中考圆有关的动点几何压轴题
中考数学压轴题之圆的综合(中考题型整理,突破提升)及答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.在⊙O 中,点C是AB上的一个动点(不与点A,B重合),∠ACB=120°,点I是∠ABC的内心,CI的延长线交⊙O于点D,连结AD,BD.(1)求证:AD=BD.(2)猜想线段AB与DI的数量关系,并说明理由.(3)若⊙O的半径为2,点E,F是AB的三等分点,当点C从点E运动到点F时,求点I 随之运动形成的路径长.23【答案】(1)证明见解析;(2)AB=DI,理由见解析(3【解析】分析:(1)根据内心的定义可得CI平分∠ACB,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.2.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=13,求AE的长.【答案】(1)证明见解析;(22【解析】分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.∵OA是⊙O半径,∴DA为⊙O的切线;(2)∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE.∵∠D=∠D,∴△CED∽△ACD;(3)在Rt△AOD中,OA=1,sin D=13,∴OD=OAsinD=3,∴CD=OD﹣OC=2.∵AD=22OD OA-=22.又∵△CED∽△ACD,∴AD CDCD DE=,∴DE=2CDAD=2,∴AE=AD﹣DE=22﹣2=2.点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.3.如图,已知AB为⊙O直径,D是BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴DC DB=,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.4.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA 的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF:(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为32,求BD的长度.【答案】(1)证明见解析;(2) 证明见解析;(3)2【解析】分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.∴△BFC∽△DGC,△FEC∽△GAC,∴BFDG=CFCG,EFAG=CFCG,∴BFDG=EFAG,∵G是AD的中点,∴BF=EF;(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°,由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,又∵OA=OB,∴∠ABO=∠BAO,∵BE是圆O的切线,∴∠EBO=90°,∴∠FBA+∠ABO=90°,∴∠FAB+∠BAO=90°,即∠FAO=90°,∴PA⊥OA,∴PA是圆O的切线;(3)过点F作FH⊥AD于点H,∵BD⊥AD,FH⊥AD,∴FH∥BC,由(2),知∠FBA=∠BAF,∴BF=AF.∵BF=FG,∴AF=FG,∴△AFG是等腰三角形.∵FH⊥AD,∴AH=GH,∴DG =2HG . 即12HG DG =, ∵FH ∥BD ,BF ∥AD ,∠FBD =90°,∴四边形BDHF 是矩形,∴BD =FH ,∵FH ∥BC∴△HFG ∽△DCG ,∴12FH HG CD DG ==, 即12BD CD =, ∴23 2.153≈, ∵O 的半径长为32,∴BC =62,∴BD =13BC =22. 点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.5.如图,正三角形ABC 内接于⊙O ,P 是BC 上的一点,且PB <PC ,PA 交BC 于E ,点F 是PC 延长线上的点,CF=PB ,AB=13,PA=4.(1)求证:△ABP ≌△ACF ;(2)求证:AC 2=PA•AE ;(3)求PB 和PC 的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC ,再利用圆的内接四边形的性质得∠ACF=∠ABP ,于是可根据“SAS”判断△ABP ≌△ACF ;(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得∠APC=∠ABB=60°,加上∠CAE=∠PAC ,于是可判断△ACE ∽△APC ,然后利用相似比即可得到结论;(3)先利用AC 2=PA •AE 计算出AE=134 ,则PE=AP-AE=34,再证△APF 为等边三角形,得到PF=PA=4,则有PC+PB=4,接着证明△ABP ∽△CEP ,得到PB•PC=PE•A=3,然后根据根与系数的关系,可把PB 和PC 看作方程x 2-4x+3=0的两实数解,再解此方程即可得到PB 和PC 的长.试题解析:(1)∵∠ACP+∠ABP=180°,又∠ACP+∠ACF=180°,∴∠ABP=∠ACF在ABP ∆和ACF ∆中,∵AB=AC ,∠ABP=∠ACF , CF PB =∴ABP ∆≌ACF ∆.(2)在AEC ∆和ACP ∆中,∵∠APC=∠ABC ,而ABC ∆是等边三角形,故∠ACB=∠ABC=60º,∴∠ACE =∠APC .又∠CAE =∠PAC ,∴AEC ∆∽ACP ∆ ∴AC AE AP AC=,即2AC PA AE =⋅. 由(1)知ABP ∆≌ACF ∆,∴∠BAP=∠CAF , CF PB =∴∠BAP+∠PAC=∠CAF+∠PAC∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°.∴APF ∆是等边三角形∴AP=PF∴4PB PC PC CF PF PA +=+===在PAB ∆与CEP ∆中,∵∠BAP=∠ECP ,又∠APB=∠EPC=60°,∴PAB ∆∽CEP ∆ ∴PB PA PE PC=,即PB PC PA PE ⋅=⋅ 由(2)2AC PA AE =⋅, ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+= ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+=∴22222243PB PC PA AC PA AB ⋅=-=-=-=因此PB 和PC 的长是方程2430x x --=的解.解这个方程,得11x =, 23x =.∵PB<PB ,∴PB=11x =,PC=23x =,∴PB 和PC 的长分别是1和3。
中考压轴题专题与圆有关的值问题(附标准答案)

B yC x A OD B O C A 与圆有关的最值(取值范围)问题引例1:在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan ∠BOC=m ,则m 的取值范围是_________.引例2:如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径作⊙O ,C 为半圆弧»AB 上的一个动点(不与A 、B 两点重合),射线AC 交⊙O 于点E ,BC=a ,AC=b ,求a b 的最大值.引例3:如图,∠BAC=60°,半径长为1的圆O 与∠BAC 的两边相切,P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ).A .3B .6C .332D .33一、题目分析:此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C 与两个定点O 、A 构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;2.引例2:通过圆的基本性质,寻找动点C 与两个定点A 、B 构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D 、E 与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE 、直径所在的直角三角形,从而转化为弦DE 与半径AP 之间的数量关系,其实质是高中“正弦定理”的直接运用;综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.二、解题策略1.直观感觉,画出图形;2.特殊位置,比较结果;3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.A M D DOC B A 三、中考展望与题型训练例一、斜率运用1.如图,A 点的坐标为(﹣2,1),以A 为圆心的⊙A 切x 轴于点B ,P (m ,n )为⊙A 上的一个动点,请探索n+m 的最大值.例二、圆外一点与圆的最近点、最远点1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧»AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)在点P 的运动过程中,线段CD 长度的取值范围为 ; (2)在点P 的运动过程中,线段AD 长度的最大值为 .例三、正弦定理 1.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=22D 是线段BC 上的一个动点,以AD 为直径作⊙O 分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值为 .2. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,则PM 长度的最大值是 .O A E B AC OD OD CE A B例四、柯西不等式、配方法1.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD•CD 的值最大,且最大值是为 .2.如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 半径的最小值为( ).23322 D. 23.在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B ,线段AB 长度的最小值是 .例四、相切的应用(有公共点、最大或最小夹角)1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .2.如图,Rt△ABC 中,∠C=90°,∠A=30°,AB=4,以AC 上的一点O 为圆心OA 为半径作⊙O ,若⊙O 与边BC 始终有交点(包括B 、C 两点),则线段AO 的取值范围是 .3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A.B.C.3 D.2例五、其他知识的综合运用1.(2015•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E 重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2.(2013秋•相城区校级期末)如图,已知A、B是⊙O与x轴的两个交点,⊙O的半径为1,P是该圆上第一象限内的一个动点,直线PA、PB分别交直线x=2于C、D两点,E为线段CD的中点.(1)判断直线PE与⊙O的位置关系并说明理由;(2)求线段CD长的最小值;(3)若E点的纵坐标为m,则m的范围为.l Q P N M O A D BC E F C AD B Q P O A B D CP 【题型训练】1.如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,OA=5,OA 与⊙O 相交于点P ,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C ,若在⊙O 上存在点Q ,使△QAC 是以AC 为底边的等腰三角形,则⊙O 的半径r 的取值范围为 .2.已知:如图,Rt ΔABC 中,∠B=90º,∠A=30º,BC=6cm ,点O 从A 点出发,沿AB 以每秒3cm 的速度向B 点方向运动,当点O 运动了t 秒(t >0)时,以O 点为圆心的圆与边AC 相切于点D ,与边AB 相交于E 、F 两点,过E 作EG ⊥DE 交射线BC 于G.(1)若点G 在线段BC 上,则t 的取值范围是 ;(2)若点G 在线段BC 的延长线上,则t 的取值范围是 .3.如图,⊙M ,⊙N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为⊙M 上的任意一点,Q 为⊙N 上的任意一点,直线PQ 与连心线l 所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α∠的最大值为( ).(A)6; (B)43; (C)3; (D)344.如图,在矩形ABCD 中,AB=3,BC=4,O 为矩形ABCD 的中心,以D 为圆心1为半径作⊙D ,P 为⊙D 上的一个动点,连接AP 、OP ,则△AOP 面积的最大值为( ).(A)4 (B)215 (C)358 (D)1745.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( ).A .194B .245C .5D .426.如图,在等腰Rt △ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F ,在此运动变化的过程中,线段EF 长度的最小值为 .7.如图,A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心的坐标为(-1,0),半径为1,若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是( ).A .2B .1 C.22- D.22AQC PBO ABxyPO A xyP8.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ).A.3 B.113C.103D.49.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,⊙C的半径为1,点P在斜边AB上,PQ 切⊙O于点Q,则切线长PQ长度的最小值为( ).7 B.2210.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的范围为 .11.在直角坐标系中,点A的坐标为(3,0),点P(m n,)是第一象限内一点,且AB=2,则m n-的范围为 .12.在坐标系中,点A的坐标为(3,0),点P是y轴右侧一点,且AP=2,点B上直线y=x+1上一动点,且PB⊥AP于点P,则tan ABP m∠=,则m的取值范围是 .13.在平面直角坐标系中,M(3,4),P是以M为圆心,2为半径的⊙M上一动点,A(-1,0)、B(1,0),连接PA、PB,则PA2+PB2最大值是 .蔡老师点评:与圆有关的最值问题,看着无从下手,但只要仔细观察,分析图形,寻找动点与定点之间不变的维系条件,构建关系,将研究的问题转化为变量与常量之间的关系,就能找到解决问题的突破口!几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考试题中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.参考答案:引例1. 解:C 在以A 为圆心,以2为半径作圆周上,只有当OC 与圆A 相切(即到C 点)时,∠BOC 最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°, ∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC ,tan ∠BOC=tan ∠OAC==,随着C 的移动,∠BOC 越来越大,∵C 在第一象限,∴C 不到x 轴点,即∠BOC <90°, ∴tan ∠BOC ≥,故答案为:m ≥.引例1图引例2图 引例2.2a b +≤;原题:(2013•武汉模拟)如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径作圆O ,C 为半圆AB 上不与A 、B 重合的一动点,射线AC 交⊙O 于点E ,BC=a ,AC=b .(1)求证:AE=b+a ;(2)求a+b 的最大值;(3)若m 是关于x 的方程:x 2+ax=b 2+ab 的一个根,求m 的取值范围.【考点】圆的综合题.【分析】(1)首先连接BE ,由△OAB 为等边三角形,可得∠AOB=60°,又由圆周角定理,可求得∠E 的度数,又由AB 为⊙D 的直径,可求得CE 的长,继而求得AE=b+a ;(2)首先过点C 作CH ⊥AB 于H ,在Rt △ABC 中,BC=a ,AC=b ,AB=1,可得(a+b ) 2= a 2+b 2+2ab=1+2ab=1+2CH •AB=1+2CH ≤1+2AD=1+AB=2,即可求得答案;(3)由x 2+ax=b 2+ab ,可得(x ﹣b )(x+b+a )=0,则可求得x 的值,继而可求得m 的取值范围.【解答】解:(1)连接BE ,∵△OAB 为等边三角形,∴∠AOB=60°,∴∠AEB=30°,∵AB 为直径,∴∠ACB=∠BCE=90°,∵BC=a ,∴BE=2a ,CE=a ,∵AC=b ,∴AE=b+a ;(2)过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,∴a2+b2=1,∵S△ABC=AC•BC=AB•CH,∴AC•BC=AB•CH,∴(a+b)2=a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,∴a+b≤,故a+b的最大值为,(3)∵x2+ax=b2+ab,∴x2﹣b2+ax﹣ab=0,∴(x+b)(x﹣b)+a(x﹣b)=0,∴(x﹣b)(x+b+a)=0,∴x=b或x=﹣(b+a),当m=b时,m=b=AC<AB=1,∴0<m<1,当m=﹣(b+a)时,由(1)知AE=﹣m,又∵AB<AE≤2AO=2,∴1<﹣m≤2,∴﹣2≤m<﹣1,∴m的取值范围为0<m<1或﹣2≤m<﹣1.【点评】此题考查了圆周角定理、等边三角形的性质、完全平方公式的应用以及一元二次方程的解法.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.引例3.解:连接EP,DP,过P点作PM垂直DE于点M,过O做OF⊥AC与F,连接AO,如图,∵∠BAC=60°,∴∠DPE=120°.∵PE=PD,PM⊥DE,∴∠EPM=60°,∴ED=2EM=2EP•sin60°=EP=PA.当P与A、O共线时,且在O点右侧时,⊙P直径最大.∵⊙O与∠BAC两边均相切,且∠BAC=60°,∴∠OAF=30°,OF=1,∴AO==2,AP=2+1=3,∴DE=PA=3.故答案为:D。
