全国通用2017届高考数学一轮总复习第十章圆锥曲线10.1椭圆及其性质专用题组理
2013-2017高考数学真题分类-第10章-圆锥曲线-1-椭圆及其性质(理科)

第十章圆锥曲线第1节椭圆及其性质题型113 椭圆的定义与标准方程1。
(2014 大纲理 6)已知椭圆C :22221x y a b +=()0a b >>的左、右焦点为1F ,2F ,离心率为3,过2F 的直线l 交C 于A ,B 两点,若1AF B △的周长为C 的方程为().A .22132x y +=B .2213x y += C .221128x y += D .221124x y +=2。
(2014 安徽理 14)设21,F F 分别是椭圆E :2221yx b+=()01b <<的左、右焦点,过点1F 的直线交椭圆E 于A ,B 两点,若113AF BF =,2AF x ⊥轴,则椭圆E 的方程为。
3.(2014 辽宁理 15)已知椭圆C :22194x y +=,点M 与C 的焦点不重合。
若M关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则AN BN +=。
4.(2014 福建理 19)(本小题满分13分)已知双曲线()2222:10,0x y E a b a b-=>>的两条渐近线分别为1:2l y x =,2:2l y x =-。
(1)求双曲线E 的离心率;(2)如图所示,O 为坐标原点,动直线l 分别交直线21,l l 于B A ,两点(B A ,分别在第一,四象限),且OAB △的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?若存在,求出双曲线E 的方程;若不存在,说明理由。
5。
(2016北京理19(1))已知椭圆()2222:10x y C a b a b +=>>,(),0A a ,()0,B b ,()0,0O ,OAB △的面积为1。
求椭圆C 的方程;5.解析可先作出本题的图形:由题设,可得2222(0)112c a a b c a b ab ⎧=⎪⎪⎪=+>>⎨⎪⎪=⎪⎩解得2,1a b ==。
2017年新课标全国理数高考试题汇编:圆锥曲线 - 学生专用

2017年新课标全国理数高考试题汇编:圆锥曲线1.【2017全国高考浙江卷理数·2T】椭圆的离心率是()ABC.D.2.【2017全国高考新课标I卷理数·10T】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.103.【2017全国高考新课标II卷理数·9T】若双曲线:C22221x ya b-=(0a>,0b>)的一条渐近线被圆()2224x y-+=所截得的弦长为2,则C的离心率为()A.2 B C D4.【2017全国高考新课标III卷理数·5T】已知双曲线C:22221x ya b-=(a>0,b>0)的一条渐近线方程为y x=,且与椭圆221123x y+=有公共焦点,则C的方程为()A.221810x y-=B.22145x y-=C.22154x y-=D.22143x y-=5.【2017全国高考新课标III卷理数·10T】已知椭圆C:22221x ya b+=,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线20bx ay ab-+=相切,则C的离心率为()A B C D.136.【2017全国高考新课标I卷理数·15T】已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若∠MAN=60°,则C的离心率为. 7.【2017全国高考新课标II卷理数·16T】已知F是抛物线:C28y x=的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则FN=____________.8.【2017全国高考北京卷理数·9T】若双曲线m=_________.22194x y+=2359221yxm-=9.【2017全国高考江苏卷理数·8T 】在平面直角坐标系xoy 中 ,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 ,则四边形F 1 P F 2 Q 的面积是10.【2017全国高考山东卷理数·14T 】在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为.11.【2017全国高考新课标I 卷理数·20T 】(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2,P 4(1,2C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.12.【2017全国高考新课标II 卷理数·20T 】(12分)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .13.【2017全国高考新课标III 卷理数·20T 】(12分)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆。
2017年高考数学理试题分类汇编:圆锥曲线

2017 年高考试题分类汇编之圆锥曲线(理数) 解析一、选择题1 二、填空题3 三、大题5一、选择题【XX 卷】2.椭圆22194x y +=的离心率是 AB.23D .59【解析】33e ==,选B.【全国1卷(理)】10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴易知11cos 22AF GF AK AK AF P P GP Pθ⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩(几何关系)(抛物线特性)cos AF P AF θ⋅+=∴同理1cos P AF θ=-,1cos P BF θ=+∴22221cos sin P P AB θθ==-又DE 与AB 垂直,即DE 的倾斜角为π2θ+2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭而24y x =,即2P =.∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24θ=21616sin 2θ=≥,当π4θ=取等号 即AB DE +最小值为16,故选A【全国Ⅱ卷(理)】9.若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为()A .2 BCD.3【解析】取渐近线by x a=,化成一般式0bx ay -=,圆心()20,=得224c a =,24e =,2e =.【全国III 卷(理)】5.已知双曲线C:22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( ) A. 221810x y -= B. 22145x y -= C. 22154x y -= D. 22143x y -=【解析】∵双曲线的一条渐近线方程为y,则b a =又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,a b ==C 的方程为22145x y -=,故选B.【全国III 卷(理)】10.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A.C.3D.13 【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴d a == 又∵0,0a b >>,则上式可化简为223a b =∵222b ac =-,可得()2223a a c =-,即2223c a =∴63c e a ==,故选A【XX 卷】(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,离心率为2.若经过F和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.22144x y -=B.22188x y -=C.22148x y -=D.22184x y -=【解析】由题意得224,14,22188x y a b c a b c ==-⇒===⇒-=- ,故选B.二、填空题【全国1卷(理)】15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________. 【解析】如图,OA a =,AN AM b == ∵60MAN ∠=︒,∴3AP =,222234OP OA PA a b =-=-∴2232tan 34AP OP a b θ=-又∵tan b a θ=b a =,解得223a b =∴e =【全国2卷(理)】16.已知F 是抛物线C:28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN =. 【解析】28y x =则4p =,焦点为()20F ,,准线:2l x =-, 如图,M 为F 、N 中点,故易知线段BM 为梯形AFMC 中位线, ∵2CN =,4AF =, ∴3ME =又由定义ME MF =, 且MN NF =, ∴6NF NM MF =+=【卷】(9)若双曲线221y x m-=m =_______________. 【解析】.21m =⇒= 【XX 卷】8.在平面直角坐标系xOy 中,双曲线2213x y -= 的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 ,则四边形F 1PF 2Q 的面积是.【解析】右准线方程为33101010x ==,渐近线为33y x =±,则31030(,)1010P ,31030(,)1010Q -,1(10,0)F -,2(10,0)F ,则302102310S =⨯=. 【XX 卷】14.在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b -=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为.三、大题【全国I 卷(理)】20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32 ),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.20.解:(1)根据椭圆对称性,必过3P 、4P 又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点将()233011P P ⎛- ⎝⎭,,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b =∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,221121A A P A P B y y k k m m m ----+=+==-得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶()()1122A x y B x y ,,,联立22440y kx bx y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-=122814kbx x k -+=+,21224414b x x k -⋅=+则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.∴直线l 的方程为21y kx k =--当2x =时,1y =-所以l 过定点()21-,.【全国II 卷(理)】20. (12分)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦 点F ..解:⑴设()P x y ,,易知(0)N x , (0)NP y =,又0NM ⎛== ⎝∴M x ⎛⎫⎪⎝⎭,又M 在椭圆上.∴2212x +=,即222x y +=. ⑵设点(3)Q Q y -,,()P P P x y ,,(0)Q y ≠, 由已知:()(3)1P P P Q P OP PQ x y y y y ⋅=⋅---=,,, ()21OP OQ OP OP OQ OP ⋅-=⋅-=,∴213OP OQ OP ⋅=+=, ∴33P Q P Q P P Q x x y y x y y ⋅+=-+=. 