初中几何证明题的知识点总结
初中数学几何证明题思路方法和技巧

初中数学几何证明题思路方法和技巧
1.利用定义和性质:几何证明题通常需要用到几何图形的定义和性质,因此在做题前需要熟悉相关概念。
2. 运用相似三角形:相似三角形有着相同的角度和比例关系,
因此可以通过相似三角形来证明几何关系。
3. 利用角度和:三角形内角和为180度,四边形内角和为360度,因此可以通过计算角度和来证明几何关系。
4. 利用垂直和平行关系:垂直和平行线有着明显的几何特征,
因此可以通过垂直和平行关系来证明几何关系。
5. 利用勾股定理和正弦定理等定理:勾股定理和正弦定理等定
理是几何证明中常用的工具,可以通过运用这些定理来证明几何关系。
6. 利用反证法:反证法是数学证明中常见的方法,可以通过排
除其他可能性来证明几何关系。
7. 利用矛盾法:矛盾法也是数学证明中常见的方法,可以通过
假设相反的情况来证明几何关系。
在做几何证明题时,还需要注意以下一些技巧:
1. 画图:画图可以帮助我们更好地理解几何关系,同时也可以
在证明中提供一些线索。
2. 标记线段和角度:标记线段和角度可以使证明过程更加清晰,方便读者理解。
3. 步骤清晰:证明过程需要步骤清晰、逻辑性强,不能出现漏
洞或矛盾。
4. 注意细节:几何证明中有时需要注意一些细节问题,例如判
断角度是否是锐角或钝角,判断线段是否相等等。
综上所述,初中数学几何证明题需要掌握一定的思路方法和技巧,并且需要认真、仔细地推导证明。
江西中考简单几何证明题知识点总结

江西中考简单几何证明题知识点总结考点1:特殊的平行四边形(平行四边形)的判定及其性质1.已知:如图,在ABCD 中,点E 、F 分别在AD 、BC 上,且BE 平分ABC ,EF .求证:四边形ABFE是菱形.2.如图,四边形ABCD 是平行四边形,E ,F 分别是边AB ,CD 上的点,AE CF .证明AF CE.3.如图,已知:在ABC 中,90BAC ,延长BA 到点D ,使12AD AB,点E ,F 分别是边BC ,AC 的中点.求证:DF BE .4.如图,平行四边形ABCD 中,点E ,F 分别在线段BC ,AD 上,连接AE ,CF ,//AE CF ,BE AE AD ,求证:四边形AECF是菱形.严禁复制5.如图,在△ABC 中,AB =AC ,AE ⊥BC ,AD 平分∠FAC ,CD ⊥AD 于点D .求证:四边形AECD是矩形.6.已知:如图,在▱ABCD 中,AC 为对角线,∠BAC =∠DAC .求证:▱ABCD为菱形.7.如图,已知AE 是ABC 的角平分线,//ED AC 交AB 于点//D EF AB ,交AC 于点F .求证:四边形ADEF 为菱形.8.如图,在Rt △ABC 中,∠ACB =90°,分别以AC 、BC 为底边,向△ABC 外部作等腰△ADC 和△CEB ,点M 为AB 中点,连接MD 、ME 分别与AC 、BC 交于点F 和点G .求证四边形MFCG是矩形.9.如图,在矩形ABCD 中,E 、F 分别是BC ,AD 边上的点,且AE =CF ,若AC ⊥EF ,试判断四边形AECF 的形状,请说明理由.严禁复制10.如图,已知△ABC 中,AB =AC ,AD 是角平分线,F 为BA 延长线上的一点,AE 平分∠FAC ,DE ∥BA 交AE 于E .求证:四边形ADCE是矩形.11.如图,▱ABCD 中,对角线BD 平分∠ABC ,求证:▱ABCD是菱形.12.已知:如图,在△ABC 中,AB =AC ,点D 、E 、F 分别是△ABC 各边的中点,求证:四边形AEDF 是菱形.严禁复制考点2:全等三角形的证明1.如图,正方形ABCD 中,G 为BC 边上一点,BE ⊥AG 于E ,DF ⊥AG 于F ,连接DE .求证:△ABE ≌△DAF.2.如图,已知△ABC 的BC 边的垂直平分线DE 与∠BAC 的平分线交于点E ,EF ⊥AB 的延长线于点F ,EG ⊥AC 于点G ,求证:(1)BF =CG;2.如图,90A D ,AC BD ,AC 与BD 相交于点O ,求证:OB OC .4.如图,点,E F 分别在菱形ABCD 的边,BC CD 上,且BE DF .求证:BAE DAF.5.如图点E ,F 分别是矩形ABCD 的边AD ,AB 上一点,若AE=DC=2ED ,且EF ⊥EC 严禁复制(1)求证:点F 为AB 的中点6.如图,点A ,D ,B ,E 在同一条直线上,AD=BE ,AC=DF ,AC ∥DF ,请从图中找出一个与∠E 相等的角,并加以证明.(不再添加其他的字母与线段)7.已知:如图,点D 是ABC 内一点,AB AC ,12 .求证:AD 平分BAC .8.如图,A ,E 两点在线段DB 上,EF =BC ,DF =AC ,DA =EB .求证:EF ∥BC.9.如图,已知ABC ,点E 在边AC 上,过点B 作//BD AC ,且AE BD ,连接DE 交AB 于点F .求证:AF BF .严禁复制10如图,已知四边形ABCD 为菱形,延长AB 到点E ,使得BE AB ,过点E 作//EF AD ,交DB 的延长线于点F ,求证:DC EF.11.如图,四边形ABCD 是菱形,DE BA ,交BA 的延长线于点E ,DF BC ,交BC 的延长线于点F ,求证:DE DF.12.如图,ABC 与ABD △中,AD 与BC 相交于O 点,12 ,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC BD ,并给出证明.你添加的条件是:__________.13.如图,△ABC 与△ABD 中,AD 与BC 相交于O 点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD ,并给出证明.