D. 切点5. 圆的内接四边形的对角线()A. 相等B. 互补C. 垂直D. 平行6. 圆的外切四边形的对角线()A. 相等B. 互补C. 垂直D. 平行7. 圆的切线与半径的关系是()A. 垂直B. 平行C. 相交D. 重合8. 圆的弦中,最长的弦是()A. 直径B. 半径C. 切线D. 弦9. 圆的半径增加1倍,面积增加()A. 1倍B. 2倍C. 3倍D. 4倍10. 圆的半径减少1倍,面积减少()A. 1倍B. 2倍C. 3倍D. 4倍二、填空题(每题3分,共30分)1. 圆的周长公式为C=2πr,其中C表示______,r表示______。

2. 圆的面积公式为A=πr²,其中A表示______,r表示______。

3. 直径是圆的两个点之间的最长距离,它的计算公式为d=______。

4. 圆的切线与半径的关系是______。

5. 圆的内接四边形的对角线具有______的性质。

6. 圆的外切四边形的对角线具有______的性质。

7. 圆的切线与半径垂直,即切线与半径的夹角为______度。

8. 圆的弦中,直径是______的弦。

9. 圆的半径增加1倍,面积增加到原来的______倍。

10. 圆的半径减少1倍,面积减少到原来的______倍。

三、解答题(每题20分,共40分)1. 已知圆的半径为5cm,求该圆的周长和面积。

2. 已知圆的周长为31.4cm,求该圆的半径,并计算其面积。

答案:一、选择题1-5:A A B A B6-10:A B A A D二、填空题1. 周长,半径2. 面积,半径3. 2r4. 垂直5. 互补6. 垂直7. 908. 最长9. 410. 1/4三、解答题1. 周长:C=2πr=2×3.14×5=31.4cm;面积:A=πr²=3.14×5²=78.5cm²。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考圆练习题及答案公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-
一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):
1.下列说法正确的是( )
A.垂直于半径的直线是圆的切线
B.经过三点一定可以作圆
C.圆的切线垂直于圆的半径
D.每个三角形都有一个内切圆 2.在同圆或等圆中,如果AB =2CD ,则AB 与CD 的关系是( ) (A)AB >2CD ; (B)AB =2CD ; (C)AB <2CD ; (D)AB =CD ; 3.如图(1),已知PA 切⊙O 于B,OP 交AB 于C,则图中能用字母表示的直角共有( ) 个
A.3
B.4
C.5
D.6
4.已知⊙O 的半径为10cm,弦AB ∥CD,AB=12cm,CD=16cm,则AB 和CD 的距离为( )
A.2cm
B.14cm
C.2cm 或14cm
D.10cm 或20cm 5.在半径为6cm 的圆中,长为2πcm 的弧所对的圆周角的度数为( ) A.30° B.100 C.120° D.130°
6.如图(2),已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 的度数是( ) A.80° B.100° C.120° D.130°
7. ⊙O 的半径是20cm,圆心角∠AOB=120°,AB 是⊙O 弦,则AOB S ∆等于( )
A.25cm 22cm 22
8.如图(3),半径OA 等于弦AB,过B 作⊙O 的切线BC,取BC=AB,OC 交⊙O 于E,AC 交⊙O 于点D,则BD 和DE 的度数分别为( )
A.15°,15°
B.30°,15°
C.15°,30°
D.30°,30°
9.若两圆半径分别为R 和r(R>r),圆心距为d,且R 2+d 2=r 2
+2Rd, 则两圆的位置关系为( )
A.内切
B.内切或外切
C.外切
D.相交
10.圆锥的母线长5cm,底面半径长3cm,那么它的侧面展开图的圆心角是( ) A.180° B.200° C.225° D.216° 二、填空题:(每小题4分,共20分):
11.一条弦把圆分成1∶3两部分,则劣弧所对的圆心角的度数为 . 12.如果⊙O 的直径为10cm,弦AB=6cm,那么圆心O 到弦AB 的距离为______cm. 13.在⊙O 中,弦AB 所对的圆周角之间的关系为_________.
14.如图(4), ⊙O 中,AB 、CD 是两条直径,弦CE∥AB,EC 的度数是40°,则∠BOD= .
15. 点A 是半径为3
的切线
长为__________.
16.⊙O 的半径为6,⊙O 的一条弦AB 长以3AB 的位置关系是__________.
17.两圆相切,圆心距为10cm,已知其中一圆半径为6cm, 则另一圆半径为____ 18.如果圆弧的度数扩大2倍,半径为原来的32
,则弧长与原弧长的比为______. 19.如图(5),A 是半径为2的⊙O 外一点,OA=4,AB 是⊙O 的切线,点B 是切点,弦BC ∥OA,连结AC,则图中阴影部分的面积为_________.
20.如图(6),已知扇形AOB 的圆心角为60°,半径为6,C 、D 分别是AB 的三等分点, 则阴影部分的面积等于_______.
三、解答题(第21~23题,每题8分,第24~26题每题12分,共60分)
(5)
A
21.已知如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点。

试说明:AC=BD 。

22. 如图所示,在Rt △ABC 中,∠BAC=90°,AC=AB=2,以AB 为直径的圆交BC 于D, 求图形阴影部分的面积.
23. 如图所示,AB 是⊙O 的直径,AE 平分∠BAC 交⊙O 于点E,过点E 作⊙O 的切线交AC 于点D,试判断△AED 的形状,并说明理由. 24.如图所示,有一座拱桥是圆弧形,它的跨度为60米,拱高18米, 当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PN=4米时是否要采取紧急措施
25. 如图,四边形ABCD 内接于半圆O ,AB 是直径.(1)请你添加一个条件,使图中的四边形
ABCD 成等腰梯形,这个条件是 (只需填一个条件)。

(2)如果CD =2
1AB ,请你设计一种方案,使等腰梯形ABCD 分成
26. 在射线OA 上取一点A ,使OA =4cm ,以A 为圆心,作一直径为4cm 的圆,问:过O 的射线OB 与OA 的锐角α取怎样的值时,OA 与OB(1)相离;(2)相切;(3)相交。

附加题:
D 作半圆的切线交AB 于
E ,切点为
F ,若AE :BE=2:1,求tan ∠ADE 的值。

A B
A / B
/
P
N n
A
B
C
D .B
求CD的长。

于H,交⊙O于点E,交AC于点F,P为ED的延长线上一点。

(1)当△PCF满足什么条件时,PC与⊙O相切,为什么?
已知⊙O
1与⊙O
2
相交于A、B两点,且点O
2
在⊙O
1
上,
(1)如下图,AD是⊙O
2的直径,连结DB并延长交⊙O
1
于C,求证CO
2

AD;
(2)如下图,如果AD是⊙O
2的一条弦,连结DB并延长交⊙O
1
于C,那么
CO
2
所在直线是否与AD垂直?证明你的结论。

相关文档
最新文档