2020-2021中考数学圆的综合-经典压轴题含答案

2020-2021中考数学圆的综合-经典压轴题含答案一、圆的综合1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.【答案】(1)4;(2)35;(3)点E的坐标为(1,2)、(53,103)、(4,2).【解析】分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH=BHHA=1,∴BH=HA=4,∴OC=BH=4.故答案为4.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).由(1)得:OH =2,BH =4.∵OC 与⊙M 相切于N ,∴MN ⊥OC .设圆的半径为r ,则MN =MB =MD =r .∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA .∵BM =DM ,∴CN =ON ,∴MN =12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2.解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD .∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG .∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12BD =2,∴OF =4,∴OG同理可得:OB AB ,∴BG =12AB .设OR =x ,则RG x .∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,∴(2﹣x 2=()2﹣(x )2.解得:x =5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR =5.在Rt △ORB 中,sin ∠BOR =BR OB35. 故答案为35. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.解得:t =1.则OP =CD =DB =1.∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2).②当∠BED =90°时,如图3.∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,∴BEBC =2DB BE OB ∴,∴BE =5t . ∵PE ∥OC ,∴∠OEP =∠BOC .∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO ,∴OEOB =25OPBC∴,=2t,∴OE=5t.∵OE+BE=OB=255,∴t+5t=25.解得:t=53,∴OP=53,OE=55,∴PE=22OE OP-=103,∴点E的坐标为(51033,).③当∠DBE=90°时,如图4.此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.则有OD=PE,EA=22PE PA+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED=BEDE=2,∴DE=2BE,∴t=22(t﹣22)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.2.如图,在直角坐标系中,已知点A(-8,0),B(0,6),点M在线段AB上。
中考数学圆的综合-经典压轴题及详细答案

中考数学圆的综合-经典压轴题及详细答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴¶¶BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.(1)若∠G=48°,求∠ACB的度数;(2)若AB=AE,求证:∠BAD=∠COF;(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若tan∠CAF=12,求12SS的值.【答案】(1)48°(2)证明见解析(3)3 4【解析】【分析】(1)连接CD,根据圆周角定理和垂直的定义可得结论;(2)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得»»»CD PB PD==,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=2x-a,根据勾股定理列方程得:(2x-a)2=x2+a2,则a=34x,代入面积公式可得结论.【详解】(1)连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(2)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴»»CD PB=,∵AD是⊙O的直径,AD⊥PC,∴»»CD PD=,∴»»»CD PB PD==,∴∠BAD=2∠DAC,∵∠COF=2∠DAC,∴∠BAD=∠COF;(3)过O作OG⊥AB于G,设CF=x,∵tan∠CAF=12=CF AF,∴AF=2x,∵OC=OA,由(2)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,设OF=a,则OA=OC=2x﹣a,Rt△COF中,CO2=CF2+OF2,∴(2x﹣a)2=x2+a2,a=34 x,∴OF=AG=34 x,∵OA=OB,OG⊥AB,∴AB=2AG=32x,∴1213··3 22 1·24·2AB OG x xSS x xCF AF===.【点睛】圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(2)根据外角的性质和圆的性质得:»»»==;(3)利用三角函数设未知数,根CD PB PD据勾股定理列方程解决问题.3.如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6).(1)当G(4,8)时,则∠FGE= °(2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形.要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法).【答案】(1)90;(2)作图见解析,P(7,7),PH是分割线.【解析】试题分析:(1)根据勾股定理求出△FEG的三边长,根据勾股定理逆定理可判定△FEG是直角三角形,且∠FGE="90" °.(2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P在以EF为直径的圆上;另一方面,由于四边形OEPF被过P点的一条直线分割成两部分后,可以拼成一个正方形,从而OP是正方形的对角线,即点P在∠FOE的角平分线上,因此可得P(7,7),PH是分割线.试题解析:(1)连接FE,∵E(8,0),F(0 , 6),G(4,8),∴根据勾股定理,得FG=,EG=,FE=10.∵,即.∴△FEG是直角三角形,且∠FGE=90 °.(2)作图如下:P(7,7),PH是分割线.考点:1.网格问题;2.勾股定理和逆定理;3.作图(设计);4.圆周角定理.4.如图,已知在△ABC中,AB=15,AC=20,tanA=12,点P在AB边上,⊙P的半径为定长.当点P与点B重合时,⊙P恰好与AC边相切;当点P与点B不重合时,⊙P与AC边相交于点M和点N.(1)求⊙P的半径;(2)当AP=5△APM与△PCN是否相似,并说明理由.【答案】(1)半径为52)相似,理由见解析.【解析】【分析】(1)如图,作BD⊥AC,垂足为点D,⊙P与边AC相切,则BD就是⊙P的半径,利用解直角三角形得出BD与AD的关系,再利用勾股定理可求得BD的长;(2)如图,过点P作PH⊥AC于点H,作BD⊥AC,垂足为点D,根据垂径定理得出MN=2MH,PM=PN,再利用勾股定理求出PH、AH、MH、MN的长,从而求出AM、NC的长,然后求出AMMP、PNNC的值,得出AMMP=PNNC,利用两边对应成比例且夹角相等的两三角形相似即可证明.【详解】(1)如图,作BD ⊥AC ,垂足为点D ,∵⊙P 与边AC 相切,∴BD 就是⊙P 的半径,在Rt △ABD 中,tanA=1BD 2AD =, 设BD=x ,则AD=2x ,∴x 2+(2x)2=152,解得:5∴半径为5(2)相似,理由见解析,如图,过点P 作PH ⊥AC 于点H ,作BD ⊥AC ,垂足为点D ,∴PH 垂直平分MN ,∴PM=PN ,在Rt △AHP 中,tanA=12PH AH =, 设PH=y ,AH=2y ,y 2+(2y )2=(52解得:y=6(取正数),∴PH=6,AH=12,在Rt △MPH 中, ()22356-,∴MN=2MH=6,∴AM=AH-MH=12-3=9,NC=AC-MN-AM=20-6-9=5, ∴3535AM MP ==,35PN NC =, ∴AM MP =PN NC, 又∵PM=PN ,∴∠PMN=∠PNM ,∴∠AMP=∠PNC ,∴△AMP ∽△PNC.【点睛】本题考查了解直角三角形、垂径定理、相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线、灵活应用相关的性质与定理是解题的关键. 5.在⊙O 中,点C 是AB u u u r 上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD .(2)猜想线段AB 与DI 的数量关系,并说明理由.(3)若⊙O 的半径为2,点E ,F 是»AB 的三等分点,当点C 从点E 运动到点F 时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI ,理由见解析(323 【解析】分析:(1)根据内心的定义可得CI 平分∠ACB ,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD ,可求出∠BAD 的度数,再根据AD=BD ,可证得△ABD 是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD ,得出ID=BD ,再根据AB=BD ,即可证得结论;(3)连接DO ,延长DO 根据题意可知点I 随之运动形成的图形式以D 为圆心,DI 1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD 的长,再根据点E ,F 是 弧AB ⌢的三等分点,△ABD 是等边三角形,可证得∠DAI 1=∠AI 1D ,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I 是∠ABC 的内心∴CI 平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE是直径∴DE=4,∠EAD=90°∴AD=sin∠AED×DE=×4=2∵点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,∴∠ADB=60°∴弧AB的度数为120°,∴弧AM、弧BF的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI1=∠FAB+∠DAB=80°∴∠AI1D=180°-∠ADM-∠DAI1=180°-20°-80°=80°∴∠DAI1=∠AI1D∴AD=I1D=2∴弧I1I2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.6.如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD﹣DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为_____cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P 开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.【答案】(1)t﹣1;(2)S=﹣38t2+3t+3(1<t<4);(3)t=103s.【解析】分析:(1)根据勾股定理求出AB,根据D为AB中点,求出AD,根据点P在AD上的速度,即可求出点P在AD段的运动时间,再求出点P在DP段的运动时间,最后根据DE段运动速度为1c m/s ,即可求出DP ;(2)由正方形PQMN 与△ABC 重叠部分图形为五边形,可知点P 在DE 上,求出DP =t ﹣1,PQ =3,根据MN ∥BC ,求出FN 的长,从而得到FM 的长,再根据S =S 梯形FMHD +S 矩形DHQP ,列出S 与t 的函数关系式即可;(3)当圆与边PQ 相切时,可求得r =PE =5﹣t ,然后由r 以0.2c m/s 的速度不断增大,r =1+0.2t ,然后列方程求解即可;当圆与MN 相切时,r =CM =8﹣t =1+0.2t ,从而可求得t 的值.详解:(1)由勾股定理可知:AB =22AC BC +=10. ∵D 、E 分别为AB 和BC 的中点,∴DE =12AC =4,AD =12AB =5, ∴点P 在AD 上的运动时间=55=1s ,当点P 在线段DE 上运动时,DP 段的运动时间为(t ﹣1)s . ∵DE 段运动速度为1c m/s ,∴DP =(t ﹣1)cm .故答案为t ﹣1.(2)当正方形PQMN 与△ABC 重叠部分图形为五边形时,有一种情况,如下图所示.当正方形的边长大于DP 时,重叠部分为五边形,∴3>t ﹣1,t <4,DP >0,∴t ﹣1>0,解得:t >1,∴1<t <4.∵△DFN ∽△ABC ,∴DN FN =AC BC =86=43. ∵DN =PN ﹣PD ,∴DN =3﹣(t ﹣1)=4﹣t , ∴4t FN -=43,∴FN =344t -(), ∴FM =3﹣344t -()=34t , S =S 梯形FMHD +S 矩形DHQP , ∴S =12×(34t +3)×(4﹣t )+3(t ﹣1)=﹣38t 2+3t +3(1<t <4). (3)①当圆与边PQ 相切时,如图:当圆与PQ相切时,r=PE,由(1)可知,PD=(t﹣1)cm,∴PE=DE﹣DP=4﹣(t﹣1)=(5﹣t)cm.