立足数学核心素养 分析中考压轴题

合集下载

数学中考数学压轴题知识点及练习题附解析

数学中考数学压轴题知识点及练习题附解析

一、中考数学压轴题1.已知:菱形ABCD,点E 在线段BC 上,连接DE,点F 在线段AB 上,连接CF、DF, CF 与DE 交于点G,将菱形ABCD 沿DF 翻折,点A 恰好落在点G 上.(1)求证:CD=CF;(2)设∠CED= x,∠DCF= y,求y 与x 的函数关系式;(不要求写出自变量的取值范围)(3)在(2)的条件下,当x=45°时,以CD 为底边作等腰△CDK,顶角顶点K 在菱形ABCD 的内部,连接GK,若GK∥CD,CD=4 时,求线段KG 的长.2.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=1.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=23,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(23,23),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.3.如图,AB∥CD,定点E,F分别在直线AB,CD上,平行线AB,CD之间有一动点P.(1)如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为.(2)如图3,当∠EPF=90°,F P平分∠EFC时,求证:EP平分∠AEF;(3)如图4,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.①若∠EPF=60°,则∠EQF=.②猜想∠EPF与∠EQF的数量关系,并说明理由;4.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:①个位上的数字是千位上的数字的两倍;②百位上的数字与十位上的数字之和是12的倍数;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.例如:1423于4132为“相关和平数”求证:任意的两个“相关和平数”之和是1111的倍数.5.如果关于x 的一元二次方程20ax bx c ++=有两个不相等的实数根,且其中一个根为另一个根的一半,则称这样的方程为“半等分根方程”.(1)①方程2280x x --= 半等分根方程(填“是”或“不是”);②若(1)()0x mx n -+=是半等分根方程,则代数式2252m mn n ++= ; (2)若点(,)p q 在反比例函数8x y =的图象上,则关于x 的方程260px x q -+=是半等分根方程吗?并说明理由; (3)如果方程20ax bx c ++=是半等分根方程,且相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上,试说明方程20ax bx c ++=的一个根为53. 6.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由;②若12,(33)2ADH a S ==+,求sin GAB ∠的值.7.在平面直角坐标系xOy 中,对于点A 和图形M ,若图形M 上存在两点P ,Q ,使得3AP AQ =,则称点A 是图形M 的“倍增点”.(1)若图形M 为线段BC ,其中点()2,0B -,点()2,0C ,则下列三个点()1,2D -,()1,1E -,()0,2F 是线段BC 的倍增点的是_____________;(2)若O 的半径为4,直线l :2y x =-+,求直线l 上O 倍增点的横坐标的取值范围;(3)设直线1y x =-+与两坐标轴分别交于G ,H ,OT 的半径为4,圆心T 是x 轴上的动点,若线段GH 上存在T 的倍增点,直接写出圆心T 的横坐标的取值范围.8.∠MON=90°,点A ,B 分别在OM 、ON 上运动(不与点O 重合).(1)如图①,AE 、BE 分别是∠BAO 和∠ABO 的平分线,随着点A 、点B 的运动,∠AEB= °(2)如图②,若BC 是∠ABN 的平分线,BC 的反向延长线与∠OAB 的平分线交于点D ①若∠BAO=60°,则∠D= °.②随着点A ,B 的运动,∠D 的大小会变吗?如果不会,求∠D 的度数;如果会,请说明理由.(3)如图③,延长MO 至Q ,延长BA 至G ,已知∠BAO ,∠OAG 的平分线与∠BOQ 的平分线及其延长线相交于点E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,求∠ABO 的度数.9.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC =-,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE n BG m =,设AB=33,试探究点E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.10.