你添加的条件是:.证明:严禁复制14.如图,在平行四边形AFCE 中,,D B 分别是,EC AF 的中点.求证:BC AD.15.如图,在△ABC 中,已知∠ABC=30°,将△ABC 绕点B 逆时针旋转50°后得到△A 1BC 1,若∠A=100°,求证:A 1C 1∥BC.16.如图,ABCD 的对角线AC BD ,相交于点O E F ,,分别为OC OA ,的中点.求证:BE DF .17.如图,已知,OA OB OC OD ,连接,,AD BC 两线相交于点P ,连接OP 1图中有对全等三角形;2请选择其中一对全等三角形给予证明.严禁复制18.如图,一块余料ABCD ,AD ∥BC ,现进行如下操作:以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点G ,H ;再分别以点G ,H 为圆心,大于12GH 的长为半径画弧,两弧在∠ABC 内部相交于点O ,画射线BO ,交AD 于点E.(1)求证:AB=AE ;19.如图所示,已知点A ,D ,B ,E 在同一条直线上,且AD =BE ,BC =EF ,∠ABC =∠DEF ,求证:AC ∥DF .20.如图,AD 、BC 相交于点O ,AD =BC ,∠C =∠D =90°.(1)求证:△ACB ≌△BDA;20.如图,矩形ABCD 中,AB AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)求证:ADE CED ;严禁复制21.如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,且CD =CE.(1)求证:ACD BCE ;(2)若70A ,求E 的度数.22.如图,点A,D,B,E 在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC ≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题请给出一个适当的条件使它成为真命题,并加以证明.考点3:等腰三角形和等边三角形的计算1.如图,在等边三角形ABC 中,∠APD =60°,AB =6,PC =4,求CD的长.2.如图,在Rt △ABC 中,∠C =90°,∠CBA =32°,如果△ABC 绕点B 顺时针旋转至△EBD ,使点D 落在AB 边上,连接AE ,求∠EAB 的度数.严禁复制3.如图,在△ABC 中,AB =BC ,点E 为边AC 的中点,过点A 作AD ∥BC ,过点C 作CD ⊥AD 于点D ,且BE =CD .求证:△ABC为等边三角形.4.如图,已知AB AC AD ,且//AD BC .求证:2C D.5.如图,在四边形ABCD 中,AB ⊥BC ,E ,F ,M 分别是AD ,DC ,AC 的中点,连接EF ,BM ,求证:EF =BM.6.如图,已知在△ABC 中,AB=AC ,且∠BAC=40°,BD 是AC 边上的高,求∠CBD 的度数.严禁复制7.如图,在ABC 中,AB AC ,120BAC ,AB 的垂直平分线交AB 于点E ,交BC 于点F ,连接AF ,求AFC的度数.考点4:相似三角形判定及其性质1.如图,AB=AC ,∠A=36°,BD 是∠ABC 的角平分线,求证:△ABC ∽△BCD.2.如图,点D 在△ABC 的边AB 上,AC 2=AD •AB ,求证:△ACD ∽△ABC .3.如图,D 是△ABC 的BC 边上一点,E 为AD 上一点,若∠DAC=∠B ,CD=CE ,试说明△ACE ∽△BAD.4.如图,在ABCD 中,E 是DC 上一点,连接AE 、F 为AE 上一点,且BFE C .求证:ABF EAD .严禁复制5.如图,在正方形ABCD 中,点E 是AD 的中点,点F 在CD 上,且4CD DF ,连接EF 、BE .求证:ABE DEF △△∽.6.如图,在ABC 中,点E 是AC 上一点,//DE BC ,1B ,AD AE ,求证:AB BC .7.如图,在ABC 中,//DE BC ,14AD DB ,2AE ,求EC的长.8.如图,已知菱形ABCD ,点E 是AB 的中点,AF ⊥BC 于点F ,连接EF ,ED ,DF ,DE 交AF 于点G ,且AE 2=EG •ED .求证:DE ⊥EF.9.如图,在△ABC 中,四边形DBFE 是平行四边形.求证:△ADE ∽△EFC .严禁复制10.如图,在△ABC 中,AB=AC ,点P ,D 分别是BC ,AC 边上的点,且∠APD=∠B .(1)求证:△ABP ∽△PCD;考点5:平行线的判定及其性质1.如图AB ∥CD .EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°,求∠BHF 的度数.2.如图,已知BC 平分∠ACD ,且∠1=∠2,求证:AB ∥CD.3.如图,已知BC 平分∠ACD ,且∠1=∠2,求证:AB ∥CD.4.如图,四边形ABCD 中,点E ,F 别在AD ,BC 上,G 在AB 延长线上,若180D GBC ,//AD BC ,//EF DC .求证://AB EF .严禁复制5.如图,直线AB ∥CD ,MN ⊥CE 于M 点,若∠MNC =60°,求∠EMB的度数.6.如图,已知∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC ,求证:AB =AC .严禁复制制复禁严试卷第15页,共1页。
全等三角形知识点归纳

全等三角形知识点归纳全等三角形是初中数学中的重要内容,它对于解决几何问题有着关键作用。
下面就来对全等三角形的相关知识点进行一个全面的归纳。