∵r以0.2c m/s的速度不断增大,∴r=1+0.2t,∴1+0.2t=5﹣t,解得:t=103s.②当圆与MN相切时,r=CM.由(1)可知,DP=(t﹣1)cm,则PE=CQ=(5﹣t)cm,MQ=3cm,∴MC=MQ+CQ=5﹣t+3=(8﹣t)cm,∴1+0.2t=8﹣t,解得:t=356s.∵P到E点停止,∴t﹣1≤4,即t≤5,∴t=356s(舍).综上所述:当t=103s时,⊙O与正方形PQMN的边所在直线相切.点睛:本题主要考查的是圆的综合应用,解答本题主要应用了勾股定理、相似三角形的性质和判定、正方形的性质,直线和圆的位置关系,依据题意列出方程是解题的关键.7.如图,AB是⊙O的直径,弦BC=OB,点D是»AC上一动点,点E是CD中点,连接BD 分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若CFOF=12,求BFGF的值;(3)记△CFB ,△DGO 的面积分别为S 1,S 2,若CFOF =k ,求12S S 的值.(用含k 的式子表示)【答案】(1)∠DGE =60°;(2)72;(3)12S S =211k k k +++. 【解析】【分析】(1)根据等边三角形的性质,同弧所对的圆心角和圆周角的关系,可以求得∠DGE 的度数;(2)过点F 作FH ⊥AB 于点H 设CF =1,则OF =2,OC =OB =3,根据勾股定理求出BF 的长度,再证得△FGO ∽△FCB ,进而求得BF GF的值; (3)根据题意,作出合适的辅助线,然后根据三角形相似、勾股定理可以用含k 的式子表示出12S S 的值. 【详解】解:(1)∵BC =OB =OC ,∴∠COB =60°,∴∠CDB =12∠COB =30°, ∵OC =OD ,点E 为CD 中点,∴OE ⊥CD ,∴∠GED =90°,∴∠DGE =60°;(2)过点F 作FH ⊥AB 于点H设CF =1,则OF =2,OC =OB =3∵∠COB =60°∴OH =12OF =1, ∴HF 33HB =OB ﹣OH =2,在Rt △BHF 中,BF 22HB HF 7=+=由OC =OB ,∠COB =60°得:∠OCB =60°,又∵∠OGB =∠DGE =60°,∴∠OGB =∠OCB ,∵∠OFG =∠CFB ,∴△FGO ∽△FCB , ∴OF GF BF CF=, ∴, ∴BF GF =72. (3)过点F 作FH ⊥AB 于点H ,设OF =1,则CF =k ,OB =OC =k+1,∵∠COB =60°,∴OH =12OF=12, ∴HF=,HB =OB ﹣OH =k+12, 在Rt △BHF 中, BF=由(2)得:△FGO ∽△FCB , ∴GO OF CB BF =,即1GO k =+,∴GO =过点C 作CP ⊥BD 于点P∵∠CDB =30°∴PC =12CD , ∵点E 是CD 中点,∴DE =12CD , ∴PC =DE ,∵DE ⊥OE , ∴12S S =BF GO=1k +=211k k k +++【点睛】圆的综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形相似和勾股定理、数形结合的思想解答.8.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作¶AC、¶CB、¶BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l为对称轴的交点.(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为;(2)如图3,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B与⊙O的圆心O重合,⊙O的半径为3,将它沿⊙O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为(请用含n的式子表示)【答案】(1)3π;(2)27π;(3)3.【解析】试题分析:(1)先求出¶AC的弧长,继而得出莱洛三角形的周长为3π,即可得出结论;(2)先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O重合旋转一周点I的路径,再用圆的周长公式即可得出.试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,¶¶¶AC BC AB ==,∴¶¶AC BC l l ==¶AB l =603180π⨯=π,∴线段MN 的长为¶¶¶AC BC ABl l l ++=3π.故答案为3π; (2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,由题意知,AB ⊥DE ,AG ⊥AF ,∴∠BAG =120°,∴S 扇形BAG =21203360π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S 矩形AGHF +S 扇形BAG )=3(6π+3π)=27π;(3)如图2,连接BI 并延长交AC 于D .∵I 是△ABC 的重心也是内心,∴∠DAI =30°,AD =12AC =32,∴OI =AI =3230AD cos DAI cos ∠=︒=3,∴当它第1次回到起始位置时,点I 所经过的路径是以O 为圆心,OI 为半径的圆周,∴当它第n 次回到起始位置时,点I 所经过的路径长为n •2π•3=23n π.故答案为23n π.点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出¶AC 的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I 第一次回到起点时,I 的路径,是一道中等难度的题目.9.如图,在直角坐标系中,⊙M 经过原点O(0,0),点A(6,0)与点B(0,-2),点D在劣弧»OA上,连结BD 交x 轴于点C ,且∠COD =∠CBO. (1)求⊙M 的半径;(2)求证:BD 平分∠ABO ;(3)在线段BD 的延长线上找一点E ,使得直线AE 恰为⊙M 的切线,求此时点E 的坐标.【答案】(1)M 的半径r 2;(2)证明见解析;(3)点E 的坐标为262).【解析】试题分析:根据点A 和点B 的坐标得出OA 和OB 的长度,根据Rt △AOB 的勾股定理得出AB 的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD ,然后结合已知条件得出角平分线;根据角平分线得出△ABE ≌△HBE ,从而得出BH=BA=22,从而求出OH 的长度,即点E 的纵坐标,根据Rt △AOB 的三角函数得出∠ABO 的度数,从而得出∠CBO 的度数,然后根据Rt △HBE 得出HE 的长度,即点E 的横坐标.试题解析:(1)∵点A 为(6,0),点B 为(0,-2) ∴OA=6OB=2 ∴根据Rt △AOB 的勾股定理可得:AB=22∴e M 的半径r=12AB=2. (2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴BH=BA=22∴OH=22-2=2在Rt △AOB 中,3OA OB=∴∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,HE=263=∴点E 的坐标为(26,2)考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.10.如图1,是用量角器一个角的操作示意图,量角器的读数从M 点开始(即M 点的读数为0),如图2,把这个量角器与一块30°(∠CAB =30°)角的三角板拼在一起,三角板的斜边AB 与量角器所在圆的直径MN 重合,现有射线C 绕点C 从CA 开始沿顺时针方向以每秒2°的速度旋转到与CB ,在旋转过程中,射线CP 与量角器的半圆弧交于E .连接BE . (1)当射线CP 经过AB 的中点时,点E 处的读数是 ,此时△BCE 的形状是 ; (2)设旋转x 秒后,点E 处的读数为y ,求y 与x 的函数关系式;(3)当CP 旋转多少秒时,△BCE 是等腰三角形?【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒【解析】【分析】(1)根据圆周角定理即可解决问题;(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);(3)分两种情形分别讨论求解即可;【详解】解:(1)如图2﹣1中,∵∠ACB=90°,OA=OB,∴OA=OB=OC,∴∠OCA=∠OAC=30°,∴∠AOE=60°,∴点E处的读数是60°,∵∠E=∠BAC=30°,OE=OB,∴∠OBE=∠E=30°,∴∠EBC=∠OBE+∠ABC=90°,∴△EBC是直角三角形;故答案为60°,直角三角形;(2)如图2﹣2中,∵∠ACE=2x,∠AOE=y,∵∠AOE=2∠ACE,∴y=4x(0≤x≤45).(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,∵AC⊥BC,∵EO∥AC,∴∠AOE=∠BAC=30°,∠AOE=15°,∴∠ECA=12∴x=7.5.②若2﹣4中,当BE=BC时,易知∠BEC=∠BAC=∠BCE=30°,∴∠OBE=∠OBC=60°,∵OE=OB,∴△OBE是等边三角形,∴∠BOE=60°,∴∠AOB=120°,∠ACB=60°,∴∠ACE=12∴x=30,综上所述,当CP旋转7.5秒或30秒时,△BCE是等腰三角形;【点睛】本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.11.如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.【答案】(1)证明见解析;(2)①∠OCE=45°;②EF =23【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,中,∠E=30°,利用内角和定理,得:∠OCE=45°.∠EOC=∠DAO=105°,在OCE②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=2,∠OCE=45°.等腰直角三2倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=23则EF=GE-FG=23【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=22,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=23.∴EF=GE-FG=23-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.12.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH,①△CBH∽△OBC②求OH+HC的最大值【答案】(1)证明见解析;(2)①证明见解析;②5.【解析】分析:(1)由题意可知:∠CAB=∠GAF,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:BC HBOC BC=,所以HB=24BC,由于BC=HC,所以OH+HC=4−24BC+BC,利用二次函数的性质即可求出OH+HC的最大值.详解:(1)由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC②由△CBH∽△OBC可知:BC HB OC BC=∵AB=8,∴BC2=HB•OC=4HB,∴HB=24 BC,∴OH=OB-HB=4-2 4 BC∵CB=CH,∴OH+HC=4−24BC+BC,当∠BOC=90°,此时∵∠BOC<90°,∴0<BC<,令BC=x 则CH=x ,BH=24x ()221142544OH HC x x x ∴+=-++=--+ 当x=2时,∴OH+HC 可取得最大值,最大值为5点睛:本题考查圆的综合问题,涉及二次函数的性质,相似三角形的性质与判定,切线的判定等知识,综合程度较高,需要学生灵活运用所知识.13.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为. (1)问题发现 如图1,当时,线段的长等于_________,线段的长等于_________. (2)探究证明 如图2,当时,求证:,且. (3)问题解决求点到所在直线的距离的最大值.(直接写出结果)【答案】(1);;(2)详见解析;(3)【解析】【分析】 (1)利用等腰直角三角形的性质结合勾股定理分别得出BD 1的长和CE 1的长; (2)根据旋转的性质得出,∠D 1AB=∠E 1AC=135°,进而求出△D 1AB ≌△E 1AC (SAS ),即可得出答案;(3)首先作PG ⊥AB ,交AB 所在直线于点G ,则D 1,E 1在以A 为圆心,AD 为半径的圆上,当BD 1所在直线与⊙A 相切时,直线BD 1与CE 1的交点P 到直线AB 的距离最大,此时四边形AD 1PE 1是正方形,进而求出PG 的长.【详解】(1)解:∵∠A=90°,AC=AB=4,D ,E 分别是边AB ,AC 的中点,∴AE=AD=2,∵等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.14.设C为线段AB的中点,四边形BCDE是以BC为一边的正方形,以B为圆心,BD长为半径的⊙B与AB相交于F点,延长EB交⊙B于G点,连接DG交于AB于Q点,连接AD.求证:(1)AD是⊙B的切线;(2)AD=AQ;(3)BC2=CF×EG.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】()1连接BD ,由DC AB ⊥,C 为AB 的中点,由线段垂直平分线的性质,可得AD BD =,再根据正方形的性质,可得90ADB ∠=o ;()2由BD BG =与//CD BE ,利用等边对等角与平行线的性质,即可求得122.52G CDG BDG BCD ∠=∠=∠=∠=o ,继而求得67.5ADQ AQD ∠=∠=o ,由等角对等边,可证得AD AQ =; ()3易求得67.5GDE GDB BDE DFE ∠=∠+∠==∠o ,90DCF E ∠=∠=o ,即可证得Rt DCF V ∽Rt GED V ,根据相似三角形的对应边成比例,即可证得结论.【详解】证明:()1连接BD ,Q 四边形BCDE 是正方形,45DBA ∴∠=o ,90DCB ∠=o ,即DC AB ⊥,C Q 为AB 的中点,CD ∴是线段AB 的垂直平分线,AD BD ∴=,45DAB DBA ∴∠=∠=o ,90ADB ∴∠=o ,即BD AD ⊥,BD Q 为半径,AD ∴是B e 的切线;()2BD BG =Q ,BDG G ∴∠=∠,//CD BE Q ,CDG G ∴∠=∠, 122.52G CDG BDG BCD ∴∠=∠=∠=∠=o , 9067.5ADQ BDG ∴∠=-∠=o o ,9067.5AQB BQG G ∠=∠=-∠=o o , ADQ AQD ∴∠=∠,AD AQ ∴=;()3连接DF ,在BDF V 中,BD BF =,BFD BDF ∴∠=∠,又45DBF ∠=o Q ,67.5BFD BDF ∴∠=∠=o ,22.5GDB ∠=o Q ,在Rt DEF V 与Rt GCD V 中,67.5GDE GDB BDE DFE ∠=∠+∠==∠o Q ,90DCF E ∠=∠=o ,Rt DCF ∴V ∽Rt GED V ,CF CD ED EG∴=, 又CD DE BC ==Q ,2BC CF EG ∴=⋅.【点睛】本题考查了相似三角形的判定与性质、切线的判定与性质、正方形的性质以及等腰三角形的判定与性质.解题的关键是注意掌握数形结合思想的应用,注意辅助线的作法.15.已知AB 是半圆O 的直径,点C 在半圆O 上.(1)如图1,若AC =3,∠CAB =30°,求半圆O 的半径;(2)如图2,M 是»BC的中点,E 是直径AB 上一点,AM 分别交CE ,BC 于点F ,D . 过点F 作FG ∥AB 交边BC 于点G ,若△ACE 与△CEB 相似,请探究以点D 为圆心,GB 长为半径的⊙D 与直线AC 的位置关系,并说明理由.【答案】(1)半圆O的半径为3;(2)⊙D与直线AC相切,理由见解析【解析】试题分析:(1)依据直径所对的圆周角是直角可得∠C=90°,2再依据三角函数即可求解;(2) 依据△ACE与△CEB相似证出∠AEC=∠CEB=90°, 再依据M是»BC的中点,证明CF=CD, 过点F作FP∥GB交于AB于点P, 证出△ACF≌△APF,得出CF=FP,再证四边形FPBG是平行四边形,得到 FP=GB从而CD=GB,点D到直线AC的距离为线段CD的长.试题解析:(1)∵ AB是半圆O的直径,∴∠C=90°.在Rt△ACB中,AB=cos AC CAB ∠=3 cos30︒=23.∴ OA=3(2)⊙D与直线AC相切.理由如下:由(1)得∠ACB=90°.∵∠AEC=∠ECB+∠6,∴∠AEC>∠ECB,∠AEC>∠6.∵△ACE与△CEB相似,∴∠AEC=∠CEB=90°.在Rt△ACD,Rt△AEF中分别有∠1+∠3=90°,∠2+∠4=90°.∵ M是»BC的中点,∴∠COM=∠BOM.∴∠1=∠2,∴∠3=∠4.∵∠4=∠5,∴∠3=∠5.∴ CF=CD.过点F作FP∥GB交于AB于点P,则∠FPE=∠6.在Rt△AEC,Rt△ACB中分别有∠CAE+∠ACE=90°,∠CAE+∠6=90°.∴∠ACE=∠6=∠FPE.又∵∠1=∠2,AF=AF,∴△ACF≌△APF.∴ CF=FP.∵ FP∥GB,FG∥AB,∴四边形FPBG是平行四边形.∴ FP=GB.∴ CD=GB.∵ CD⊥AC,∴点D到直线AC的距离为线段CD的长∴⊙D与直线AC相切.。