如图,直角三角形ABC ∆中,90460ACB AC A ∠︒=∠︒=,,=,O 为BC 中点,将ABC ∆绕O 点旋转180︒得到DCB ∆.一动点P 从A 出发,以每秒1的速度沿A B D →→的路线匀速运动,过点P 作直线PM ,使PM AC ⊥.(1)当点P 运动2秒时,另一动点Q 也从A 出发沿A B D →→的路线运动,且在AB 上以每秒1的速度匀速运动,在BD 上以每秒2的速度匀速运动,过Q 作直线QN 使//QN PM ,设点Q 的运动时间为t 秒,(0<t<10)直线PM 与QN 截四边形ABDC 所得图形的面积为S ,求S 关于t 的函数关系式,并求出S 的最大值.(2)当点P 开始运动的同时,另一动点R 从B 处出发沿B C D →→的路线运动,且在BC 上以每秒3的速度匀速运动,在CD 上以每秒2的速度匀度运动,是否存在这样的P R 、,使BPR ∆为等腰三角形?若存在,直接写出点P 运动的时间m 的值,若不存在请说明理由.11.问题背景:如图(1),ABC 内接于O ,过点A 作O 的切线l ,在l 上任取一个不同于点A 的点P ,连接PB PC 、,比较BPC ∠与BAC ∠的大小,并说明理由.问题解决:如图(2),A (0,2)、B (0,4),在x 轴正半轴上是否存在一点P ,使得cos APB ∠最小?若存在,求出点P 的坐标;若不存在,请说明理由.拓展应用:如图(3),四边形ABCD 中,//AB CD ,AD CD ⊥于D ,E 是AB 上一点,AE AD =,P 是DE 右侧四边形ABCD 内一点,若8AB =,11CD =,tan 2C =,9DEP S =,求sin APB ∠的最大值.12.如图所示,在平面直角坐标系中,点(),C m m 在一三象限角平分线上,点(),0B n 在x 轴上,且m=2n -+2n -+4,点A 在y 轴的正半轴上;四边形AOBC 的面积为6 (1)求点A 的坐标;(2)P 为AB 延长线上一点,//PQ OC ,交CB 延长线于Q ,探究OAP ∠、ABQ ∠、Q ∠的数量关系并说明理由;(3)作AD 平行CB 交CO 延长线于D ,BE 平分CBx ∠,BE 反向延长线交CO 延长线于,若设ADO α∠=,F β∠=,试求2αβ+的值.13.如图,矩形ABCD 中,AD >AB ,连接AC ,将线段AC 绕点A 顺时针旋转90∘得到线段AE ,平移线段AE 得到线段DF (点A 与点D 对应,点E 与点F 对应),连接BF ,分别交直线AD ,AC 于点G ,M ,连接EF .(1) 依题意补全图形;(2) 求证:EG ⊥AD ;(3) 连接EC ,交BF 于点N ,若AB =2,BC =4,设MB =a ,NF =b ,试比较()()11a b ++与9+6214.在菱形ABCD 中,点P 是对角线BD 上一点,点M 在CB 的延长线上,且PC PM =, 连接PA .()1如图①,求证:PA PM =;()2如图②,连接,AM PM 与AB 交于点,120O ADC ︒∠=求证 =PC AM ;()3连接AM ,当 90ADC ︒∠=时,PC 与AM 的数量关系是15.如图,抛物线2(40) y ax bx a =++≠与x 轴交于()() 3,0, 4,0A C -两点,与y 轴交于点B .()1求这条抛物线的顶点坐标;()2已知AD AB =(点D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动:同时另一个点Q 以某一速度从点B 沿线段BC 移动,经过()t s 的移动,线段PQ 被BD 垂直平分,求t 的值;()3在()2的情况下,抛物线的对称轴上是否存在一点M ,使MQ MC +的值最小?若存在,请求出点M 的坐标:若不存在,请说明理由.16.在平行四边形ABCD 中,60B ∠=︒,点E ,F 分别在边AB ,AD 上,且60ECF ∠=︒.(1)如图1,若AB BC =,求证:AE AF BC +=;(2)如图2,若4AB BC ==,且点E 为AB 的中点,连接BF 交CE 于点M ,求FM ;(3)如图3,若AB kBC =,探究线段BE 、DF 、BC 三之间的数量关系,说明理由.17.已知抛物线y=﹣x 2﹣2x+3交x 轴于点A 、C (点A 在点C 左侧),交y 轴于点B .(1)求A ,B ,C 三点坐标;(2)如图1,点D 为AC 中点,点E 在线段BD 上,且BE=2DE ,连接CE 并延长交抛物线于点M ,求点M 坐标;(3)如图2,将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,点P 为△ACG 内一点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在它们的左侧作等边△APR 和等边△AGQ ,求PA+PC+PG 的最小值,并求当PA+PC+PG 取得最小值时点P 的坐标(直接写出结果即可).18.