一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
全等用符号“≌”表示,读作“全等于”。
二、全等三角形的性质1、全等三角形的对应边相等。
也就是说,如果两个三角形全等,那么它们相对应的边的长度是一样的。
2、全等三角形的对应角相等。
对应角的度数完全相同。
3、全等三角形的周长相等。
因为对应边相等,所以三条边相加的总和也相等。
4、全等三角形的面积相等。
由于形状和大小完全相同,所占的空间大小也就一样。
三、全等三角形的判定方法1、“边边边”(SSS):三边对应相等的两个三角形全等。
比如有三角形 ABC 和三角形 DEF,如果 AB = DE,BC = EF,AC = DF,那么三角形 ABC ≌三角形 DEF。
2、“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
例如在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么这两个三角形全等。
3、“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
假设三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B =∠E,那么三角形 ABC ≌三角形 DEF。
4、“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
比如三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,这两个三角形就是全等的。
5、“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
在直角三角形 ABC 和直角三角形 DEF 中,如果斜边 AC =斜边DF,直角边 BC =直角边 EF,那么这两个直角三角形全等。
四、寻找全等三角形的对应边和对应角的方法1、有公共边的,公共边是对应边。
例如三角形 ABC 和三角形 ABD,AB 就是两个三角形的公共边,是对应边。
初一数学证明题解题技巧总结

初一数学证明题解题技巧总结数学立体几何证明解题技巧1平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
2空间角的计算方法与技巧:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角:①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
②用公式计算.(3)二面角:①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.3空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。
在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。
求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
4熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。
弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。
证明全等三角形黄金总结(初中几何)

证明全等三角形黄金总结全等三角形是初中几何的重点学习内容,学习好初中几何有利于将来学习高中立体几何,更有助于日常的几何关系处理。
这里,结合本人经验,给亲爱的初中同学总结了一下比较典型的证明方法,希望可以帮到学子学习上更上一层楼。
全等三角形指两个三角形的三条边及三个角都对应相等,全等三角形共有5种基本的判定方式:1. SSS(只要两个三角形对应的三条边长度一样,即可证明两个三角形全等,简称:边边边)举例:如下图,AC=BD,AD=BC,求证△ACD与△BDC全等。
证明:AC=BD,AD=BC,CD=CD(SSS).∴△ACD≌△BDC.2. SAS(只要两个三角形的两条边对应相等,且两条边的夹角也相等,即可证明两个三角形全等,简称:边角边)举例:如下图,AB平分∠CAD,AC=AD,求证△ACB≌△ADB全等。
证明:∵AB平分∠CAD.∴∠CAB=∠BAD.∵AC=AD,∠CAB=∠BAD,AB=AB(SAS).∴△ACB≌△ADB.3. ASA(只要两个三角形的两个角对应相等,且两个角夹的边也对应相等,即可证明两个三角形全等。
简称:角边角)举例:如下图,AB=AC,∠B=∠C,求证△ABE≌△ACD.证明:∵∠A=∠A,AB=AC,∠B=∠C(ASA).∴△ABE≌△ACD.4. AAS(只要两个三角形的两个角对应相等,且其中一个相等的角的侧边也对应相等,即可证明两个三角形全等。
简称:角角边)。
注意:不要与ASA(角边角)搞混。
举例:如下图,AB=DE,∠A=∠E,求证△ABC≌△EDC。
证明:∵∠A=∠E,∠ACB=∠DCE,AB=DE (AAS).∴△ABC≌△EDC.5. HL(只要两个直角三角形的一条斜边和一条直角边对应相等,即可证明两个三角形全等。
简称:斜边、直角边)(Rt:直角三角形)举例:如下图,Rt△ADC与Rt△BCD,AC=BD,求证△ADC≌t△BCD.证明:AC=BD,CD=CD(HL).∴△ADC≌t△BCD.注意事项:SSS、SAS、ASA、AAS可用于任意三角形;HL只限于直角三角形.注意SSA、AAA不能判定全等三角形.几何题要多加练习,熟练掌握以上5种方法即可破解大部分初中几何难题。
精彩初中几何最值问题全总结

一、基本图形余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形。