中考数学《圆》真题压轴题总汇【附解析】

中考数学《圆》真题压轴题总汇【附解析】1.(2019•阿坝州)如图,AB为⊙O的直径,C为⊙O上的一点,∠BCH=∠A,∠H=90°,HB的延长线交⊙O于点D,连接CD.(1)求证:CH是⊙O的切线;(2)若B为DH的中点,求tan D的值.2.(2019•德阳)如图,AB是⊙O的直径,点C为⊙O上一点,OE⊥BC于点H,交⊙O于点E,点D为OE的延长线上一点,DC的延长线与BA的延长线交于点F,且∠BOD=∠BCD,连结BD、AC、CE.(1)求证:DF为⊙O的切线;(2)过E作EG⊥FD于点G,求证:△CHE≌△CGE;(3)如果AF=1,sin∠FCA=,求EG的长.3.(2019•雅安)如图,已知AB是⊙O的直径,AC,BC是⊙O的弦,OE∥AC交BC于E,过点B作⊙O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是⊙O的切线;(2)若∠ABC=30°,AB=8,求线段CF的长.4.(2019•内江)AB与⊙O相切于点A,直线l与⊙O相离,OB⊥l于点B,且OB=5,OB 与⊙O交于点P,AP的延长线交直线l于点C.(1)求证:AB=BC;(2)若⊙O的半径为3,求线段AP的长;(3)若在⊙O上存在点G,使△GBC是以BC为底边的等腰三角形,求⊙O的半径r的取值范围.5.(2019•广元)如图,AB是⊙O的直径,点P是BA延长线上一点,过点P作⊙O的切线PC,切点是C,过点C作弦CD⊥AB于E,连接CO,CB.(1)求证:PD是⊙O的切线;(2)若AB=10,tan B=,求PA的长;(3)试探究线段AB,OE,OP之间的数量关系,并说明理由.6.(2019•成都)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB 交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.7.(2019•资阳)如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.8.(2019•绵阳)如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.9.(2019•乐山)如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C 是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.10.(2019•泰州)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,AB=8,求CE的长.11.(2019•乐山)已知关于x的一元二次方程x2﹣(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足+=,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC的内切圆半径.12.(2019•株洲)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交于点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.13.(2019•巴中)如图,在菱形ABCD中,连结BD、AC交于点O,过点O作OH⊥BC于点H,以点O为圆心,OH为半径的半圆交AC于点M.①求证:DC是⊙O的切线.②若AC=4MC且AC=8,求图中阴影部分的面积.③在②的条件下,P是线段BD上的一动点,当PD为何值时,PH+PM的值最小,并求出最小值.14.(2019•广安)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠BAC,AD 交BC于点D,ED⊥AD交AB于点E,△ADE的外接圆⊙O交AC于点F,连接EF.(1)求证:BC是⊙O的切线;(2)求⊙O的半径r及∠3的正切值.15.(2019•达州)如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.16.(2019•凉山州)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.17.(2019•遂宁)如图,△ABC内接于⊙O,直径AD交BC于点E,延长AD至点F,使DF =2OD,连接FC并延长交过点A的切线于点G,且满足AG∥BC,连接OC,若cos∠BAC=,BC=6.(1)求证:∠COD=∠BAC;(2)求⊙O的半径OC;(3)求证:CF是⊙O的切线.18.(2019•宜宾)如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O 的弦,连结BD,∠BAD=∠ABD=30°,连结DO并延长交⊙O于点E,连结BE交⊙O于点M.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径OD的长;(3)求线段BM的长.19.(2019•南充)如图,在△ABC中,以AC为直径的⊙O交AB于点D,连接CD,∠BCD=∠A.(1)求证:BC是⊙O的切线;(2)若BC=5,BD=3,求点O到CD的距离.20.(2019•自贡)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.参考答案1.(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∵OA=OC,∠A=∠ACO,∴∠A+∠BCO=90°,∵∠A=∠BCH,∴∠BCH+∠BCO=90°,∴∠HCO=90°,∴CH是⊙O的切线;(2)解:∵B为DH的中点,∴设BD=BH=x,∴DH=2x,∵∠A=∠D,∠A=∠BCH,∴∠D=∠BCH,∵∠H=∠H,∴△DCH∽△CBH,∴=,∴CH==,∵∠H=90°,∴tan D===.2.(1)证明:如图,连结OC,∵OE⊥BC,∴∠OHB=90°,∴∠OBH+∠BOD=90°,∵OB=OC,∴∠OBH=∠OCB,∵∠BOD=∠BCD,∴∠BCD+∠OCB=90°,∴OC⊥CD,∵点C为⊙O上一点,∴DF为⊙O的切线;(2)解:∵∠OCD=90°,∴∠ECG+∠OCE=90°,∵OC=OE,∴∠OCE=∠OEC,∴∠ECG+∠OEC=90°,∵∠OEC+∠HCE=90°,∴∠ECG=∠HCE,在△CHE和△CGE中,,∴△CHE≌△CGE(AAS);(3)解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵DF为⊙O的切线,∴∠OCA+∠FCA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠FCA=∠ABC,∴sin∠ABC=sin∠FCA=,设AC=a,则AB=3a,∴BC===a,∵∠FCA=∠ABC,∠AFC=∠CFB,∴△ACF∽△CFB,∴===,∵AF=1,∴CF=,∴BF==2,∴BF﹣AF=AB=1,∴OC=,BC=,∵OE⊥BC,∴CH=BC=,∴OH===,∴HE=OE﹣OH=﹣,∵△CHE≌△CGE,∴EG=HE=﹣.3.(1)证明:连接OC,∵OE∥AC,∴∠1=∠ACB,∵AB是⊙O的直径,∴∠1=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为⊙O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:在Rt△ABC中,∠ABC=30°,∴∠3=60°,又OA=OC,∴△AOC是等边三角形,∴∠COF=60°,在Rt△COF中,tan∠COF=,∴CF=4.4.(1)证明:如图1,连接OA,∵AB与⊙O相切,∴∠OAB=90°,∴∠OAP+∠BAC=90°,∵OB⊥l,∴∠BCA+∠BPC=90°,∵OA=OP,∴∠OAP=∠OPA=∠BPC,∴∠BAC=∠BCA,∴AB=BC;(2)解:如图1,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△PBC,∴=,即=,解得,AP=;(3)解:如图2,作BC的垂直平分线MN,作OE⊥MN于E,则OE=BC=AB=×,由题意得,⊙O于MN有交点,∴OE≤r,即×≤r,解得,r≥,∵直线l与⊙O相离,∴r<5,则使△GBC是以BC为底边的等腰三角形,⊙O的半径r的取值范围为:≤r<5.。
中考数学压轴题-圆的压轴题 含解析

圆的压轴题(1)1、如图,BF 为⊙O 的直径,直线AC 交⊙O 于A ,B 两点,点D 在⊙O 上,BD 平分∠OBC ,DE ⊥AC 于点E 。
(1)求证:直线DE 是⊙O 的切线;(2)若 BF=10,sin ∠BDE=,求DE 的长。
2、如图,AN 是M ⊙的直径,NB x ∥轴,AB 交M ⊙于点C .(1)若点()0,6A ,()0,2N ,30ABN =∠°,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是M ⊙的切线.x y C D M O B NA3、如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.4、已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.5、如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.(1)用含α的代数式表示β,并直接写出α的取值范围;(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.6、如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.7、如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.8、如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2 ,求阴影部分的面积.9、如图,已知⊙O的直径CD=6,A,B为圆周上两点,且四边形OABC是平行四边形,过A点作直线EF∥BD,分别交CD,CB的延长线于点E,F,AO与BD交于G点.(1)求证:EF是⊙O的切线;(2)求AE的长.10、如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).11、如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为的中点,P是直径MN上一动点.(1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹).(2)求PA+PB的最小值.12、如图,已知直线PT与⊙O相切于点T,直线PO与⊙O相交于A,B两点.(1)求证:PT2=PA•PB;(2)若PT=TB=,求图中阴影部分的面积.13、如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.14、如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF ∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.15、如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.16、已知:如图,MN为⊙O的直径,ME是⊙O的弦,MD垂直于过点E的直线DE,垂足为点D,且ME平分∠DMN.求证:(1)DE是⊙O的切线;(2)ME2=MD•MN.参考答案1、【解答】解:(1)如图所示,连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠OBC,∴∠OBD=∠DBE,∴∠ODB=∠DBE,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD是⊙O的半径,∴直线DE是⊙O的切线;(2)如图,连接DF,∵BF是⊙O的直径,∴∠FDB=90°,∴∠F+∠OBD=90°,∵∠OBD=∠DBE,∠BDE+∠DBE=90°,∴∠F=∠BDE,在Rt△BDF中,=sinF=sin∠BDE=,∴BD=10×=2,∴在Rt△BDE中,sin∠BDE==,∴BE=2×=2,∴在Rt△BDE中,DE===4。
中考数学压轴题专练之圆的综合

中考数学压轴题专练之圆的综合1.(1)如图1,在⊙O中AB为直径,C为⊙O上一点,D为上一动点,E为BD上一点∠BAE=∠CAD,①求证:△ABC∽△AED.②若⊙O半径为5,BC=6,当D运动至中点时,如图2,求CD的长.(2)若三角形ABC形状发生变化,AB=AC,BC=6,点D为上的动点,且cos∠ABC =,求AD•AE的值.2.如图,AB是⊙O的直径,直线BM经过点B,连接AC、BC,满足∠CBM=∠BAC.(1)求证:直线BM是⊙O的切线;(2)过⊙O上一动点C作CD⊥OA交OA于点D,过点O作OE∥AC交直线BM于点E,连接AE交CD于点F.①求证:△ACD∽△OEB;②若CD=2,求DF的长.3.对于平面直角坐标系xOy中的点P(2,3)与图形T给出如下定义:在点P与图形T上各点连接的所有线段中,线段长度的最大值与最小值的差,称为图形T关于点P的“宽距”.(1)如图,⊙O的半径为2且与x轴分别交于A,B两点.①线段AB关于点P的“宽距”为,⊙O关于点P的“宽距”为.②点M(m,0)为x轴正半轴上的一点,当线段AM关于点P的“宽距”为2时,求m的取值范围.(2)已知一次函数y=x+1的图象分别与x轴、y轴交于D、E两点,⊙C的圆心在x轴上且⊙C的半径为1.若线段DE上的任意一点K,都能使得⊙C关于点K的“宽距”为2,直接写出圆心C的横坐标x C的取值范围.4.对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M,N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(,0),D(0,﹣1),E(0,1),点P在线段CE上运动(点P 可以与点C,E重合),连接OP,DP.①线段OP的最小值为,最大值为;线段DP的取值范围是;②在点O,点D中,点与线段DE满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点F横坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,2为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.5.已知△ABC为等边三角形,BC=2,点D从C向A运动(包括端点C,A),以BD为直径在BD上方作半圆O,半圆O与AB交于点F,点G为AC的中点,点H为半圆弧的中点,∠CBD=α.(1)如图1,当α=0°时,BH=;(2)如图2,0°<α<30°,半圆O是否始终经过点G,判断并简要说明理由;(3)如图3,α=30°时,求图中阴影部分的面积S;(4)当0<α≤60°时,直接写出AH长度的取值范围.6.如图,已知与的公共弦AB=2,对应的圆心分别是点O,C,对应的圆心角分别是120°,180°;点N,M分别是与上的动点,且∠MAN=60°.(1)如图1,连接OC,求OC长度;(2)连接ON,CM,若存在线段ON与CM交于点D.①如图2,当点D与点O重合时,求的值;②如图3,当点D异于点O,C时,∠MDN是否为定值?若是,求出该值;否则说明理由.(3)如图4,连接MN,直接写出MN的最小值.7.在△ABC中,以AB为直径的⊙O交BC于点D,AC交⊙O于点F,∠A+∠C=90°.