设直线OQ :3Q y y x =⋅-,因为直线l 与OQ l 垂直. ∴3l Qk y =故直线l 方程为3()P P Qy x x y y =-+, 令0y =,得3()P Q P y y x x -=-, 13P Q P y y x x -⋅=-, ∴13P Q P x y y x =-⋅+,∵33P Q P y y x =+,∴1(33)13P P x x x =-++=-,若0Q y =,则33P x -=,1P x =-,1P y =±,直线OQ 方程为0y =,直线l 方程为1x =-,直线l 过点(10)-,,为椭圆C 的左焦点.【全国III 卷(理)】20.(12分)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上; (2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.解:(1)显然,当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立:222y x x my ⎧=⎨=+⎩得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-.1212OA OBx x y y ⋅=+ 12(2)(2)my my =++21212(1)2()4m y y m y y =++++ 24(1)2(2)4m m m =-+++0=∴OA OB ⊥,即O 在圆M 上. (2)若圆M 过点P ,则0AP BP ⋅=1212(4)(4)(2)(2)0x x y y --+++=1212(2)(2)(2)(2)0my my y y --+++=21212(1)(22)()80m y y m y y +--++=化简得2210m m --=解得12m =-或1①当12m =-时,:240l x y +-=圆心为00(,)Q x y ,12012y y y +==-,001924x y =-+=,半径||r OQ ==则圆229185:()()4216M x y -++=②当1m =时,:20l x y --=圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径||r OQ ==则圆22:(3)(1)10M x y -+-=【卷】(18)(14分)已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP 、ON 交于点A ,B ,其中O 为原点. (Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.(18)解:(Ⅰ)把P (1,1)代入y 2=2Px 得P =12∴C :y 2=x , ∴焦点坐标(14,0),准线:x =-14. (Ⅱ)设l :y =kx +12,A (x 1,y 1),B (x 2,y 2),OP :y =x ,ON :y =22yx x ,由题知A (x 1,x 1),B (x 1,122x y x ) 212y kx y x⎧>+⎪⎨⎪=⎩⇒k 2x 2+(k -1)x +14=0,x 1+x 2=21k k -,x 1·x 2=214k .1112121112221122,22x kx x y x x y kx kx x x x ⎛⎫+ ⎪+⎝⎭+=++=+由x 1+x 2=21k k -,x 1x 2=214k, 上式()2111121122122124kk kx kx k x x x k x -=+=+-⋅=∴A 为线段BM 中点. 【XX 卷】17.(14分)如图,在平面直角坐标系xOy 中,椭圆1(0)2222x y E :+a b a b=>>的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2. (1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.17.解:(1)∵椭圆E 的离心率为12,∴12c a =①.∵两准线之间的距离为8,∴228a c =②.联立①②得2,1a c ==,∴3b =,故椭圆E 的标准方程为22143x y +=.【XX 卷】B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵A = ,B =. (1) 求AB ;(2)若曲线C 1;22y =182x +在矩阵AB 对应的变换作用下得到另一曲线C 2 ,求C 2的方程.B.解:(1)AB ==.(2)设11(,)P x y 是曲线1C 上任意一点,变换后对应的点为1`0210x x y y ⎡⎤⎢⎥⎣⎡⎤⎡⎦⎤=⎢⎥⎢⎥⎣⎦⎣⎦,方程.【XX 卷】(21)(本小题满分13分)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :1y k x =交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.(21)解:(I )由题意知 22c e a ==,22c =, 所以 2,1a b ==,因此 椭圆E 的方程为2212x y +=. (Ⅱ)设()()1122,,,A x y B x y ,联立方程2211,23,2x y y k x ⎧+=⎪⎪⎨⎪=-⎪⎩得()2211424310k x k x +--=, 由题意知0∆>,且()112122211231,21221k x x x x k k +==-++,令2112t k =+,【XX 卷】(19)(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △AP 的方程.所以,直线AP 的方程为3630x y +-=,或3630x y --=.【XX 卷】21.(本题满分15分)如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点11()()24P x y x -<<,.过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围;(Ⅱ)求AP PQ ⋅的最大值.21.解:(Ⅰ)由题易得P (x ,x 2),-12<x <32, 故k AP=21412x x -+=x -12∈(-1,1), 故直线AP 斜率的取值范围为(-1,1).(Ⅱ)由(Ⅰ)知P (x ,x 2),-12<x <32,故PA =(-1设直线AP 的斜率为k ,故1(PQ +=又2(1,)PA k k k =---- ,32(1)k PA PQ PA PQ k +==3(1)(1)PA PQ k k =+-,令2(1)(24)2(x x x =+-=-时,()0f x '<,PA PQ 的最大值为。