例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定。
例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。
此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。
例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上的动点,在△A'B'C绕点C顺时针旋转过程中,点F的对应点是F',求线段EF'长度的最大值与最小值的差。
初中数学知识归纳几何证明的常见题型

初中数学知识归纳几何证明的常见题型数学是一门基础学科,几何证明作为数学的重要组成部分,对于学生的思维能力和逻辑思维起着重要的培养作用。
初中数学中,几何证明是一个重要的内容,它涉及到许多常见的题型。
本文将对初中数学中常见的几何证明题型进行归纳总结。
一、等腰三角形的性质证明等腰三角形是指两边长度相等的三角形。
在等腰三角形的证明中,常见的题型有:1. 等腰三角形的顶角相等;2. 等腰三角形的底角相等;3. 一条边上的高是另一条边上的高。
在证明等腰三角形的性质时,可以利用等角或等边的性质进行推导和证明。
例如,对于第一个题型,我们可以先证明两边相等,再利用两边同角或同边同角的性质推导出顶角相等。
二、全等三角形的证明全等三角形是指三角形的对应边和对应角相等。
在全等三角形的证明中,常见的题型有:1. 全等三角形的三边相等;2. 全等三角形的两角相等;3. 全等三角形的对应边和对应角相等。
对于全等三角形的证明,常用的方法有SAS、ASA、SSS等。
例如,对于第一个题型,我们可以利用SAS法则,先证明两边相等,再证明夹角相等。
三、垂直证明垂直是指两条直线或线段相交成90度的关系。
在垂直证明中,常见的题型有:1. 两条直线相互垂直;2. 直线和平面垂直;3. 线段和平面垂直。
对于垂直的证明,可以利用垂直两边、垂直性质和垂直线段的性质进行推导。
例如,对于第一个题型,我们可以利用垂直两边的性质,证明两条直线相互垂直。
四、平行证明平行是指两条直线在同一个平面上没有交点的关系。
在平行证明中,常见的题型有:1. 两条直线相互平行;2. 直线和平面平行;3. 平行线段和平面平行。
对于平行的证明,可以利用平行线内或外错和平行线夹角的性质进行推导。
例如,对于第一个题型,我们可以利用平行线内错角的性质,证明两条直线相互平行。
五、比例证明比例是指两个数或者两个量之间的大小关系。
在比例证明中,常见的题型有:1. 三角形的边比例;2. 三角形的面积比例;3. 线段的比例。
(经典)正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、 余弦定理,并能解决一些简单的三角形胸怀问题.2.能够运用正弦定理、 余弦定理等知识和方法解决一些与丈量和几何计算相关的实质问题.主要考察相关定理的应用、三角恒等变换的能力、运算能力及转变的数学思想.解三角形经常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一同求距离、高度以及角度等问题,且多以应用题的形式出现.1. 正弦定理(1) 正弦定理:在一个三角形中, 各边和它所对角的正弦的比相等, 即 .其 中 R 是三角形外接圆的半径.(2) 正弦定理的其余形式:, c① a = R A , b =2 sin=;a②sin A =2R , sin B =,sin C = ;③a ∶b ∶c =______________________.2. 余弦定理——王彦文 青铜峡一中(1) 余弦定理:三角形中任何一边的平方等于其余两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=,b 2=,c 2=.,即为勾若令 C =°,则 c 2=90股定理.(2) 余 弦 定 理 的 变 形 : cosA= , cosB = ,cosC = .若 C 为锐角,则 cosC>0,即 a 2+ b 2 ______c 2;若 C 为钝角,则 cosC<0,即 a 2+b 2______c 2. 故由 a 2 +b 2 与 c 2 值的大小比较,能够判断 C 为锐角、钝角或直角.(3) 正、余弦定理的一个重要作用是实现边角____________,余弦定理亦能够写成 sin 2A= sin 2B + sin 2C - 2sin Bsin CcosA ,近似地,sin 2B = ____________ ; sin 2C =__________________.注意式中隐含条件 A + B +C =π.3. 解斜三角形的种类(1) 已知三角形的随意两个角与一边,用____________定理.只有一解.(2) 已知三角形的随意两边与此中一边的对 角 , 用 ____________ 定 理 , 可 能 有___________________.如在△ ABC 中,已知 a , b 和 A 时,解的状况如表:A 为钝角A 为锐角或直角图 形关 a = b A aa ≥b a b 系 b A sin <b> 式 sin <解 的 ① ② ③ ④ 个 数(3) 已知三边,用 ____________定理.有1解时,只有一解.(4) 已知两边及夹角,用 ____________定理,必有一解.4. 三角形中的常用公式或变式(1) 三角形面积公式 S △= == ____________ = ____________ =____________.