(1)如图1,求证:CD=BD;(2)如图2,过点D作DE⊥AB于点E,连接BF,求证:BF=2DE;(3)如图3,在(2)的条件下,作∠BDH=∠ABF,DH交AB于点Q,连接BH,tan ∠BDE=,EQ=,求CF的长.8.已知AB为⊙O的直径,弦CD交AB于点E(点E不与O重合),连结AC,AD,AC=AD.(1)如图1,求证:AB⊥CD.(2)如图2,过点D作弦DH⊥AC于点G,求证:==.(3)如图3,在(2)的条件下,点Q为弧AD上一点,连结AQ,HQ,HQ交AB于点P,若AQ=,DE=3,∠HPB+2∠CAB=90°.①求AP的长;②求⊙O的半径.9.已知AC是平行四边形ABCD的一条对角线,且AB=AC,⊙O是△ABC的外接圆,CD 与⊙O的另一个交点为E,连结AE.(1)当点E在线段CD上时,如图1.①求证:△ABC∽△AED.②若tan∠ABC=3,△AEC的面积为,求⊙O的半径.(2)当点E在直线CD上时,过点E作EH⊥AB于H,直线EH与直线BC交于点F.如图2,若时,求的值.10.在半径为10的扇形AOB中,∠AOB=90°,延长OB到点C.使BC=OB=10.点D 为上的动点,点E是扇形所在平面内的点,连接OD,DE,EC,当DE=EC=10时,解答下列问题:论证:如图1,连接OE,DC,当OD∥EC时、求证:OE=DC;发现:当∠DOC=60°时,∠ODE的度数可能是多少?尝试:如图2,当点D,E,C三点共线时,求点D到OA所在直线的距离;拓展:当点E在OC的下方,且DE与相切时,直接写出∠DOC的余弦值.11.如图,AC、BD为⊙O的直径,且AC⊥BD,P、Q分别为半径OB、OA(不与端点重合)上的动点,直线PQ交⊙O于M、N.(1)比较大小:cos∠OPQ sin∠OQP;(2)请你判断MP﹣NP与OP•cos∠OPQ之间的数量关系,并给出证明;(3)当∠APO=60°时,设MQ=m•MP,NQ=n•NP.①求m+n的值;②以OD为边在OD上方构造矩形ODKS,已知OD=1,OS=﹣1,在Q点的移动过程中,1+﹣恒为非负数,请直接写出实数c的最大值.12.已知四边形ABCD内接于⊙O,AC⊥BD,垂足为E,CF⊥AB,垂足为F,交BD于点G,连接AG.(1)求证:CG=CD;(2)如图1,若AG=4,BC=10,求⊙O的半径;(3)如图2,连接DF,交AC于点H,若∠ABD=30°,CH=6,试判断+是否为定值,若是,求出该定值;若不是,说明理由.13.如图1,⊙O是△ABC的外接圆,AB=AC,∠ABC的平分线交AC于点D,交⊙O于点E,过点E作AC的平行线交BA延长线于点F.(1)求证:FE是⊙O的切线;(2)如图2,当∠BAC=36°时,连接FD.求证:FD平分∠BFE;(3)如图3,当∠BAC=30°,AB=+1时,求FE的长.14.已知:BC为⊙O的弦,点A为⊙O上一点,连接AB,点K在AB上,连接CK、OK,∠AKC=2∠ABC.(1)如图1,求证:KO平分∠BKC;(2)如图2,PA、PC为⊙O的切线,切点为点A、C,求证:∠AKC+∠APC=180°;(3)如图3,在(2)的条件下,MN是⊙O的弦,MN∥BC,分别交KC、KB于点F、G,NO的延长线交PK的延长线于点E,交AB于点D,延长KO交FG于点T,若,FN+BC=6TO,,FG=,求△KFG的面积.15.已知:⊙O是△ACD的外接圆,直径AB交CD于点E.(1)如图1,求证:∠ADC+∠BAC=90°;(2)如图2,过点D作DF⊥AB于点G,交⊙O于点F,连接BF,若DC平分∠ADF,求证:BE=BF;(3)如图3,在(2)的条件下,过点E作EK∥BF交DG于点K,在BF上取一点N,连接KN、GN,使∠EKN+∠ADC=90°,若EK=20,OG=7,求线段GN的长.16.梯形ABCD中,AD∥BC,DC⊥BC于点C,AB=10,tan B=,⊙O1以AB为直径,⊙O2以CD为直径,直线O1O2与⊙O1交于点M,与⊙O2交于点N(如图1),设AD=x.(1)记两圆交点为E、F(E在上方),当EF=6时,求x的值;(2)当⊙O2与线段AO1交于P、Q时,设PQ=y,求y关于x的函数关系式,并写出定义域;(3)联结AM,线段AM与⊙O2交于点G,分别联结NG、O2G,若△GMN与△GNO2相似,求x的值.17.数学探究一直是数学学习的极重要的方法,新课标对此有细致阐述.小明对圆中定值与最值问题十分感兴趣,为此他做了一个简单的探究.如图,在直角坐标系中,圆心M在x轴正半轴上,点P为⊙M第一象限内的一个动点,据此:【前提条件】假若sin∠ABO=,r=5;【探究规律】如图1,连接DP并延长交y轴于点E,那么在P点移动过程中,是否有DP•DE为定值?若为定值,求出来定值;若不是,求出其最小值.【归纳总结】如图2,小明发现做题越来越有意思,于是作∠ADH=2∠ABO,BH⊥DH,交x轴于点F,连接PF,OP.点G为线段OP的三等分点(OG<OP).以点O为圆心,以线段OG为半径作⊙O,设⊙O半径为r,在点P移动过程中,是否有r2(17﹣15cos ∠FPO)为定值?若为定值,求出定值;若不为定值,请求出其最小值.【拓展提升】如图3,若圆心和半径大小均不固定,那么点P,A,B,C,D,M均为动点,作PT∥y轴,交动圆M于点T.Q,R两点为直线PT右侧的两个动点,并且PT=QR.那么在点P运动过程中,是否有为定值?若为定值,求出这个定值;若不为定值,请求出其最小值.18.已知AB为⊙O直径,△PCD是⊙O内接三角形,AB=CD.(1)如图1,求∠P的度数;(2)如图2,PD交AB于点M,作CE⊥AB交AB于点E,连接CO并延长交PD于点N,若CP平分∠ECO,求证:OM=ON;(3)如图3,在(2)的条件下,F是⊙O外一点FC是⊙O的切线,FD∥PC,若CF﹣CO=ON,AE=2,求PD的长.19.如图1,AB是⊙O的直径,点D在AB的延长线上,点C,E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)若BD=2,CD=4,求直径AB的长;(3)如图2,在(2)的条件下,连接OF,求tan∠BOF的值.20.等腰三角形AFG中AF=AG,且内接于圆O,D、E为边FG上两点(D在F、E之间),分别延长AD、AE交圆O于B、C两点(如图1),记∠BAF=α,∠AFG=β.(1)求∠ACB的大小(用α,β表示);(2)连接CF,交AB于H(如图2).若β=45°,且BC×EF=AE×CF.求证:∠AHC =2∠BAC;(3)在(2)的条件下,取CH中点M,连接OM、GM(如图3),若∠OGM=2α﹣45°,①求证:GM∥BC,GM=BC;②请直接写出的值.。
专题20 与圆相关的压轴题-2022年中考数学真题分项汇编(全国通用)(解析版)

专题20 与圆相关的压轴题解答题1.(2022·湖北宜昌)已知,在ABC 中,90ACB ∠=︒,6BC =,以BC 为直径的O 与AB 交于点H ,将ABC 沿射线AC 平移得到DEF ,连接BE .(1)如图1,DE 与O 相切于点G .①求证:BE EG =;②求BE CD ⋅的值;(2)如图2,延长HO 与O 交于点K ,将DEF 沿DE 折叠,点F 的对称点'F 恰好落在射线BK 上. ①求证:'HK EF ∥;②若'3KF =,求AC 的长.【答案】(1)①见解析;②9BE CD ⋅=(2)①见解析;②AC 的长为【分析】(1)①用切线角定理即可证②连接OE ,OD ,OG ,证明ODG EOG △∽△,利用相似对应边成比例即可得到(2)①延长HK 交BE 于点Q ,设ABC α∠=,利用题目中平移,折叠的对应角相等,BQO ∠和'BEF ∠用α表示出来,得到'BQO BEF ∠=∠即可②连接'FF ,交DE 于点N ,证明HBK ENF △≌△,设BK x =,利用HBK FCB △∽△,算出x ;在Rt HBK △中,31sin 62BK BHK KH ∠===,在Rt ABC 中,即可求出AC 的长 (1)①如第23题图1∵ABC 沿射线AC 方向平移得到DEF∴BE CF ∥∵90ACB ∠=︒∴90CBE ACB ∠=∠=︒方法一:连接OG ,OE∵DE 与O 相切于点G∴90∠=︒OGE∴90OBE OGE ∠=∠=︒∵OB OG =,OE 为公共边∴()Rt BOE Rt GOE HL △≌△∴BE GE =方法二:∵BC 是O 的直径∴BE 与O 相切于点B∵DE 与O 相切于点G∴BE GE =②如第23题图2方法一 :过点D 作DM BE ⊥于点M∴90DMB ∠=︒由(1)已证90CBE BCF ∠=∠=︒∴四边形BCDM 是矩形∴CD BM =,DM BC =由(1)已证:BE GE =同理可证:CD DG =设BE x =,CD y =在Rt DME 中,222DM ME DE +=∴()()2226x y x y -+=+∴9xy =即9BE CD ⋅=方法二:图3,连接OE ,OD ,OG∵DE 与O 相切于点G ,BE 与O 相切于点B ,CD 与O 相切于点C∴BE GE =,CD DG =,12OEG BEG ∠=∠,12ODG CDG ∠=∠ ∵BE CF ∥∴180BEG CDG ∠+∠=︒∴90OEG ODG ∠+∠=︒∴90EOD ∠=︒∴90DOG GOE ∠+∠=︒又∵DE 与O 相切于点G∴OG DE ⊥∴90DOG ODG ∠+∠=︒∴GOE ODG ∠=∠∴ODG EOG △∽△ ∴OG EG DG OG=,即2OG DG EG =⋅ ∵O 的直径为6∴3OG =∴9BE CD ⋅=(2)①方法一:如图4延长HK 交BE 于点Q设ABC α∠=∵在O 中,OB OH =∴BHO OBH α∠=∠=∴2BOQ BHO OBH α∠=∠+∠=∴902BQO α∠=︒-∵ABC 沿射线AC 方向平移得到DEF ,DEF 沿DE 折叠得到'DEF △∴'DEF DEF ABC α∠=∠∠==∴'902BEF α∠=︒-∴'BQO BEF ∠=∠∴'HK EF ∥方法二:∵HK 是O 的直径,∴90HBK ∠=︒,设ABC α∠=,在O 中,OB OH =,∴BHO OBH α∠=∠=,∴'90HKF α∠=︒+,∵ABC 沿射线AC 方向平移得到DEF , DEF 沿DE 折叠得到'DEF △,∴'DEF DEF ABC α∠=∠∠==,∴'902BEF α∠=︒-,∵'EBF ABC α∠=∠=,在'BEF △中,'180''90BF E EBF BEF α∠=︒-∠-∠=︒+,∴''HKF BF E ∠=∠,∴'HK EF ∥.方法三:如图,延长'BF 交DN 于点N∵ABC 沿射线AC 方向平移得到DEF∴AB DE ∥,ABC DEF △≌△∵DEF 沿DE 折叠得到'DEF △∴'DEF DEF △≌△∴'DEF ABC △≌△∴'ABC DEF ∠=∠,'EF BC =∵HK BC =∴'EF HK =∵HK 是直径∴90ABK ∠=︒∵AB DE ∥∴90ABK BNE ∠=∠=︒∴'DEF ABC △≌△∴'BKH EF N ∠=∠∴180180'BKH EF N ︒-∠=︒-∠即'HKF EF K ∠=∠∴'HK EF ∥②连接'FF ,交DE 于点N ,如图6∵DEF 沿DE 折叠,点F 的对称点为'F∴'ED FF ⊥,1'2FN FF =∵HK 是O 的直径∴90HBK ∠=︒,点'F 恰好落在射线BK 上∴'BF AB ⊥∵ABC 沿射线AC 方向平移得到DEF∴AB DE ∥,BC EF =∴点B 在'FF 的延长线上∴点B ,'F ,F 这三点在同一条直线上而BC 为O 的直径∴HK BC EF ==在HBK 和ENF △中 HBK ENF ∠=∠;BHO NEF ∠=∠;HK EF =∴HBK ENF △≌△∴BK NF =设BK x =,则''3233BF BK KF F F x x x =++=++=+∵OB OK =∴OBK OKB ∠=∠而90HBK BCF ∠=∠=︒∴HBK FCB △∽△ ∴BK HK BC BF = ∴6633x x =+ 解得:13x =,24x =-(不合题意,舍)∴3BK =在Rt HBK △中,31sin 62BK BHK KH ∠=== ∴30BHK ∠=︒∴30ABC ∠=︒在Rt ABC 中,tan tan 30AC ABC BC ∠=︒=∴6tan 306AC =⋅==︒即AC 的长为【点睛】本题考查折叠,三角形全等,三角形相似,圆的性质;巧妙构造辅助线,利用上题目所给条件是本题的关键2.(2022·贵州遵义)与实践“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC 同侧有两点B ,D ,连接AD ,AB ,BC ,CD ,如果B D ∠=∠,那么A ,B ,C ,D 四点在同一个圆上.探究展示:如图2,作经过点A ,C ,D 的O ,在劣弧AC 上取一点E (不与A ,C 重合),连接AE ,CE 则180AEC D ∠+∠=︒(依据1)B D ∠=∠180AEC B ∴∠+∠=︒∴点A ,B ,C ,E 四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B ,D 在点A ,C ,E 所确定的O 上(依据2)∴点A ,B ,C ,E 四点在同一个圆上(1)反思归纳:上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:__________;依据2:__________.(2)图3,在四边形ABCD 中,12∠=∠,345∠=︒,则4∠的度数为__________.(3)展探究:如图4,已知ABC 是等腰三角形,AB AC =,点D 在BC 上(不与BC 的中点重合),连接AD .作点C 关于AD 的对称点E ,连接EB 并延长交AD 的延长线于F ,连接AE ,DE .①求证:A ,D ,B ,E 四点共圆;②若AB =AD AF ⋅的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.【答案】(1)圆内接四边形对角互补;同圆中,同弧所对的圆周角相等(2)45°(3)①见解析;②8【分析】(1)根据圆内接四边形对角互补;同圆中,同弧所对的圆周角相等作答即可;(2)根据同弧所对的圆周角相等即可求解;(3)①根据(1)中的结论证明AED ABD ∠=∠即可得证;②证明BAD FAB ∽,根据相似三角形的性质即可求解.(1)如图2,作经过点A ,C ,D 的O ,在劣弧AC 上取一点E (不与A ,C 重合),连接AE ,CE 则180AEC D ∠+∠=︒(圆内接四边形对角互补)B D ∠=∠180AEC B ∴∠+∠=︒∴点A ,B ,C ,E 四点在同一个圆上(对角互补的四边形四个顶点共圆) ∴点B ,D 在点A ,C ,E 所确定的O 上(同圆中,同弧所对的圆周角相等) ∴点A ,B ,C ,E 四点在同一个圆上故答案为:圆内接四边形对角互补;同圆中,同弧所对的圆周角相等(2)在线段CD 同侧有两点A ,B , 12∠=∠∴,,,A B C D 四点共圆,AD AD =4345∴∠=∠=︒故答案为:45︒(3)AB AC =,ABC ACB ∴∠=∠, E 点与C 点关于AD 对称,ACD AED ∴∠=∠,AEB ABD ∴∠=∠,∴,,,A D B E 四点共圆;②8AD AF ⋅=,理由如下, 如图,,,,A D B E 四点共圆,FBD DAE ∴∠=∠,,AE AC 关于AD 对称,DAE DAC ∴∠=∠,DAC DBF ∠=∠∴,ADC BDF ∠=∠,F ACD ∴∠=∠,AB AC =,ABD ACD ∴∠=∠,F ABD ∴∠=∠,又BAD FAB ∠=∠,BAD FAB ∴∽,AB AD AF AB∴=, 2AD AF AB ∴⋅=, 2AB =8AD AF ∴⋅=.【点睛】本题考查了圆内接四边形对角互补,同弧所对的圆周角相等,轴对称的性质,相似三角形的性质与判定,掌握以上知识是解题的关键.3.(2022·黑龙江哈尔滨)已知CH 是O 的直径,点A ,点B 是O 上的两个点,连接,OA OB ,点D ,点E 分别是半径,OA OB 的中点,连接,,CD CE BH ,且2AOC CHB ∠=∠.(1)如图1,求证:ODC OEC ∠=∠;(2)如图2,延长CE 交BH 于点F ,若CD OA ⊥,求证:FC FH =;(3)如图3,在(2)的条件下,点G 是BH 上一点,连接,,,AG BG HG OF ,若:5:3AG BG =,2HG =,求OF 的长.【答案】(1)见解析 (2)见解析(3)OF = 【分析】(1)根据SAS 证明COD COE ≅即可得到结论;(2)证明H ECO ∠=∠即可得出结论;(3)先证明OF CH ⊥,连接AH ,证明AH BH =,设5AG x =,3BG x =,在AG 上取点M ,使得AM BG =,连接MH ,证明MHG △为等边三角形,得2MG HG ==,根据AG AM MG =+可求出1x =,得5AG =,3BG =,过点H 作HN MG ⊥于点N ,求出HB =2HF OF =,根据3HB OF ==(1)如图1.