(高三一轮复习)圆锥曲线

椭圆标准方程及其性质一、请细读1、已知椭圆2212516x y +=,12,F F 是椭圆的左右焦点,p 是椭圆上一点。
(1)a = ; b = ; c = ; e = ; (2)长轴长= ; 短轴长= ; 焦距= ;12||||PF PF += ; 12F PF ∆的周长= ;12F PF S ∆= = ; 2、已知椭圆方程是192522=+y x 的M 点到椭圆的左焦点为1F 距离为6,则M 点到2F 的距离是3、已知椭圆方程是192522=+y x ,过左焦点为1F 的直线交椭圆于A,B 两点,请问2ABF ∆的 周长是 ;4 .(2012年高考(上海春))已知椭圆222212:1,:1,124168x y x y C C +=+=则 ( ) A .顶点相同 B .长轴长相同. C .离心率相同. D .焦距相等. 5、 (2007安徽)椭圆1422=+y x 的离心率为( )(A )23 (B )43(C )22(D )32 6.(2005广东)若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( )A .3B .23 C .38D .327.【2102高考北京】已知椭圆C :22x a +22y b=1(a >b >0)的一个顶点为A (2,0),离心率为2,则椭圆C 的方程:8、【2012高考广东】在平面直角坐标系xOy 中,已知椭圆1C :22221x y a b+=(0a b >>)的左焦点为1(1,0)F -,且点(0,1)P 在1C 上,则椭圆1C 的方程;9、【2012高考湖南】在直角坐标系xOy 中,已知中心在原点,离心率为12的椭圆E 的一个焦点为圆C :x 2+y 2-4x+2=0的圆心,椭圆E 的方程;10.(2004福建理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )(A )32 (B )33 (C )22 (D )2311.(2006上海理)已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2 倍,则该椭圆的标准方程是 .12、经过)2-,3-(16B A ),,(两点的椭圆方程是 13、动点M 与定点),(04F 的距离和它到定直线425:=x l 的比是常数54,则动点M 的轨迹方程是:14.(2012年高考)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )A .2211612x y += B .221168x y += C .22184x y += D .221124x y += 15.(2012年高考(四川理))椭圆22143x y +=的左焦点为F ,直线x m =与椭圆相交于点A 、B ,当FAB ∆的周长最大时,FAB ∆的面积是____________.16.(2012年高考(江西理))椭圆22221x y a b+=(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为_______________.17.(2012年高考江苏)在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和32e ⎛⎫⎪ ⎪⎝⎭,都在椭圆上,其中e 为椭圆的离心率,则椭圆的方程 ;18.(2012年高考广东理)在平面直角坐标系xOy 中,已知椭圆C :221x y a b+=(0a b >>)的离心率23e =且椭圆C 上的点到点()0,2Q 的距离的最大值为3,则椭圆C 的方程 ; 19.(2012年高考福建理)椭圆2222:1(0)x y E a b a b+=>>的左焦点为1F ,右焦点为2F ,离心率12e =.过1F 的直线交椭圆于,A B 两点,且2ABF ∆的周长为8,椭圆E 的方程 . 20.(2012年高考(北京理))已知曲线C: 22(5)(2)8()m x m y m R -+-=∈,若曲线C 是焦点在x 轴的椭圆,则m 的取值范围是 ;22.(2012年高考(陕西理))已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率,则椭圆2C 的方程 ; 23、如果点M ()y x ,在运动过程中,总满足:()()10332222=-++++y x y x试问点M 的轨迹是 ;写出它的方程 。
方法技巧专题07 圆锥曲线的概念及其几何性质(解析版)

方法技巧专题7 圆锥曲线的概念及其几何性质 解析版一、 圆锥曲线的概念及其几何性质知识框架二、圆锥曲线的定义、方程【一】圆锥曲线的定义1、椭圆(1)秒杀思路:动点到两定点(距离为2c )距离之和为定值(2a )的点的轨迹;(2)秒杀公式:过抛圆的一个焦点作弦AB ,与另一个焦点F 构造FAB ∆,则FAB ∆的周长等于a 4。
(3) ①当c a 22>时,表示椭圆;②当c a 22=时,表示两定点确定的线段;③当c a 22<时,表示无轨迹。
2、双曲线(1)秒杀思路: ①双曲线上任意一点到两焦点距离之差的绝对值是常数2a ;②注意定义中两个加强条件:(I )绝对值; (II )22a c <; ③加绝对值表示两支(或两条),不加绝对值表示一支(或一条);(2)秒杀公式:过双曲线的一个焦点作弦AB (交到同一支上),与另一个焦点F 构造FAB ∆,则FAB ∆的周长等于AB a 24+。
(3) ①当22a c <时,表示双曲线; ②当22a c =时,表示以两定点为端点向两侧的射线;③当22a c >时,无轨迹; ④当20a =时表示两定点的中垂线。