此中 R ,r 分别为三角形外接圆、内切圆半径.,(2) A + B + C =π,则 A =__________A= __________ , 从 而sin A =2____________,cosA = ____________ , tan A =____________;A Asin 2= __________, cos 2=__________,Atan 2 = ________.tan A + tan B + tan C =__________.(3) 若三角形三边 a ,b ,c 成等差数列,则b =____________? 2sin B =____________?2B A -C A + C A - C A2sin 2= cos2 ? 2cos 2 = cos 2 ? tan 2C 1tan 2=3.【自查自纠】. a bc R1(1)sin A = sin B =sin C = 2R BRC ② bc(2) ①2 si2 siRR2 2③ s in A ∶sin B ∶sin C2. (1) b 2+c 2-2bccosA c 2+a 2- 2cacosB a 2 +b 2-2abcosC a 2+ b 2b 2 +c 2-a 2c 2+a 2-b 2a 2 +b 2-c 2>(2)2ca2ab2bc<(3) 互化sin 2C +sin 2A -2sin Csin AcosBsin 2A + sin 2B -2sin Asin BcosC3.(1) 正弦 (2) 正弦 一解、两解或无解①一解 ②二解 ③一解 ④一解 (3) 余弦 (4) 余弦.11 1 abc(1) ab sin C bc s inA ac s in B2 22R412( a +b +c) rπ B +C(2) π- ( B + C)2 - 2sin( B +C-cos( B +C) )- tan( B + C cos B +CsinB + C) 2 21 B +Ctan 2A B C (3)a + csin A + sin C tan tan tan2在△ABC中, A B 是A B 的()>sin >sinA.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选 C.在△ABC中,已知 b=, c=,B=°,则61030解此三角形的结果有 ()A.无解B.一解C.两解D.一解或两解解:由正弦定理知 sin C=c·sin B5b=6,又由c>b>csin B知, C有两解.也可依已知条件,画出△ ABC,由图知有两解.应选 C.( 2013·陕西 ) 设△ ABC的内角 A, B, C所对的边分别为 a, b, c,若b cos C+ c cos B=a sin A,则△ ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确立C+解:由已知和正弦定理可得BC B =A· A ,即sin cos=sin sin sin sin( B +C cos A)sinA A,亦即sinA=A因为Aπ,sin sin sin.0< <π所以 sin A=1,所以 A= 2.所以三角形为直角三角形.应选.B( 2012·陕西 ) 在△ ABC中,角 A,B,C 所对的π边分别为 a,b,c. 若 a=2,B=6,c=23,则 b=________.解:由余弦定理知b2=a2+c2- 2accosB=π222 +( 23)-2×2×2 3×cos 6= 4, b= 2.在△ABC中,角A,B,C 所对的边分别为a,b,c,若 a= 2,b=2,sin B+cosB= 2,则角 A 的大小为 ________.解:∵ sin B+ cosB=2,ππ∴2sin B+4= 2,即 sin B+4=1.πππ又∵ B∈(0 ,π ) ,∴ B+4=2, B=4 .a b依据正弦定理sin A=sin B,可得sin A=asin B1=.b2ππ∵a<b,∴ A<B. ∴ A=6 . 故填6 .种类一正弦定理的应用△ABC的内角A,B,C的对边分别为a,b,c,已知 A- C=90°, a+ c= 2b,求 C.解:由 a+c= b 及正弦定理可得sinA2+s in C= 2sin B.又因为 A- C=90°, B=180°- ( A+ C) ,故 cosC+ sin C= sin A+sin C= 2sin( A+ C) =2sin(90 °+ 2C) = 2sin2(45 °+ C) .∴2 sin(45° +C=2 2 sin(45° +)C)cos(45 °+ C) ,41即 cos(45 °+ C) =2.又∵ 0°< C<90°,∴ 45°+ C=60°,C =15°.【评析】利用正弦定理将边边关系转变为角角关系,这是解本题的重点.( 2012·江西 ) 在△ ABC中,角 A,B,C 的对边分别为a, b,c已知 A=π,bsinπ+C -.44c sinπ+B =a4.π(1)求证: B-C=2;(2)若 a= 2,求△ ABC的面积.解:(1)证明:对bπ+C-sin4csin π+ B= a应用正弦定理得4B π+ C -sinCπ+B =sinA,sin sin4sin422即sin B2 sin C+2 cosC-sinC222,整理得 B C2 sin B+2 cosB =2sin cos -s in CcosB= 1,即 sin ( B-C)=1.3ππ因为 B,C∈ 0,4,∴ B-C=2 .3π,又由 (1)知 B-C(2) ∵ B+ C=π- A=4π=2,5ππ∴B=8,C=8.∵a=2,A=πb=,∴由正弦定理知4a Bπa Cπsin5sinsin A= 2sin8,c=sin A=2sin 8 .115ππ∴S△ABC=2bcsin A=2×2sin8×2sin 8×225ππππ2= 2sin8 sin 8= 2cos8 sin8=2π 1sin 4=2.