∵点D ,点E 分别是半径,OA OB 的中点∴12OD OA ,12OE OB = ∵OA OB =,∴OD OE =∵2BOC CHB ∠=∠,2AOC CHB ∠=∠∴AOC BOC ∠=∠∵OC OC = ∴COD COE ≅,∴CDO CEO ∠=∠;(2)如图2.∵CD OA ⊥,∴90CDO ∠=︒由(1)得90CEO CDO ∠=∠=︒, ∴1sin 2OE OCE OC ∠== ∴30OCE ∠=︒,∴9060COE OCE ∠=︒-∠=︒ ∵11603022H BOC ︒∠=∠=⨯=︒ ∴H ECO ∠=∠,∴FC FH =(3)如图3.∵CO OH =,∴OF CH ⊥∴90FOH =︒∠连接AH .∵60AOC BOC ∠=∠=︒∴120AOH BOH ∠=∠=︒,∴AH BH =,60AGH ∠=︒∵:5:3AG BG =设5AG x =,∴3BG x =在AG 上取点M ,使得AM BG =,连接MH∵HAM HBG ∠=∠,∴HAM HBG △≌△∴MH GH =,∴MHG △为等边三角形∴2MG HG ==∵AG AM MG =+,∴532x x =+∴1x =,∴5AG =∴3BG AM ==,过点H 作HN MG ⊥于点N112122MN GM ==⨯=,sin 60HN HG =⋅︒=∴4AN MN AM =+=,∴HB HA ==∵90FOH =︒∠,30OHF ∠=︒,∴60OFH ∠=︒∵OB OH =,∴30BHO OBH ∠=∠=︒,∴30FOB OBF ∠=∠=︒∴OF BF =,在Rt OFH 中,30OHF ∠=︒,∴2HF OF =∴3HB BF HF OF =+==∴OF = 【点睛】本题主要考查了圆周角定理,等边三角形的判定和性质,全等三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形等知识,正确作出辅助线构造全等三角形是解答本题的关键. 4.(2022·黑龙江绥化)如图所示,在O 的内接AMN 中,90MAN ∠=︒,2AM AN =,作AB MN ⊥于点P ,交O 于另一点B ,C 是AM 上的一个动点(不与A ,M 重合),射线MC 交线段BA 的延长线于点D ,分别连接AC 和BC ,BC 交MN 于点E .(1)求证:CMA CBD △∽△.(2)若10MN =,MC NC =,求BC 的长.(3)在点C 运动过程中,当3tan 4MDB ∠=时,求ME NE 的值. 【答案】(1)证明见解析(2)(3)32【分析】(1)利用圆周角定理得到∠CMA =∠ABC ,再利用两角分别相等即可证明相似;(2)连接OC ,先证明MN 是直径,再求出AP 和NP 的长,接着证明COE BPE △∽△,利用相似三角形的性质求出OE 和PE ,再利用勾股定理求解即可;(3)先过C 点作CG ⊥MN ,垂足为G ,连接CN ,设出34GM x CG x ==,,再利用三角函数和勾股定理分别表示出PB 和PG ,最后利用相似三角形的性质表示出EG ,然后表示出ME 和NE ,算出比值即可.(1)解:∵AB ⊥MN ,∴∠APM =90°,∴∠D +∠DMP =90°,又∵∠DMP +∠NAC =180°,∠MAN =90°,∴∠DMP +∠CAM =90°,∴∠CAM =∠D ,∵∠CMA =∠ABC ,∴CMA CBD △∽△.(2)连接OC ,∵90MAN ∠=︒,∴MN 是直径,∵10MN =,∴OM =ON =OC =5,∵2AM AN =,且222AM AN MN +=,∴AN AM == ∵1122AMN S AM AN MN AP =⋅=⋅△, ∴4AP =,∴4BP AP ==,∴2NP ==,∴523OP =-=,∵MC NC =,∴OC ⊥MN ,∴∠COE =90°,∵AB ⊥MN ,∴∠BPE =90°,∴∠BPE =∠COE ,又∵∠BEP =∠CEO ,∴COE BPE △∽△ ∴CO OE CE BP PE BE ==, 即54OE CE PE BE== 由3OE PE OP +==,∴5433OE PE ==,,∴CE ==BE ===∴BC ==(3)过C 点作CG ⊥MN ,垂足为G ,连接CN ,∵MN 是直径,∴∠MCN =90°,∴∠CNM +∠DMP =90°,∵∠D +∠DMP =90°,∴∠D =∠CNM , ∵3tan 4MDB ∠=, ∴3tan 4CNM ∠=, 设34GM x CG x ==,,∴5CM x =,∴203x CN =,∴163x NG =, ∴253x NM =, ∴256x OM ON ==, ∵2AM AN =,且222AM AN MN +=,∴AN =,AM =, ∵1122AMN S AM AN MN AP =⋅=⋅△, ∴103AP x PB ==, ∴53NP x =, ∴16511333PG x x x =-=, ∵∠CGE =∠BPE =90°,∠CEG =∠BEP ,∴CGE BPE △∽△, ∴CG GE CE BP PE BE==, 即4103x GE CE PE BE x == ∴2GE x =,53PE x = ∴5ME x =,103x NE =, ∴:3:2ME NE =, ∴ME NE 的值为32.【点睛】本题考查了圆的相关知识、相似三角形的判定与性质、三角函数、勾股定理等知识,涉及到了动点问题,解题关键是构造相似三角形,正确表示出各线段并找出它们的关系,本题综合性较强,属于压轴题.5.(2022·黑龙江大庆)如图,已知BC 是ABC 外接圆O 的直径,16BC =.点D 为O 外的一点,ACD B ∠=∠.点E 为AC 中点,弦FG 过点E .2EF EG =.连接OE .(1)求证:CD 是O 的切线;(2)求证:()()OC OE OC OE EG EF +-=⋅;(3)当FG BC 时,求弦FG 的长.【答案】(1)答案见解析(2)答案见解析(3)3【分析】(1)根据BC 是△ABC 外接圆⊙O 的直径,得∠BAC =90°,由因为∠ACD =∠B ,得∠BCD =90°,即可得答案;(2)先证△FEA ∽△CEG ,得EF AE CE EG =,又因为AE =CE ,EF =2EG ,得CE 2=2EG 2,得OC 2-OE 2=EC 2,即可得答案;(3)作ON ⊥FG ,延长FG 交线段于点W ,得四边形ONWC 为矩形,得NG =1.5EG ,NE =0.5EG ,EW =8-1.5EG +EG =8-0.5EG ,得(8-0.5EG )2+64-2EG 2-14EG 2=2EG 2,得EG 1,即可得答案. (1)解:∵BC 是△ABC 外接圆⊙O 的直径,∴∠BAC =90°,∴∠B+∠ACB=90°,∵∠ACD=∠B,∴∠ACD+∠ACB=90°,∴∠BCD=90°,∵OC是OO的半径,∴CD是OO的切线;(2)如下图,连接AF、CG,∴∠AFE=∠ECG,∵∠AEF=∠CEG,∴△FEA∽△CEG,∴EF AE CE EG=,∵点E为AC中点,∴AE=CE,∵EF=2EG,∴2EG CE CE EG=,∴CE2=2EG2,∵∠BAC=90°,点E为AC中点,∴EO∥AB,∴∠OEC=90°,∴OC2-OE2=EC2,∴OC2-OE2=2EG2,∴(OC+OE)(OC−OE)=EG⋅EF;(3)作ON⊥FG,延长FG交线段于点W,∵BC=16,∴OC=8,∵FG∥BC,∴四边形ONWC为矩形,∵EF=2EG,∴FG=3EG,∴NG=1.5EG,NE=0.5EG,EW=8-1.5EG+EG=8-0.5EG,由(2)可知:OC2-OE2=2EG2,∴CE2=2EG2,∴OE2=64-2EG2,ON2=64-2EG2-14EG2,EW2=(8-0.5EG)2,∴(8-0.5EG)2+64-2EG2-14EG2=2EG2,解得EG1,∴FG=3EG=3.【点睛】本题考查了圆周角定理,垂径定理,切线的判定定理,相似三角形的判定与性质,勾股定理,矩形的性质,解题的关键是作合适的辅助线.6.(2022·湖南长沙)如图,四边形ABCD内接于O,对角线AC,BD相交于点E,点F在边AD上,连接EF.(1)求证:ABE DCE ∽△△;(2)当2DC CB DFE CDB =∠=∠,时,则AE DE BE CE -=___________;AF FE AB AD+=___________;111AB AD AF+-=___________.(直接将结果填写在相应的横线上)(3)①记四边形ABCD ,ABE CDE ,△△的面积依次为12,,S S S ,试判断,ABE CDE ,△△的形状,并说明理由.②当DC CB =,AB m AD n CD p ===,,时,试用含m ,n ,p 的式子表示AE CE ⋅.【答案】(1)见解析(2)0,1,0(3)①等腰三角形,理由见解析,②22p mn p mn+ 【分析】(1)根据同弧所对的圆周角相等,对顶角相等,即可得证;(2)由(1)的结论,根据相似三角形的性质可得AE CE BE DE ⋅=⋅,即可得出AE DE BE CE -=0,根据已知条件可得EF AB ∥,FA FE =,即可得出DFE DAB ∽根据相似三角形的性质可得EF DF AB AD =,根据恒等式变形,进而即可求解.(3)①记,ADE EBC 的面积为34,S S ,则1234S S S S S =+++,1234S S S S =,根据已知条件可得34S S =,进而可得ABD ADC S S =,得出CD AB ∥,结合同弧所对的圆周角相等即可证明,ABE DCE 是等腰三角形; ②证明DAC EAB ∽,DCE ACD ∽,根据相似三角形的性质,得出22EA AC CE AC AC mn p ⋅+⋅==+,则22CD AC EC AC ===AE AC CE =-AE CE ⋅即可求解. (1)证明:AD AD =,ACD ABD ∴∠=∠,即ABE DCE ∠=∠,又DEC AEB ∠=∠,∴ABE DCE ∽△△;(2)ABE DCE ∽△△,AB BE AE DC CE DE∴==, AE CE BE DE ∴⋅=⋅,0AE DE AE CE BE DE BE CE BE CE⋅-⋅∴-==⋅, 1802CDB CBD BCD DAB CDB ∠+∠=︒-∠=∠=∠,2DFE CDB ∠=∠,DFE DAB ∴∠=∠,EF AB ∴∥,FEA EAB ∴∠=∠,DC CB =,DAC BAC ∴∠=∠FAE FEA ∴∠=∠,FA FE ∴=,EF AB ∥,DFE DAB ∴∽,EF DF AB AD∴=, ∴AF FE AB AD +=1EF AF DF AF AD AB AD AD AD AD+=+==, 1AF AF AF EFAB AD AB AD +=+=, 1AF AF AB AD ∴+=, 1110AB AD AF∴+-=, 故答案为:0,1,0(3)①记,ADE EBC 的面积为34,S S ,则1234S S S S S =+++, 1432S S BE S S DE==,1234SS S S ∴=①=即12S SS =++34S S ∴+=由①②可得34SS +=,即20=,34S S ∴=, ∴ABE ADE ABE EBC SS S S +=+, 即ABD ADC S S =,CD AB ∴∥,,ACD BAC CDB DBA ∴∠=∠∠=∠,ACD ABD CDB CAB ∠=∠∠=∠,,EDC ECD EBA EAB ∴∠=∠=∠=∠,,ABE DCE ∴都为等腰三角形;②DC BC =, DAC EAB ∴∠=∠,DCA EBA ∠=∠,DAC EAB ∴∽,AD AC EA AB∴=, AB m AD n CD p ===,,,EA AC DA AB mn ∴⋅=⨯=,BDC BAC DAC ∠=∠=∠,CDE CAD ∴∠=∠,又ECD DCA ∠=∠,∴DCE ACD ∽,CD CE AC CD∴=, 22CE CA CD p ∴⋅==,22EA AC CE AC AC mn p ∴⋅+⋅==+,则22CD AC EC AC ===AE AC CE ∴=-=22mnp AE EC mn p ∴⋅=+. 【点睛】本题考查了圆周角定理,相似三角形的性质与判定,对于相似恒等式的推导是解题的关键. 7.(2022·湖南娄底)如图,已知BD 是Rt ABC 的角平分线,点O 是斜边AB 上的动点,以点O 为圆心,OB 长为半径的O 经过点D ,与OA 相交于点E .(1)判定AC 与O 的位置关系,为什么?(2)若3BC =,32CD =,①求sin DBC ∠、sin ABC ∠的值;②试用sin DBC ∠和cos DBC ∠表示sin ABC ∠,猜测sin 2α与sin α,cos α的关系,并用30α=︒给予验证.【答案】(1)相切,原因见解析(2)①sin DBC ∠=4sin 5ABC ∠=;②sin 22sin cos ααα=,验证见解析 【分析】(1)连接OD ,根据角之间的关系可推断出//OD BC ,即可求得ODA ∠的角度,故可求出圆与边的位置关系为相切;(2)①构造直角三角形,根据角之间的关系以及边长可求出sin DBC ∠,sin ABC ∠的值;②先表示出来sin DBC ∠、cos DBC ∠和sin ABC ∠的关系,进而猜测sin 2α与sin α,cos α的关系,然后将30α=︒代入进去加以验证.(1)解:连接OD ,如图所示∵BD 为ABC ∠的角平分线∴ABD CBD ∠=∠又∵O 过点B 、D ,设O 半径为r∴OB =OD =r∴ODB OBD CBD ∠=∠=∠∴//OD BC (内错角相等,两直线平行)∵OD AC ⊥∴AC 与O 的位置关系为相切.(2)①∵BC =3,32CD =∴BD =∴sin CD DBC BD ∠== 过点D 作DF AB ⊥交于一点F ,如图所示∴CD =DF (角平分线的性质定理)∴BF =BC =3∴OF =BF -OB =3-r ,32OF CD == ∴222OD OF DF =+即2223(3)()2r r =-+ ∴158r = ∵//OD BC∴ABC FOD ∠=∠ ∴4sin sin 5DF ABC FOD OD ∠=∠==∴4sin 5DBC ABC ∠=∠=;②cos CB DBC BD ∠==∴2sin cos 5DBC DBC ∠⨯∠== ∴sin 2sin cos ABC DBC DBC ∠=∠⨯∠猜测sin 22sin cos ααα=当30α=︒时260α=︒∴sin 2sin 60α=︒=1sin sin 302α=︒=cos cos30α=︒=∴1sin 22sin cos 2sin 22αααα==⨯== ∴sin 22sin cos ααα=.【点睛】本题考查了圆与直线的位置关系、切线的判定、三角函数之间的关系,解题的关键在于找到角与边之间的关系,进而求出结果.8.(2022·四川凉山)如图,已知半径为5的⊙M 经过x 轴上一点C ,与y 轴交于A 、B 两点,连接AM 、AC ,AC 平分∠OAM ,AO +CO =6(1)判断⊙M与x轴的位置关系,并说明理由;(2)求AB的长;(3)连接BM并延长交圆M于点D,连接CD,求直线CD的解析式.【答案】(1)⊙M与x轴相切,理由见解析(2)6(3)122y x=-+【分析】(1)连接CM,证CM⊥x即可得出结论;(2)过点M作MN⊥AB于N,证四边形OCMN是矩形,得MN=OC,ON=OM=5,设AN=x,则OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN值,再由垂径定理得AB=2AN即可求解;(3)连接BC,CM,过点D作DP⊥CM于P,得直角三角形BCD,由(2)知:AB=6,OA=2,OC=4,所以OB=8,C(4,0),在Rt△BOC中,∠BOC=90°,由勾股定理,求得BC=在Rt△BCD中,∠BCD=90°,由勾股定理,即可求得CD,在Rt△CPD和在Rt△MPD中,由勾股定理,求得CP=2,PD=4,从而得出点D 坐标,然后用待定系数法求出直线CD解析式即可.(1)解:⊙M与x轴相切,理由如下:连接CM,如图,∵MC=MA,∴∠MCA=∠MAC,∵AC平分∠OAM,∴∠MAC=∠OAC,∴∠MCA=∠OAC,∵∠OAC+∠ACO=90°,∴∠MCO=∠MCA+∠ACO=∠OAC+∠ACO=90°,∵MC是⊙M的半径,点C在x轴上,∴⊙M与x轴相切;(2)解:如图,过点M作MN⊥AB于N,由(1)知,∠MCO=90°,∵MN⊥AB于N,∴∠MNO=90°,AB=2AN,∵∠CON=90°,∴∠CMN=90°,∴四边形OCMN是矩形,∴MN=OC,ON=C M=5,∵OA+OC=6,设AN=x,∴OA=5-x,MN=OC=6-(5-x)=1+x,在Rt△MNA中,∠MNA=90°,由勾股定理,得x2+(1+x)2=52,解得:x 1=3,x 2=-4(不符合题意,舍去),∴AN =3,∴AB =2AN =6;(3)解:如图,连接BC ,CM ,过点D 作DP ⊥CM 于P ,由(2)知:AB =6,OA =2,OC =4,∴OB =8,C (4,0)在Rt △BOC 中,∠BOC =90°,由勾股定理,得BC=∵BD 是⊙M 的直径,∴∠BCD =90°,BD =10,在Rt △BCD 中,∠BCD =90°,由勾股定理,得CDCD 2=20,在Rt △CPD 中,由勾股定理,得PD 2=CD 2-CP 2=20-CP 2,在Rt △MPD 中,由勾股定理,得PD 2=MD 2-MP 2=MD 2-(MC -MP )2=52-(5-CP )2=10CP +-CP 2, ∴20-CP 2=10CP -CP 2,∴CP =2,∴PD 2=20-CP 2=20-4=16,∴PD =4,即D 点纵坐标为OC +PD =4+4=8,∴D (8,-2),设直线CD 解析式为y =kx +b ,把C (4,0),D (8,-2)代入,得4082k b k b +=⎧⎨+=-⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线CD 的解析式为:122y x =-+. 