已知:矩形ABCD 内接于⊙O ,连接 BD ,点E 在⊙O 上,连接 BE 交 AD 于点F ,∠BDC+45°=∠BFD ,连接ED .(1)如图 1,求证:∠EBD=∠EDB ;(2)如图2,点G 是 AB 上一点,过点G 作 AB 的垂线分别交BE 和 BD 于点H 和点K ,若HK=BG+AF ,求证:AB=KG ;(3)如图 3,在(2)的条件下,⊙O 上有一点N ,连接 CN 分别交BD 和 AD 于10点 M 和点 P ,连接 OP ,∠APO=∠CPO ,若 MD=8,MC= 3,求线段 GB 的长.19.已知:AB 为⊙O 的直径,点C 为弧AB 的中点,点D 为⊙O 上一点,连接CD ,交AB 于点M ,AE 为∠DAM 的平分线,交CD 于点E .(1)如图1,连接BE ,若∠ACD=22°,求∠MBE 的度数;(2) 如图2,连接DO 并延长,交⊙O 于点F ,连接AF ,交CD 于点N .①求证:DM 2+CN 2=CM 2;②如图3,当AD=1,AB=10时,请直接写出....线段ME 的长. 20.如图,抛物线25y ax bx =+-交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,且OB OC =,()2,0A -.(1)求抛物线的解析式;(2)点P 为第四象限抛物线上一点,过点P 作y 轴的平行线交BC 于点D ,设P 点横坐标为t ,线段PD 的长度为d ,求d 与t 的函数关系式.(不要求写出t 的取值范围) (3)在(2)的条件下,F 为BP 延长线上一点,且45PFC ∠=︒,连接OF 、CP 、PB ,FOB ∆的面积为3600169,求PBC ∆的面积. 21.如图,已知ABF 为等腰直角三角形,90BAF ∠=︒,D 、C 为直线AF 上两点,且满足DF AC =,连接BD 、BC ,过点A 作AE BD ⊥于点E ,交BF 于点H ,连接CH .(1)若30BAE ∠=︒,1BE =,求DE 的长;(2)若点M 是线段BF 上的动点,连AM 并延长交BD 于N ,当M 在线段BF 的什么位置上时,AH BN =?请说明理由;(3)在(2)的结论下,判断线段CH 、AH 、BD 的数量关系.请说明理由.22.如图1,以AB 为直径作⊙O ,点C 是直径AB 上方半圆上的一点,连结AC ,BC ,过点C 作∠ACB 的平分线交⊙O 于点D ,过点D 作AB 的平行线交CB 的延长线于点E .(1)如图1,连结AD ,求证:∠ADC =∠DEC .(2)若⊙O 的半径为5,求CA •CE 的最大值.(3)如图2,连结AE ,设tan ∠ABC =x ,tan ∠AEC =y ,①求y 关于x 的函数解析式;②若CB BE =45,求y 的值. 23.发现来源于探究.小亮进行数学探究活动,作边长为a 的正方形ABCD 和边长为b 的正方形AEFG (a>b ),开始时,点E 在AB 上,如图1.将正方形AEFG 绕点A 逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).24.如图,二次函数23y x x m =-++的图象与x 轴的一个交点为(4,0)B ,另一个交点为A ,且与y 轴相交于C 点(1)则m =_________;C 点坐标为___________;(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由.(3)P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t =________时,四边形PBQC 的面积最大.25.附加题:在平面直角坐标系中,抛物线21y ax a =-与y 轴交于点A ,点A 关于x 轴的对称点为点B ,(1)求抛物线的对称轴;(2)求点B 坐标(用含a 的式子表示);(3)已知点11,P a ⎛⎫ ⎪⎝⎭,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.D解析:(1)见解析;(2)y=1603x +;(2)2 【解析】【分析】(1)根据翻折的性质得△DFG ≌△DFA ,从而推导得出∠FDC=∠DFG ,进而得到CF=DC ; (2)在等腰△DGC 和等腰△CFD 中,可用y 表示出∠GDC 、∠FDC 的值,从而求出∠ADF ,根据∠ADE=∠DEC ,得出y 与x 的关系式;(3)先证△KCD 是等腰直角三角形,根据CD 的长得到KC 的值,然后再△KGC 中求得KG 的值.