种类二 余弦定理的应用1 3 3∴S △ABC =2acsin B = 4 .【评析】①依据所给等式的构造特色利用余弦定理将角化边进行变形是快速解答本题的 重点.②娴熟运用余弦定理及其推论,同时还 要注意整体思想、方程思想在解题过程中的运 用.在△ ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,cosBb且cosC =- 2a +c .(1) 求 B 的大小;(2) 若 b = 13,a +c =4,求△ ABC 的面积.a 2+ c 2-b 2, 解:(1) 由余弦定理知, cosB =ac2cosC = a 2+b 2- c 2cosB b 2ab ,将上式代入cos C =- a +c2 得a 2 +c 2-b 2 abb2=- a +c , ac·a 2+b 2-c22整理得 a 2+c 2- b 2=- ac.a 2+c 2-b 2 -ac 1 ∴cosB = ac = ac =- .22 22∵B 为三角形的内角,∴ B = 3π.(2) 将 b = 13,a +c =4,B =23π 代入 b 2=a 2+ c 2-2accosB ,得 13=42- 2ac -2accos 2 3π,解得 ac =3.若△ ABC 的内角 A ,B ,C 所对的边 a ,b ,c 知足( a +b) 2- c 2=4,且 C =60°,则 ab 的值为 ( )4A. 3B .8-4 3C . 12D.3解:由余弦定理得 c 2= a 2 +b 2-2abcosC =a 2+b 2-ab ,代入 ( a + b) 2- c 2 =4 中得 ( a + b) 24- ( a 2+b 2-ab) = 4,即 3ab = 4,∴ ab =3. 应选A.6种类三正、余弦定理的综合应用以用余弦定理化边后用不等式求最值.( 2013·全国新课标Ⅱ ) △ ABC的内角A、B、 C的对边分别为 a,b,c,已知 a=bcosC+ csin B.(1)求 B;(2)若 b=2,求△ ABC面积的最大值.解: (1) 由已知及正弦定理得 sin A=sin BcosC+ sin Csin B. ①又 A=π- ( B+ C) ,故sin A = sin( B + C) = sin BcosC +cosBsin C. ②由①,②和 C∈(0 ,π ) 得 sin B= cosB.π又 B∈(0 ,π ) ,所以 B=4 .12(2) △ ABC的面积 S=2acsin B=4 ac.由已知及余弦定理得 4 = a2+ c2-π2accos 4 .又 a2+ c2≥2ac,故 ac≤4,2- 2当且仅当 a=c 时,等号成立.所以△ ABC面积的最大值为2+1.【评析】(1) 化边为角与和角或差角公式的正向或反向多次联用是常用的技巧; (2) 已知边及其对角求三角形面积最值是高考取考过多次的问题,既可用三角函数求最值,也可( 2013·山东 ) 设△ ABC的内角 A,B,C 所对的边分别为a,b,c,且 a+ c= 6, b= 2, cosB7=9.(1)求 a,c 的值;(2)求 sin( A- B) 的值.解: (1) 由余弦定理 b2=a2+ c2-2accosB,得 b2=( a+c) 2-2ac(1 +cosB) ,又 a+ c =6,b=2,7cosB=9,所以 ac=9,解得 a=3,c=3.242(2) 在△ ABC中, sin B= 1-cos B=9 ,asin B 22由正弦定理得 sin A=b= 3 .因为 a=c,所以 A 为锐角,21所以 cosA=1-sin A=3.所以 sin( A-B) =sin AcosB- cosAsin B=10 227.种类四 判断三角形的形状后进行三角函数式的恒等变形,找出角之间的 关系;或将角都化成边,而后进行代数恒等变 形,可一题多解,多角度思虑问题,进而达到 对知识的娴熟掌握.在三角形 ABC 中,若 tan A ∶tan B =a 2∶b 2,试判断三角形 ABC 的形状.a 2 sin 2A解法一:由正弦定理,得 b 2=sin 2B , tan A sin 2 A所以 tan B =sin 2 B ,A Bsin 2AA = Bsin cos2 ,即sin2所以cosAsin B =sinB sin2 . 所以 A = B ,或2 A +B =π,所以 A =B2 22π或 A + B = 2 ,进而△ ABC 是等腰三角形或直角三角形.a2sin 2A解法二:由正弦定理,得 b 2= sin 2B ,所以tan A sin 2A cosB sin Atan B =sin 2B,所以 cosA = sin B,再由正、余弦a 2+ c 2 -b 2aca a 2- b2c 2-定理,得 2 22 2 )( b + c -a = b ,化简得 (2bca 2-b 2 )= ,即 a 2= b 2 或c 2= a 2 +b 2. 进而△ ABC 是等腰三角形或直角三角形.【评析】由已知条件,可先将切化弦,再联合正弦定理,将该恒等式的边都化为角,然( 2012·上海 ) 在 △ABC 中 , 若 sin 2A +sin 2B 2C ,则△ ABC 的形状是 ( )<sin A .锐角三角形 B .直角三角形C .钝角三角形D .不可以确立解:在△ ABC 中,∵ sin 2A +sin 2 B<sin 2C ,∴由正弦定理知 a 2 +b 2<c 2. ∴cos C = a 2+b 2-c 22ab<0,即∠ C 为钝角,△ ABC 为钝角三角形. 应选 C.种类五 解三角形应用举例某港口 O 要将一件重要物件用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口 O北偏西 30°且与该港口相距20 n mile的A 处,并以 30 n mile/h的航行速度沿正东方向匀速行驶.