【点睛】本题考查直线与圆相切的判定,勾股定理,圆周角定理的推论,垂径定理,待定系数法求一次函数解析式,熟练掌握直线与圆相切的判定、待定系数法求一次函数解析式的方法是解题的关键.9.(2022·浙江宁波)如图1,O 为锐角三角形ABC 的外接圆,点D 在BC 上,AD 交BC 于点E ,点F 在AE 上,满足,∠-∠=∠∥AFB BFD ACB FG AC 交BC 于点G ,BE FG =,连结BD ,DG .设ACB α∠=.(1)用含α的代数式表示BFD ∠. (2)求证:△≌△BDE FDG . (3)如图2,AD 为O 的直径. ①当AB 的长为2时,求AC 的长. ②当:4:11=OF OE 时,求cos α的值. 【答案】(1)902︒∠=-BFD α(2)见解析 (3)①3;②5cos 8α=【分析】(1)根据∠-∠=∠=AFB BFD ACB α,180∠+∠=︒AFB BFD 即可求解; (2)由(1)的结论,FGAC 、BE FG =证()BDE FDG SAS △≌△即可;(3)①通过角的转换得32∠=∠-∠=ABC ABD DBG α,即可求AC 的长;②连结BO ,证△∽△BDG BOF ,设4OF x =,则114OE x DE DG kx ===,,由相似的性质即可求解; (1)∵∠-∠=∠=AFB BFD ACB α,① 又∵180∠+∠=︒AFB BFD ,② ②-①,得2180∠=︒-BFD α,∴902︒∠=-BFD α.(2)由(1)得902︒∠=-BFD α,∵∠=∠=ADB ACB α,∴180902∠=︒-∠-︒-∠=FBD ADB BFD α,∴DB DF =. ∵FGAC ,∴∠=∠CAD DFG . ∵CAD DBE ∠=∠, ∴∠=∠DFG DBE . ∵BE FG =,∴()BDE FDG SAS △≌△. (3)①∵△≌△BDE FDG , ∴∠=∠=FDG BDE α,∴2∠=∠+∠=BDG BDF EDG α. ∵DE DG =, ∴()11809022∠=︒-∠=︒-DGE FDG α, ∴在BDG 中,3180902∠=︒-∠-∠=︒-DBG BDG DGE α, ∵AD 为O 的直径, ∴90ABD ∠=︒.∴32∠=∠-∠=ABC ABD DBG α. ∴AC 与AB 的度数之比为3∶2. ∴AC 与AB 的的长度之比为3∶2, ∵2AB =, ∴3=AC . ②如图,连结BO .∵OB OD =,∴∠=∠=OBD ODB α,∴2∠=∠+∠=BOF OBD ODB α. ∵2∠=BDG α, ∴∠=∠BOF BDG . ∵902∠=∠=︒-BGD BFO α,∴△∽△BDG BOF ,设BDG 与BOF 的相似比为k , ∴==DG BDk OF BO . ∵411=OF OE , ∴设4OF x =,则114OE x DE DG kx ===,, ∴114==+=+OB OD OE DE x kx , 154==+BD DF x kx ,∴154154114114++==++BD x kx kBO x kx k, 由154114+=+kk k,得247150+-=k k ,解得154k =,23k =-(舍), ∴11416=+=OD x kx x ,15420=+=BD x kx x , ∴232==AD OD x , 在Rt ABD △中,205cos 328∠===BD x ADB AD x , ∴5cos 8α=. 【点睛】本题主要考查圆的性质、三角函数、三角形的全等、三角形的相似,掌握相关知识并灵活应用是解题的关键.10.(2022·浙江温州)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE CD ⊥,交CD 延长线于点E ,交半圆于点F ,已知5,3BC BE ==.点P ,Q 分别在线段AB BE ,上(不与端点重合),且满足54AP BQ =.设,BQ x CP y ==.(1)求半圆O 的半径. (2)求y 关于x 的函数表达式.(3)如图2,过点P 作PR CE ⊥于点R ,连结,PQ RQ . ①当PQR 为直角三角形时,求x 的值.②作点F 关于QR 的对称点F ',当点F '落在BC 上时,求CF BF ''的值. 【答案】(1)158(2)5544y x =+ (3)①97或2111;②199【分析】(1)连接OD ,设半径为r ,利用△∽△COD CBE ,得OD COBE CB=,代入计算即可; (2)根据CP =AP 十AC ,用含x 的代数式表示 AP 的长,再由(1)计算求AC 的长即可;(3)①显然90PRQ ∠<︒,所以分两种情形,当 90RPQ ∠=︒时,则四边形RPQE 是矩形,当 ∠PQR =90°时,过点P 作PH ⊥BE 于点H , 则四边形PHER 是矩形,分别根据图形可得答案;②连接,AF QF ',由对称可知,45QF QF F QR EQR ∠∠'=='=︒,利用三角函数表示出BF '和BF 的长度,从而解决问题. (1)解:如图1,连结OD .设半圆O 的半径为r .∵CD 切半圆O 于点D , ∴OD CD ⊥. ∵BE CD ⊥, ∴OD BE ∥,∴△∽△COD CBE , ∴OD CO BE CB=, 即535r r -=, ∴158r =,即半圆O 的半径是158.(2)由(1)得:1555284CA CB AB =-=-⨯=. ∵5,4AP BQ x BQ ==, ∴54AP x =. ∵CP AP AC =+, ∴5544y x =+. (3)①显然90PRQ ∠<︒,所以分两种情况. ⅰ)当90RPQ ∠=︒时,如图2.∵PR CE ⊥,∴90ERP ∠=︒. ∵90E ∠=︒,∴四边形RPQE 为矩形, ∴PR QE =. ∵333sin 544PR PC C y x =⋅==+, ∴33344x x +=-, ∴97x =.ⅰ)当90PQR ∠=︒时,过点P 作PH BE ⊥于点H ,如图3,则四边形PHER 是矩形, ∴,PH RE EH PR ==. ∵5,3CB BE ==,∴4CE ==. ∵4cos 15CR CP C y x =⋅==+, ∴3PH RE x EQ ==-=, ∴45EQR ERQ ∠=∠=︒, ∴45PQH QPH ∠=︒=∠, ∴3HQ HP x ==-,由EH PR =得:33(3)(3)44x x x -+-=+, ∴2111x =. 综上所述,x 的值是97或2111.②如图4,连结,AF QF ',由对称可知QF QF =',F QR EQR ∠=∠' ∵BE ⊥CE ,PR ⊥CE , ∴PR ∥BE , ∴∠EQR =∠PRQ , ∵BQ x =,5544CP x =+, ∴EQ =3-x , ∵PR ∥BE , ∴CPR CBE △∽△, ∴CP CBCR CE=, 即:x CR +=555444,解得:CR =x +1, ∴ER =EC -CR =3-x , 即:EQ = ER∴∠EQR =∠ERQ =45°, ∴45F QR EQR ∠=∠='︒ ∴90BQF ∠='︒, ∴4tan 3QF QF BQ B x ==⋅='. ∵AB 是半圆O 的直径, ∴90AFB ∠=︒, ∴9cos 4BF AB B =⋅=, ∴4934x x +=, ∴2728x =,∴319119CF BC BF BC BF BF BF x -==''''=-='-. 【点睛】本题是圆的综合题,主要考查了切线的性质,相似三角形的判定与性质,圆周角定理,三角函数等知识,利用三角函数表示各线段的长并运用分类讨论思想是解题的关键.11.(2022·浙江丽水)如图,以AB 为直径的O 与AH 相切于点A ,点C 在AB 左侧圆弧上,弦CD AB ⊥交O 于点D ,连接,AC AD .点A 关于CD 的对称点为E ,直线CE 交O 于点F ,交AH 于点G .(1)求证:CAG AGC ∠=∠;(2)当点E 在AB 上,连接AF 交CD 于点P ,若25EF CE =,求DP CP的值; (3)当点E 在线段AB 上,2AB =,以点A ,C ,O ,F 为顶点的四边形中有一组对边平行时,求AE 的长. 【答案】(1)证明过程见解析 (2)57 352或2【分析】(1)设CD 与AB 相交于点M ,由O 与AH 相切于点A ,得到90BAG ,由CD AB ⊥,得到90AMC ∠=,进而得到//AG CD ,由平行线的性质推导得,CAGACD ,AGC FCD ,最后由点A关于CD 的对称点为E 得到FCD ACD ∠=∠即可证明.(2)过F 点作FK AB ⊥于点K ,设AB 与CD 交于点N ,连接DF ,证明FAD ADC ∠=∠得到DP AP =,再证明CPA FPD △≌△得到PF PC =;最后根据KEF NEC △∽△及APN AFK △∽△得到25KE EF ENCE和512PA AN AFAK,最后根据平行线分线段成比例求解. (3)分情况进行讨论. (1)证明:如图,设CD 与AB 相交于点M ,∵O 与AH 相切于点A , ∴90BAG , ∵CD AB ⊥, ∴90AMC ∠=, ∴//AG CD , ∴CAGACD ,AGC FCD ,∵点A 关于CD 的对称点为E , ∴FCD ACD ∠=∠, ∴CAG AGC ∠=∠. (2)解:过F 点作FK AB ⊥于点K ,设AB 与CD 交于点N ,连接DF ,如下图所示:由同弧所对的圆周角相等可知:FCD FAD ,∵AB 为O 的直径,且CD AB ⊥,由垂径定理可知:AC AD =, ∴ACD ADC ∠=∠,∵点A 关于CD 的对称点为E , ∴FCD ACD ∠=∠,∴FAD FCD ACD ADC ∠=∠=∠=∠,即FAD ADC ∠=∠, ∴DP AP =,由同弧所对的圆周角相等可知:ACP DFP ,且CPA FPD ,∴CPA FPD △≌△, ∴PC PF =,∵FK AB ⊥,AB 与CD 交于点N , ∴90FKE CNE.∵KEFNEC ,90FKECNE,∴KEF NEC △∽△, ∴25KE EF ENCE,设KE =2x ,EN =5x , ∵点A 关于CD 的对称点为E ,∴AN=EN=5x ,AE=AN+NE =10x ,AK=AE+KE=12x , 又//FK PN , ∴APN AFK △∽△, ∴551212PA AN x AFAKx . ∵FCDCDA ,∴CF AD ∥, ∴57DP AP AP CPPFAF AP. (3)解:分类讨论如下:情况一:当E 在线段AO 上时,如下图1所示,设AB 与CD 交于点N ,连接BC ,此时//AC OF ,设AN=NE=x ,则AE =2x ,OE=OA -AE=1-2x ,∵//AC OF ,∴OFE ACE △∽△, ∴OE OF AE AC. ∵AB 为O 的直径,AB 为O 的直径,∴90BCACNA , 又∵BAC NAC ,∴BAC CAN △∽△,∴AB AC AC AN, ∵2AB =,AN x =,∴22AC AB AN x , ∴2ACx , 又∵OE OF AE AC ,12OE x ,2AE x =,112OF AB ==, ∴OE ACAE OF ,即1222x x x ,化简解得3522x , 即352AE .情况二:当E 在线段AO 上时,如下图2所示,此时//AF OC ,设AN=NE=x ,则AE =2x ,OE=OA -AE=1-2x , 由情况一中可知,2ACx .∵//AF OC ,∴OCF CFA ∠=∠,∵(2)中已证FAD FCD ACD ADC CFA ∠=∠=∠=∠=∠,∴12OCF FCD OCN ∠=∠=∠, ∵12CDA CON ∠=∠,CDA FCD ∠=∠, ∴OCN CON ∠=∠,∵90CNO ∠=︒,1CO =,∴cos 45CN CO =︒⨯=在Rt CNA △中,∵90CNA ∠=︒,CN =,AN x =,2AC x ,∴222CN NA CA +=,解得x =, ∵AN OA <,∴1x <,故x =∴22AE x == 【点睛】本题考查了圆周角定理,圆的相关性质,相似三角形,勾股定理等,综合运用以上知识是解题的关键.12.(2022·山东泰安)如图,四边形ABCD 中,AB=AD=CD ,以AB 为直径的⊙O 经过点C ,连接AC ,OD 交于点E .(1)证明:OD ∥BC ;(2)若tan ∠ABC=2,证明:DA 与⊙O 相切;(3)在(2)条件下,连接BD 交于⊙O 于点F ,连接EF ,若BC=1,求EF 的长.【答案】(1)证明见解析;(2)证明见解析;(3)2【详解】【分析】(1)连接OC ,证△OAD ≌△OCD 得∠ADO=∠CDO ,由AD=CD 知DE ⊥AC ,再由AB 为直径知BC ⊥AC ,从而得OD ∥BC ;(2)根据tan ∠ABC=2可设BC=a 、则AC=2a 、,证OE 为中位线知OE=12a 、AE=CE=12AC=a ,进一步求得,在△AOD 中利用勾股定理逆定理证∠OAD=90°即可得; (3)先证△AFD ∽△BAD 得DF•BD=AD 2①,再证△AED ∽△OAD 得OD•DE=AD 2②,由①②得DF•BD=OD•DE ,即DF DE OD BD =,结合∠EDF=∠BDO 知△EDF ∽△BDO ,据此可得EF DE OB BD=,结合(2)可得相关线段的长,代入计算可得.【详解】(1)如图,连接OC ,在△OAD 和△OCD 中,OA OC AD CD OD OD =⎧⎪=⎨⎪=⎩,∴△OAD ≌△OCD (SSS ),∴∠ADO=∠CDO ,又AD=CD ,∴DE ⊥AC ,∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠ACB=90°,即BC ⊥AC ,∴OD∥BC;(2)∵tan∠ABC=ACBC=2,∴设BC=a、则AC=2a,∴=,∵OE∥BC,且AO=BO,∴OE=12BC=12a,AE=CE=12AC=a,在△AED中,,在△AOD中,AO2+AD2=)2+)2=254a2,OD2=(OF+DF)2=(12a+2a)2=254a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)如图,连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴DF ADAD BD=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴AD DEOD AD=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即DF DE OD BD=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∴EF DE OB BD=,∵BC=1,∴OD=52、ED=2、、,=,∴EF=2.【点睛】本题考查了切线的判定、等腰三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理以及勾股定理的逆定理等,综合性较强,有一定的难度,准确添加辅助线构造图形是解题的关键.13.(2022·上海)平行四边形ABCD ,若P 为BC 中点,AP 交BD 于点E ,连接CE .(1)若AE CE =,①证明ABCD 为菱形;②若5AB =,3AE =,求BD 的长.(2)以A 为圆心,AE 为半径,B 为圆心,BE 为半径作圆,两圆另一交点记为点F,且CE =.若F 在直线CE 上,求AB BC的值. 