3、抛物线(1)秒杀思路:到定点(焦点)距离等于到定直线(准线)距离。
所以,一般情况下,抛物线已知到焦点的距离需转化为到准线的距离,已知到准线的距离需转化为到焦点的距离。
(2)秒杀公式一:焦点在x 轴上的圆锥曲线,曲线上的点到同一个焦点的距离成等差数列,则横坐标成等差数列,反过来也成立。
(3)秒杀公式二:作过抛物线焦点且倾斜角为︒60或︒120的弦,两段焦半径分别为:32,2pp .1. 例题【例1】设P 是椭圆2212516x y +=上的点,若21,F F 是椭圆的两个焦点,则12PF PF +等于 ( )A.4B.5C.8D.10【解析】利用椭圆的定义得12PF PF +=102=a ,选D 。
【例2】已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为B A ,,线段MN 的中点在C 上,则||||AN BN += .【解析】如图,22QF BN =,12QF AN =,||||AN BN +=124)(221==+a QF QF .【例3】已知双曲线122=-y x ,点21,F F 为其两个焦点,点P 为双曲线上一点,若21PF PF ⊥,则21PF PF +的值为_______.【解析】,8,2222121=+=-r r r r 得21PF PF +=32. 【例4】设椭圆1C 的离心率为135,焦点在x 轴上且长轴长为26,若曲线2C 上的点到椭圆1C 的两个焦点的距离的差的绝对值等于8,则曲线2C 的标准方程为 ( )A.1342222=-y xB.15132222=-y xC.1432222=-y xD.112132222=-y x【解析】由双曲线定义得4=a ,5=c ,3=b ,选A 。
2017年高考数学题分类汇编(10)圆锥曲线

2017年全国各地高考数学真题分章节分类汇编第10部分:圆锥曲线一、选择题:1.( 2010年高考全国卷I 理科9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为(A)2(B)2(C)(D)1.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]1a PF e x a ex c =--=+=+,22000||[)]1a PF e x ex a c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 060=,解得2052x =,所以2200312y x =-=,故P 到x轴的距离为0||y =2.(2010年高考福建卷理科2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )A.22x +y +2x=0 B. 22x +y +x=0 C. 22x +y -x=0 D. 22x +y -2x=0 【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D 。
【命题意图】本题考查抛物线的几何性质以及圆的方程的求法,属基础题。
3.(2010年高考福建卷理科7)若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A. )+∞B. [3)++∞C. 7[-,)4+∞D. 7[,)4+∞ 【答案】B【解析】因为(2,0)F -是已知双曲线的左焦点,所以214a +=,即23a =,所以双曲线方程为2213x y -=,设点P 00(,)x y ,则有220001(3)3x y x -=≥,解得220001(3)3x y x =-≥,因为00(2,)FP x y =+,00(,)OP x y =,所以2000(2)OP FP x x y ⋅=++=00(2)x x ++2013x -=2004213x x +-,此二次函数对应的抛物线的对称轴为034x =-,因为03x ≥,所以当03x =时,OP FP ⋅取得最小值432313⨯+-=323+,故OP FP ⋅的取值范围是[323,)++∞,选B 。
2017年全国卷高考数学复习专题——圆锥曲线的综合问题

2017年全国卷高考数学复习专题——圆锥曲线的综合问题考点一定值与最值问题1.(2014湖北,9,5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433B.233C.3D.2答案 A2.(2014福建,9,5分)设P,Q分别为圆x2+(y-6)2=2和椭圆x 210+y2=1上的点,则P,Q 两点间的最大距离是( )A.5B.C.7+D.6答案 D3.(2014四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,OA·OB=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2B.3C.1728D.10答案 B4.(2014安徽,19,13分)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E 2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1,A2两点,l2与E1,E2分别交于B1,B2两点.(1)证明:A1B1∥A2B2;(2)过O作直线l(异于l1,l2)与E1,E2分别交于C1,C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求S1S2的值.解析(1)证明:设直线l1,l2的方程分别为y=k1x,y=k2x(k1,k2≠0),则由y=k1x,y2=2p1x,得A12p1k12,2p1k1,由y=k1x,y2=2p2x,得A22p2k12,2p2k1.同理可得B12p1k22,2p1k2,B22p2k22,2p2k2.所以A1B1=2p1k22-2p1k12,2p1k2-2p1k1=2p11k22-1k12,1k2-1k1,A2B2=2p2k22-2p2k12,2p2k2-2p2k1=2p21k22-1k12,1k2-1k1,故A1B1=p1p2A2B2,所以A1B1∥A2B2.(2)由(1)知A1B1∥A2B2,同理可得B1C1∥B2C2,C1A1∥C2A2.