假定该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过 t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假定小艇的最高航行速度只好达到 30 n mile/h ,试设计航行方案 ( 即确立航行方向和航行速度的大小 ) ,使得小艇能以最短时间与轮船相遇,并说明原因.解法一:(1) 设相遇时小艇航行的距离为 S n mile ,则S=900t 2+400-2·30t ·20·cos(90°- 30°)=t2-t +400=900600900 t -123+300,1103故当 t =3时,S min=103,此时 v=1=3 303.即小艇以 30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在 B 处相遇,则v2 t 2=400+t 2-900 2·20·30t ·cos(90 °- 30°) ,2600400故 v = 900-t+t2.v≤,∴6004002-+≤,即∵0<30900t t900t3-t≤0,22解得 t ≥3. 又 t =3时,v=30. 故 v= 30 时,2t 获得最小值,且最小值等于3.此时,在△ OAB中,有 OA=OB=AB=20,故可设计航行方案以下:航行方向为北偏东30°,航行速度为 30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1) 若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C处相遇.在 Rt△OAC中, OC=20cos30°= 10 3,AC=20sin30 °= 10.又 AC=30t ,OC=vt ,101103此时,轮船航行时间 t =30=3,v=1=330 3.即小艇以 30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)假定 v= 30 时,小艇能以最短时间与轮船在 D处相遇,此时 AD=DO=30t .又∠ OAD=60°,所以 AD= DO=OA=20,2解得 t =3.据此可设计航行方案以下:航行方向为北偏东 30°,航行速度的大小为30 n mile/h. 这样,小艇能以最短时间与轮船相遇.证明以下:如图,由 (1) 得 OC=103, AC=10,故 OC>AC,且关于线段 AC上随意点 P,有OP≥ OC>AC.而小艇的最高航行速度只好达到30 n mile/h ,故小艇与轮船不行能在 A,C 之间 ( 包括 C) 的随意地点相遇.设∠ COD=θ (0 °<θ<90°) ,则在 Rt△COD 中,103CD=103tan θ, OD=cosθ .因为从出发到相遇,轮船与小艇所需要的10+10 3tan θ和 t =103,时间分别为 t =30vcosθ10+10 3tan θ10 3所以30=vcosθ.153由此可得,v=sin (θ+30°).3又 v≤30,故 sin( θ+30°) ≥2,进而,30°≤ θ<90°.因为θ=30°时, tan θ获得最小值,且3最小值为3 .10+103tan θ于是,当θ=30°时,t =302获得最小值,且最小值为3.【评析】①这是一道相关解三角形的实质应用题,解题的重点是把实质问题抽象成纯数学识题,依据题目供给的信息,找出三角形中的数目关系,而后利用正、余弦定理求解.②解三角形的方法在实质问题中,有宽泛的应用.在物理学中,相关向量的计算也要用到解三角形的方法.最近几年的高考取我们发现以解三角形为背景的应用题开始成为热门问题之一.③不论是什么种类的三角应用问题,解决的重点都是充足理解题意,将问题中的语言表达弄理解,画出帮助剖析问题的草图,再将其归纳为属于哪种可解的三角形.④本题用几何方法求解也较简易.10( 2012·武汉 5月模拟 ) 如图,渔船甲位于岛屿A的南偏西 60°方向的 B 处,且与岛屿 A 相距 12 海里,渔船乙以 10 海里 / 小时的速度从岛屿 A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,恰好用2 小时追上.(1)求渔船甲的速度;(2)求 sin α的值.解: (1)依题意,∠BAC=°,A B=,12012 AC=× =2,在△ ABC中,由余弦定理知 BC 1022022∠ BAC=2+2-=AB+ AC- AB·AC·12202cos2×12×20×cos120°= 784,BC= 28.所以渔船甲的速度为 v=28=14( 海里 / 小2时) .(2)在△ ABC中, AB=12,∠ BAC=120°,BC= 28,AB ∠BCA=α,由正弦定理得sinα=BC12=28,进而 sin α=,即sin120 °sin ∠ BAC sin α12sin120 °3328=14.1.已知两边及此中一边的对角解三角形时,要注意解的状况,提防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转变为角角关系 ( 注意应用 A+ B+ C=π 这个结论 ) 或边边关系,再用三角变换或代数式的恒等变形( 如因式分解、配方等 ) 求解,注意等式两边的公因式不要约掉,要移项提取公因式,不然有可能遗漏一种形状.3.