【答案】(1)①见解析;②【分析】(1)①连接AC 交BD 于O ,证△AOE ≌△COE (SSS),得∠AOE =∠COE ,从而得∠COE =90°,则AC ⊥BD ,即可由菱形的判定定理得出结论;②先证点E 是△ABC 的重心,由重心性质得BE =2OE ,然后设OE =x ,则BE =2x ,在Rt △AOE 中,由勾股定理,得OA 2=AE 2-OE 2=32-x 2=9-x 2,在Rt △AOB 中,由勾股定理,得OA 2=AB 2-OB 2=52-(3x )2=25-9x 2,从而得9-x 2=25-9x 2,解得:x 即可得OB =3x BD 长;(2)由⊙A 与⊙B 相交于E 、F ,得AB ⊥EF ,点E 是△ABC 的重心,又F 在直线CE 上,则CG 是△ABC 的中线,则AG =BG =12AB ,根据重心性质得GE =12CE ,CG =CE +GE AE ,在Rt △AGE 中,由勾股定理,得AG 2=AE 2-GEE =AE 2-)2=12AE 2,则AG AE ,所以AB =2AG AE ,在Rt △BGC 中,由勾股定理,得BC 2=BG 2+CG 2=12AE 2+(2AE )2=5AE 2,则BC ,代入即可求得AB BC 的值. (1)①证明:如图,连接AC 交BD 于O ,∵平行四边形ABCD ,∴OA =OC ,∵AE =CE ,OE =OE ,∴△AOE ≌△COE (SSS),∴∠AOE =∠COE ,∵∠AOE +∠COE =180°,∴∠COE =90°,∴AC ⊥BD ,∵平行四边形ABCD ,∴四边形ABCD 是菱形;②∵OA =OC ,∴OB 是△ABC 的中线,∵P 为BC 中点,∴AP 是△ABC 的中线,∴点E 是△ABC 的重心,∴BE =2OE ,设OE=x,则BE=2x,在Rt△AOE中,由勾股定理,得OA2=AE2-OE2=32-x2=9-x2,在Rt△AOB中,由勾股定理,得OA2=AB2-OB2=52-(3x)2=25-9x2,∴9-x2=25-9x2,解得:x,∴OB=3x∵平行四边形ABCD,∴BD=2OB(2)解:如图,∵⊙A与⊙B相交于E、F,∴AB⊥EF,由(1)②知点E是△ABC的重心,又F在直线CE上,∴CG是△ABC的中线,∴AG=BG=12AB,GE=12CE,∵CE AE,∴GE,CG=CE+GE AE,在Rt△AGE中,由勾股定理,得AG 2=AE 2-GEE =AE 2-)2=12AE 2,∴AG =2AE ,∴AB =2AG ,在Rt △BGC 中,由勾股定理,得BC 2=BG 2+CG 2=12AE 2+(2AE )2=5AE 2,∴BC , ∴21055ABAE BC AE . 【点睛】本题考查平行四边形的性质,菱形的判定,重心的性质,勾股定理,相交两圆的公共弦的性质,本题属圆与四边形综合题目,掌握相关性质是解题的关键,属是考常考题目.14.(2022·吉林长春)如图,在ABCD 中,4AB =,AD BD ==M 为边AB 的中点,动点P 从点A 出发,沿折线AD DB -B 运动,连结PM .作点A 关于直线PM 的对称点A ',连结A P '、A M '.设点P 的运动时间为t 秒.(1)点D 到边AB 的距离为__________;(2)用含t 的代数式表示线段DP 的长;(3)连结A D ',当线段A D '最短时,求DPA '△的面积;(4)当M 、A '、C 三点共线时,直接写出t 的值.【答案】(1)3(2)当0≤t ≤1时,DP =;当1<t ≤2时,PD =(3)35(4)23或2011【分析】(1)连接DM ,根据等腰三角形的性质可得DM ⊥AB ,再由勾股定理,即可求解;(2)分两种情况讨论:当0≤t ≤1时,点P 在AD 边上;当1<t ≤2时,点P 在BD 边上,即可求解;(3)过点P 作PE ⊥DM 于点E ,根据题意可得点A 的运动轨迹为以点M 为圆心,AM 长为半径的圆,可得到当点D 、A ′、M 三点共线时,线段A D '最短,此时点P 在AD 上,再证明△PDE ∽△ADM ,可得33,22DE t PE t =-=-,从而得到23A E DE A D t ''=-=-,在Rt A PE '中,由勾股定理可得25t =,即可求解;(4)分两种情况讨论:当点A '位于M 、C 之间时,此时点P 在AD 上;当点A '(A '')位于C M 的延长线上时,此时点P 在BD 上,即可求解.(1)解:如图,连接DM ,∵AB =4,AD BD ==M 为边AB 的中点,∴AM =BM =2,DM ⊥AB ,∴3DM ==,即点D 到边AB 的距离为3;故答案为:3(2)解:根据题意得:当0≤t ≤1时,点P 在AD 边上,DP =;当1<t ≤2时,点P 在BD 边上,PD =综上所述,当0≤t ≤1时,DP =;当1<t ≤2时,PD =(3)解:如图,过点P 作PE ⊥DM 于点E ,∵作点A 关于直线PM 的对称点A ',∴A ′M =AM =2,∴点A 的运动轨迹为以点M 为圆心,AM 长为半径的圆,∴当点D 、A ′、M 三点共线时,线段A D '最短,此时点P 在AD 上, ∴1A D '=,根据题意得:A P AP '==,DP =,由(1)得:DM ⊥AB ,∵PE ⊥DM ,∴PE ∥AB ,∴△PDE ∽△ADM , ∴PD DE PE AD DM AM==,32DE PE ==, 解得:33,22DE t PE t =-=-,∴23A E DE A D t ''=-=-,在Rt A PE '中,222A P PE A E ''=+,∴)()()2222223t t =-+-,解得:25t =, ∴65PE =, ∴116312255DPA SA D PE ''=⋅=⨯⨯=; (4) 解:如图,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北辰教育学科老师辅导讲义(3)联结P B ,当点P 是AB 的中点时,求△ABP 的面积与△ABD 的面积比ABDABPS S ∆∆的值. 定圆结合直角三角形,考察三角形相似,线段与三角形周长的函数关系2(2010上海)如图,在Rt △ABC 中,∠ACB=90°.半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E ,连接DE 并延长,与线段BC 的延长线交于点P .(1)当∠B=30°时,连接AP ,若△AEP 与△BDP 相似,求CE 的长; (2)若CE=2,BD=BC ,求∠BPD 的正切值;(3)若tan ∠BPD=,设CE=x ,△ABC 的周长为y ,求y 关于x 的函数关系式.定圆结合直角三角形,考察两线段函数关系,圆心距,存在性问题3.如图,在半径为5的⊙O 中,点A 、B 在⊙O 上,∠AOB=90°,点C 是弧AB 上的一个动点,AC 与OB 的延长线相交于点D ,设AC=x ,BD=y .(1)求y 关于x 的函数解析式,并写出它的定义域;(2)如果⊙O 1与⊙O 相交于点A 、C ,且⊙O 1与⊙O 的圆心距为2,当BD=OB 时,求⊙O 1的半径; (3)是否存在点C ,使得△DCB ∽△DOC ?如果存在,请证明;如果不存在,请简要说明理由.定圆中结合平行线,弧中点,考察两线段函数关系,圆相切4(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分)在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y .(1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2) 如图2,当点F 在⊙O 上时,求线段DF 的长;(3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长.动圆结合直角梯形,考察圆相切和相似5(14分)(2014金山区二模)如图,已知在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AB=4,AD=3,sin ∠DCB=,P 是边CD 上一点(点P 与点C 、D 不重合),以PC 为半径的⊙P 与边BC 相交于点C 和点Q . (1)如果BP ⊥CD ,求CP 的长;(2)如果PA=PB ,试判断以AB 为直径的⊙O 与⊙P 的位置关系;OPD C BA第25题图备用图OC BAABE F CDO(第25题图1)A B EF C D O解得5=x ,即⊙O 的半径为5.………………………………………………(1分) (2)过点O 作OH ⊥AD 于点H . ∵OH 过圆心,且OH ⊥AD . ∴x AP AH 2121==.………………………(1分) 在Rt △AOH 中,可得22AH AO OH -=即210042522xx OH -=-=.…………(1分) 在△AOH 和△ACD 中,OHA C ∠=∠,CAD HAO ∠=∠,∴△AOH ∽△ADC .……………………(1分)∴ACAH CD OH =.即8242-1002xy x =+. 得410082--=xx y .………………………………………………………(1分) 定义域为540<<x .…………………………………………………………(1分)(3)∵P 是AB 的中点,∴AP =BP .∵AO =BO ,∴PO 垂直平分AB .设α=∠CAB ,可求得α=∠ABO ,α2=∠COB ,α290-=∠οOBC ,α-=∠ο90AOP ,α+=∠ο90ABD ,α+=∠=∠ο902APO APB . ∴APB ABD ∠=∠.∴△ABP ∽△ABD .…………………………(1分) ∴ABD ABP S S ∆∆2⎪⎭⎫ ⎝⎛=AB AP .………………………(1分) D ABP ∠=∠.由AP =BP 可得PAB ABP ∠=∠. ∴D PAB ∠=∠.∴54==AB BD ,即54=y .…………(1分)由410082--=x x y 可得510502-=x ,即510502-=AP .………(1分) ABD ABP S S ∆∆85580510502-=-=⎪⎭⎫ ⎝⎛=AB AP .……………………………………(1分) 2考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;解直角三角形。
专题:几何综合题;压轴题。
分析:(1)当∠B=30°时,∠A=60°,此时△ADE 是等边三角形,则∠PEC=∠AED=60°,由此可证得∠P=∠B=30°;若△AEP 与△BDP 相似,那么∠EAP=∠EPA=∠B=∠P=30°,此时EP=EA=1,即可在Rt △PEC 中求得CE 的长;(2)若BD=BC ,可在Rt △ABC 中,由勾股定理求得BD 、BC 的长;过C 作CF ∥DP 交AB 于F ,易证得△ADE ∽△AFC ,根据得到的比例线段可求出DF 的长;进而可通过证△BCF ∽△BPD ,根据相似三角形的对应边成比例求得BP 、BC 的比例关系,进而求出BP 、CP 的长;在Rt △CEP 中,根据求得的CP 的长及已知的CE 的长即可得到∠BPD 的正切值;(3)过点D 作DQ ⊥AC 于Q ,可用未知数表示出QE 的长,根据∠BPD (即∠EDQ )的正切值即可求出DQ 的长;在Rt △ADQ 中,可用QE 表示出AQ 的长,由勾股定理即可求得EQ 、DQ 、AQ 的长;易证得△ADQ ∽△ABC ,根据得到的比例线段可求出BD 、BC 的表达式,进而可根据三角形周长的计算方法得到y 、x 的函数关系式. 解答:解:(1)∵∠B=30°,∠ACB=90°, ∴∠BAC=60°. ∵AD=AE ,HOPD C BA∴∠AED=60°=∠CEP,∴∠EPC=30°.∴△BDP为等腰三角形.∵△AEP与△BDP相似,∴∠EPA=∠DPB=30°,∴AE=EP=1.∴在Rt△ECP中,EC=EP=;(2)设BD=BC=x.在Rt△ABC中,由勾股定理,得:(x+1)2=x2+(2+1)2,解之得x=4,即BC=4.过点C作CF∥DP.∴△ADE与△AFC相似,∴,即AF=AC,即DF=EC=2,∴BF=DF=2.∵△BFC与△BDP相似,∴,即:BC=CP=4.∴tan∠BPD=.(3)过D点作DQ⊥AC于点Q.则△DQE与△PCE相似,设AQ=a,则QE=1﹣a.∴且,∴DQ=3(1﹣a).∵在Rt△ADQ中,据勾股定理得:AD2=AQ2+DQ2即:12=a2+[3(1﹣a)]2,解之得.∵△ADQ与△ABC相似,∴.∴.∴△ABC的周长,即:y=3+3x,其中x>0.3考点:相似三角形的判定与性质;勾股定理;圆与圆的位置关系。
专题:代数几何综合题;分类讨论。
分析:(1)过⊙O的圆心作OE⊥AC,垂足为E.通过证明△ODE∽△AOE求得,然后将相关线段的长度代入求得y关于x的函数解析式,再由函数的性质求其定义域;(2)当BD=OB 时,根据(1)的函数关系式求得y=,x=6.分两种情况来解答O 1A 的值①当点O 1在线段OE 上时,O 1E=OE ﹣OO 1=2;②当点O 1在线段EO 的延长线上时,O 1E=OE+OO 1=6; (3)当点C 为AB 的中点时,∠BOC=∠AOC=∠AOB=45°,∠OCA=∠OCB=,然后由三角形的内角和定理求得∠DCB=45°,由等量代换求得∠DCB=∠BOC .根据相似三角形的判定定理AA 证明△DCB ∽△DOC . 解答:解:(1)过⊙O 的圆心作OE ⊥AC ,垂足为E , ∴AE=,OE=.∵∠DEO=∠AOB=90°,∴∠D=90°﹣∠EOD=∠AOE ,∴△ODE ∽△AOE . ∴,∵OD=y+5,∴.∴y 关于x 的函数解析式为:.定义域为:.(1分) (2)当BD=OB 时,,.∴x=6. ∴AE=,OE=. 当点O 1在线段OE 上时,O 1E=OE ﹣OO 1=2,.当点O 1在线段EO 的延长线上时,O 1E=OE+OO 1=6,.⊙O 1的半径为或.(3)存在,当点C 为的中点时,△DCB ∽△DOC .证明如下:∵当点C 为的中点时,∠BOC=∠AOC=∠AOB=45°,又∵OA=OC=OB ,∴∠OCA=∠OCB=,∴∠DCB=180°﹣∠OCA ﹣∠OCB=45°.∴∠DCB=∠BOC .又∵∠D=∠D ,∴△DCB ∽△DOC . ∴存在点C ,使得△DCB ∽△DOC .点评:本题主要考查了圆与圆的位置关系、勾股定理.此题很复杂,解答此题的关键是作出辅助线OE ⊥AC ,利用相似三角形的判定定理及性质解答,解答(2)时注意分两种情况讨论,不要漏解. 4.解:(1)联结OC ,∵AC 是⊙O 的弦,OD ⊥AC ,∴OD =AD .………………(1分)∵DF //AB ,∴CF =EF ,∴DF =AE 21=)(21OE AO +.…………………(1分) ∵点C 是以AB 为直径的半圆的中点,∴CO ⊥AB .………………………(1分)∵EF =x ,AO =CO =4,∴CE =2x ,OE =421642222-=-=-x x OC CE .…(1分)∴42)424(2122-+=-+=x x y . 定义域为2≥x .……………(1+1分) (2)当点F 在⊙O 上时,联结OC 、OF ,EF =421==OF CE ,∴OC =OB =21AB =4.(分)∴DF =2+442-=2+23.………………………………(1分)(3)当⊙E 与⊙O 外切于点B 时,BE =FE .∵222CO OE CE =-,∴,4)4()2(222=+-x x 032832=--x x ,∴=1x 3744+,=2x 舍去(3744-).……………………………(1分) ∴DF =37214)37448(21)(21+=++=+BE AB .…………………(1分) 当⊙E 与⊙O 内切于点B 时,BE =FE .∵222CO OE CE =-,∴,4)4()2(222=--x x 032832=-+x x ,∴=1x 3744+-,=2x 舍去(3744--).………………………………(1分) ∴DF =37214)37448(21)(21-=+--=-BE AB .……………………(1分) 当⊙E 与⊙O 内切于点A 时,AE =FE .∵222CO OE CE =-,∴,4)4()2(222=--x x 032832=-+x x ,∴=1x 3744+-,=2x 舍去(3744--).……………………………(1分) ∴DF =327221-=AE .……………………………………………………………(1分)5.:(1)作DH ⊥BC 于H ,如图1, ∵AD ∥BC ,AB ⊥BC ,AB=4,AD=3, ∴DH=4,BH=3,在Rt △DHC 中,sin ∠DCH==,∴DC=5, ∴CH==3,∴BC=BH+CH=6, ∵BP ⊥CD , ∴∠BPC=90°, 而∠DCH=∠BCP ,∴Rt △DCH ∽Rt △BCP , ∴=,即=,∴PC=;(2)作PE⊥AB于E,如图2,∵PA=PB,∴AE=BE=AB=2,∵PE∥AD∥BC,∴PE为梯形ABCD的中位线,∴PD=PC,PE=(AD+BC)=(3+6)=,∴PC=BC=,∴EA+PC=PE,∴以AB为直径的⊙O与⊙P外切;(3)如图1,作PF⊥BC于F,则CF=QF,设PC=x,则DP=5﹣x,∵PF∥DH,∴△CPF∽△CDH,∴=,即=,解得CF=,∴CQ=2CF=,∴BQ=BC﹣CQ=6﹣,∵PQ=PC,∴∠PQC=∠PCQ,∵AD∥BC,∴∠ADP+∠PCQ=180°,而∠PQC+∠PQB=180°,∴∠ADP=∠PQB,当△ADP∽△BQP,∴=,即=,整理得2x2﹣25x+50=0,解得x1=,x2=10(舍去),经检验x=是原分式方程的解.∴PC=;当△ADP∽△PQB,∴=,即=整理得5x2﹣43x+90=0,解得x1=,x2=5(舍去),经检验x=是原分式方程的解.∴PC=,∴如果△ADP和△BQP相似,CP的长为或.J8.考点:相似三角形的判定与性质;勾股定理;相交两圆的性质;正多边形和圆。