所以△A1B1C1∽△A2B2C2.因此S1S2=|A1B1||A2B2|2.又由(1)中的A1B1=p1p2A2B2知|A1B1||A2B2|=p1p2.故S1S2=p12p22.5.(2014浙江,21,15分)如图,设椭圆C:x 2a +y2b=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.解析(1)设直线l的方程为y=kx+m(k<0),由y=kx+m,x2a2+y2b2=1消去y得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.由于l与C只有一个公共点,故Δ=0,即b2-m2+a2k2=0,解得点P的坐标为-a2km b2+a2k2,b2mb2+a2k2.又点P在第一象限,故点P的坐标为P22222222.(2)由于直线l1过原点O且与l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=2kb2+a2k2+b2kb2+a2k22,整理得d=22b2+a2+a2k2+b 2k2 .因为a2k2+b 2k2≥2ab,所以22b2+a2+a2k2+2k2≤2222=a-b,当且仅当k2=ba时等号成立.所以,点P到直线l1的距离的最大值为a-b.6.(2014湖南,21,13分)如图,O为坐标原点,椭圆C1:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,离心率为e1;双曲线C2:x2a-y2b=1的左、右焦点分别为F3、F4,离心率为e2,已知e1e2=32,且|F2F4|=3-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.解析(1)因为e1e2=32,所以a2-b2a·a2+b2a=32,即a4-b4=34a4,因此a2=2b2,从而F 2(b,0),F4(3b,0),于是3b-b=|F2F4|=3-1,所以b=1,所以a2=2.故C1,C2的方程分别为x22+y2=1,x22-y2=1.(2)因为AB不垂直于y轴,且过点F1(-1,0),故可设直线AB的方程为x=my-1.由x=my-1,x22+y2=1得(m2+2)y2-2my-1=0,易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=2mm2+2,y1y2=-1m2+2.因此x1+x2=m(y1+y2)-2=-4m+2,于是AB的中点M的坐标为-2m+2,mm+2.故直线PQ的斜率为-m2,则PQ的方程为y=-m2x,即mx+2y=0.由y=-m2x,x22-y2=1得(2-m2)x2=4,所以2-m2>0,且x2=42-m,y2=m22-m,从而|PQ|=2 x2+y2=2m2+42-m.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=11222,因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=212m2+4.又因为|y1-y2|=(y1+y2)2-4y1y2=222m2+2,所以2d=21+m22. 故四边形APBQ的面积S=12|PQ|·2d=21+m22-m2=2-1+2-m2.而0<2-m2<2,故当m=0时,S取得最小值2. 综上所述,四边形APBQ面积的最小值为2.7.(2014四川,20,13分)已知椭圆C:x 2a2+y2b2=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C 于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当|TF||PQ|最小时,求点T的坐标.解析(1)由已知可得 a2+b2=2b,2c=2a2-b2=4,解得a2=6,b2=2,所以椭圆C的标准方程是x 26+y22=1.(2)(i)由(1)可得,F的坐标是(-2,0),设T点的坐标为(-3,m).则直线TF 的斜率k TF =m -0-3-(-2)=-m.当m≠0时,直线PQ 的斜率k PQ =1m ,直线PQ 的方程是x=my-2. 当m=0时,直线PQ 的方程是x=-2,也符合x=my-2的形式. 设P(x 1,y 1),Q(x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得 x =my -2,x 26+y 22=1.消去x,得(m 2+3)y 2-4my-2=0, 其判别式Δ=16m 2+8(m 2+3)>0. 所以y 1+y 2=4mm +3,y 1y 2=-2m +3, x 1+x 2=m(y 1+y 2)-4=-12m +3.所以PQ 的中点M 的坐标为 -6m +3,2mm +3 . 所以直线OM 的斜率k OM =-m3,又直线OT 的斜率k OT =-m 3,所以点M 在直线OT 上, 因此OT 平分线段PQ. (ii)由(i)可得, |TF|=2+1,|PQ|= (x 1-x 2)2+(y 1-y 2)2= (m 2+1)[(y 1+y 2)2-4y 1y 2]= (m 2+1) 4mm 2+3 2-4·-2m 2+3 =24(m 2+1)m 2+3.所以|TF ||PQ |= 124·(m 2+3)m +1= 124· m 2+1+4m +1+4 ≥ 124×(4+4)= 33.当且仅当m 2+1=4m +1,即m=±1时,等号成立,此时|TF ||PQ |取得最小值. 所以当|TF ||PQ |最小时,T 点的坐标是(-3,1)或(-3,-1). 考点二 存在性问题。
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§10.1椭圆及其性质
考点一椭圆的定义与标准方程
7.(2014大纲全国,6,5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点.若△AF1B的周长为4,则C的方程为( )
A.+=1
B.+y2=1
C.+=1
D.+=1
答案 A 由题意及椭圆的定义知4a=4,则a=,又==,∴c=1,∴b2=2,∴C的方程为+=1,选A.