要熟记一些常有结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与引诱公式联合产生的结论:sin A= sin( BA B+C +C) ,cosA=- cos( B+ C) ,sin 2=cos 2,sin2 A=- sin2( B+C) ,cos2A= cos2( B+C) 等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)剖析:理解题意,分清已知与未知,画出表示图;(2)建模:依据已知条件与求解目标,把已11知量与求解量尽量集中到一个三角形中,成立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)查验:查验上述所求得的解能否切合实际意义,进而得出实质问题的解.5.正、余弦定理是应用极为宽泛的两个定理,它将三角形的边和角有机地联系起来,进而使三角与几何产生联系,为求与三角形相关的量( 如面积、外接圆、内切圆半径和面积等 ) 供给了理论依照,也是判断三角形形状、证明三角形中相关等式的重要依照.主要方法有:化角法,化边法,面积法,运用初等几何法.注意领会此中蕴涵的函数与方程思想、等价转变思想及分类议论思想.12。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何证明题的知识点总结
知识点:
一、线段垂直平分线(中垂线)性质定理及其逆定理:
定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
M
P
A B
N
二、角平分线的性质定理及其逆定理:
定理:在角的平分线上的点到这个角两边的距离相等。
逆定理:在一个角的内部(包括顶点)且到这个角两边距离相等的点,定在这个角的平分线上。
三、相交线、平行线
1、对顶角相等
2、平行线的判定
(1)同位角相等,两直线平行
(2)内错角相等,两直线平行
(3)同旁内角互补,两直线平行
3、平行线的性质
(1)两直线平行,同位角相等
(2)两直线平行,内错角相等
(3)两直线平行,同旁内角互补
(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行
四、三角形
1、等腰三角形
(1)等腰三角形的性质:等腰三角形的两个底角相等
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合 等腰三角形是轴对称图形,它的对称轴是顶角平分线所在的直线
(2)等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等,这个三角形就是等腰三角形(简称为“等角对等边”)
2、的性质定理:
(1)
(2)在中,斜边上的中线等于斜边的一半。
推论:
(1)在中,如果一个锐角等于30度,那么这个角所对的边等于斜边的一半。
(2)在中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30度。
2、勾股定理
在直角三角形中,两条直角边的平方和等于斜边的平方即:c b a 2
22=+ 3、三角形中位线定理:三角形两边中点连线平行于第三边,且等于第三遍的一半。
4、全等三角形的判定定理
(1)三组对应边分别相等的两个三角形全等(SSS)
(2)有两边及其夹角对应相等的两个三角形全等(SAS)
(3)有两角及其夹边对应相等的两个三角形全等(ASA)
(4)有两角及一角的对边对应相等的两个三角形全等(AAS)
(5)直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)
5、全等三角形的性质
(1)全等三角形的对应角相等
(2)全等三角形的对应边、对应中线、对应高、对应角平分线相等
五、平行四边形
定义:两组对边分别平行的四边形叫做平行四边形
性质定理:(1)平行四边形的对边相等
(推论:夹在两条平行线间的平行线段相等、平行线间的距离处处相等)
(2)平行四边形的对角相等
(3)平行四边形的两条对角线互相平分
(4)平行四边形是中心对称图形,对称中心是两条对角线的交点
判定定理:(1)定义:两组对边分别平行的四边形是平行四边形.
(2)定理1:两组对角分别相等的四边形是平行四边形.
(3)定理2:两组对边分别相等的四边形是平行四边形.
(4)定理3:对角线互相平分的四边形是平行四边形.
(5)定理4:一组对边平行且相等的四边形是平行四边形.
六、矩形
定义:有一个角是直角的平行四边形叫做矩形
性质:(1)矩形的四个角都是直角
(2)矩形的对角线相等
判定定理:(1)有三个内角是直角的四边形是矩形
(2)对角线相等的平行四边形是矩形
七、菱形
定义:有一组邻边相等的平行四边形叫做菱形
性质:(1)菱形的四条边都相等
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角
判定定理:(1)四边都相等的四边形是菱形.
(2)对角线互相垂直的平行四边形是菱形.
八、正方形
定义:有一组邻边相等并且有一个内角是直角的平行四边形叫做正方形
性质:(1)正方形的四个角都是直角,四条边都相等.
(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.判定定理:(1)判定一个四边形为正方形主要根据定义,途径有两种:
①先证它是矩形,再证它有一组邻边相等.
②先证它是菱形,再证它有一个角为直角.
(2)判定正方形的一般顺序:
①先证明它是平行四边形;
②再证明它是菱形(或矩形);
③最后证明它是矩形(或菱形)
九、(等腰)梯形
梯形定义:一组对边平行而另一组对边不平行的四边形叫做梯形
等腰梯形性质:(1)等腰梯形两腰相等、两底平行.
(2)等腰梯形在同一底上的两个角相等.
(3)等腰梯形的对角线相等.
等腰梯形判定定理:(1)两腰相等的梯形是等腰梯形.
(2)在同一底上的两个角相等的梯形是等腰梯形.
(3)对角线相等的梯形是等腰梯形.
梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半。