8.(2014辽宁,15,5分)已知椭圆C:+=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|= .
答案12
解析解法一:由椭圆方程知椭圆C的左焦点为F1(-,0),右焦点为F2(,0).则M(m,n)关于F1的对称点为A(-2-m,-n),关于F2的对称点为B(2-m,-n),设MN中点为(x,y),所以N(2x-m,2y-n).所以|AN|+|BN|=+
=2[+],
故由椭圆定义可知|AN|+|BN|=2×6=12.
解法二:根据已知条件画出图形,如图.设MN的中点为P,F1、F2为椭圆C的焦点,连结PF1、PF2.显然PF1是△MAN的中位线,PF2是△MBN的中位线,
∴|AN|+|BN|=2|PF1|+2|PF2|=2(|PF1|+|PF2|)=2×6=12.
评析本题主要考查椭圆的定义等知识,重点考查学生的运算能力,也考查数形结合思想,难度适宜.
9.(2012陕西,19,12分)已知椭圆C1:+y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,=2,求直线AB的方程.
解析(1)由已知可设椭圆C2的方程为+=1(a>2),
其离心率为,故=,则a=4,故椭圆C2的方程为+=1.
(2)解法一:A,B两点的坐标分别记为(x A,y A),(x B,y B),
由=2及(1)知,O,A,B三点共线且点A,B不在y轴上,
因此可设直线AB的方程为y=kx.
将y=kx代入+y2=1中,
得(1+4k2)x2=4,所以=,
将y=kx代入+=1中,
得(4+k2)x2=16,所以=,
又由=2,得=4,即=,
解得k=±1,故直线AB的方程为y=x或y=-x.
解法二:A,B两点的坐标分别记为(x A,y A),(x B,y B),
由=2及(1)知,O,A,B三点共线且点A,B不在y轴上,
因此可设直线AB的方程为y=kx.
将y=kx代入+y2=1中,
得(1+4k2)x2=4,所以=,
由=2,得=,=,
将,代入+=1中,得=1,
即4+k2=1+4k2,解得k=±1,
故直线AB的方程为y=x或y=-x.
评析本题考查了直线和椭圆的方程,考查了待定系数法.考查了运算求解能力及方程思想. 考点二椭圆的几何性质及应用
12.(2014江苏,17,14分)如图,在平面直角坐标系xOy中,F1、F2分别是椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连结BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连结F1C.
(1)若点C的坐标为,且BF2=,求椭圆的方程;
(2)若F1C⊥AB,求椭圆离心率e的值.
解析设椭圆的焦距为2c,则F1(-c,0),F2(c,0).
(1)因为B(0,b),所以BF2==a.
又BF2=,故a=.
因为点C在椭圆上,所以+=1,解得b2=1.
故所求椭圆的方程为+y2=1.
(2)因为B(0,b),F2(c,0)在直线AB上,
所以直线AB的方程为+=1.
解方程组得
所以点A的坐标为.
又AC垂直于x轴,由椭圆的对称性,可得点C的坐标为.
因为直线F1C的斜率为=,直线AB的斜率为-,且F1C⊥AB,所以·=-1.又b2=a2-c2,整理得a2=5c2.
故e2=.因此e=.
评析本题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运算求解能力.。