【详解】(1)∵将菱形ABCD 沿DF 翻折,点A 恰好落在点G 上∴△DFG ≌△DFA ,∠AFD=∠FDC∴∠AFD=∠DFG∴∠FDC=∠DFG∴CF=DC ;(2)∵AD=DG=DC=FC ,∠DCF=y∴在△DGC 中,∠DGC=y ,∠GDC=180-2y在△CFD 中,∠CFD=∠CDF=902y -∴∠FDG=∠FDC -∠GDC=3902y - ∴∠ADF=∠FDG=3902y -,∴∠ADE=3y -180 ∵AD ∥BC∴∠ADE=∠DEC ,即3y -180=x化简得:y=1603x +; (3)如下图,过点K 作CD 的垂线,交CD 于点I ,延长KG 交BC 于点L ,过点C 作GL 的垂线,交GL 于点Q ,过点C 作GD 的垂线,交GD 于点N ,∵x=45°,∴y=75°,∠ADE=x=45°∴∠DGC=∠DCG=75°,∴∠NDC=30°,∴∠ADC=45°+30°=75°,∵四边形ABCD是菱形,∴∠B=75°,∵KG∥DC,∴KG∥AB,∠KGD=∠NDC=30°,∴∠GLC=∠B=75°,∠KGC=30°+75°=105°,∴∠LGC=75°,∴∠CGL=∠CGN,∴GC是∠LGN的角平分线,∴CQ=CN,∵CD=4,∠CDE=30°,∴在Rt△CND中,CN=2,∴CQ=2,∵KG∥CD,∴∠QKI=∠KIC=90°∵CQ⊥KL∴四边形CQKI是矩形,∵CK=KD,KI⊥CD,∴CI=ID=2,∴CI=CQ=2,∴矩形CQKI是正方形∴IK=CQ=2,∴在Rt△KIC中,CK=22,如下图,过点G作CK的垂线,交CK于点M,∴△KGM是等腰直角三角形,△GMC是直角三角形,且∠C=30°,设GM=x,则在Rt△GKM中,KM=GM=x,在Rt△GMC中,CG=2x,3x,∴322解得:62∴2=232x.【点睛】本题考查菱形的性质和翻折的性质,需要注意,翻折后的图形和翻折前的图形时完全相等的,这个条件不可忽略.2.B解析:(1)①(2,0),(12),(﹣12y2x;③y=﹣22x2;(2)①半径为2,M(3333);②2<r<4【解析】【分析】(1)①如图2−1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2−2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3−3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题;【详解】解:(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F.由题意OC =CD =1,OA =BC =2,∴BD =OE =1,OD =CF =BE=2, ∴A(2,0),B(1,2),C(﹣1,2),故答案为:A(2,0),B(1,2),C(﹣1,2).②如图2﹣2中,作BE ∥OD 交OA 于E ,作PM ∥OD 交OA 于M .∵OD ∥BE ,OD ∥PM ,∴BE ∥PM ,∴BE OE PM OM=, ∴21y x=, ∴y =2x .故答案为:y =2x .③如图2﹣3中,作QM ∥OA 交OD 于M .222MQ DM OA DOx y ∴=-∴= ∴222y x =-+故答案为:y=﹣22x+2.(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=23,∴OF=FA=3,∴FM=1,OM=2FM=2,∴圆M的半径为2∵MN∥y轴,∴MN⊥OM,∴MN=233,ON=2MN=433,∴M4323,33⎛⎫⎪ ⎪⎝⎭.②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=3∴△MKO是等边三角形,∴MN=3,当FN=1时,MF=3﹣1=2,当EN=1时,ME=3+1=4,观察图象可知当⊙M的半径r的取值范围为2<r<4.故答案为:2<r<4.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面斜坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.3.E解析:(1)∠EPF=∠AEP+∠PFC,∠AEP+∠EPF+∠PFC=360°;(2)见解析;(3)①150°,∠EQF=180°-12∠EPF【解析】【分析】(1)如下图,过点P作AB的平行线,根据平行线的性质可推导出角度关系;(2)如下图,根据(1)的结论,可得∠AEP+∠PFC=∠EPF=90°,利用△EPF内角和为180°可推导得出∠PEF+∠PFE=90°,从而得出∠PEF=∠AEP;(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°,再利用角平分线的性质得出∠PEQ+∠PFQ=150°,最后在四边形EPFQ中得出结论;②根据(1)的结论知:∠AEP+∠PFC=∠EPF°,再利用角平分线的性质得出∠PEQ+∠PFQ=180°-1EPF2,最后在四边形EPFQ中得出结论.【详解】(1)如下图,过点P作PQ∥AB∵PQ∥AB,AB∥CD,∴PQ∥CD ∴∠AEP=∠EPQ,∠QPF=∠PFC 又∵∠EPF=∠EPQ+∠QPF∴∠EPF=∠AEP+∠PFC如下图,过点P作PQ∥AB同理,AB ∥QP ∥CD∴∠AEP+∠QPE=180°,∠QPF+∠PFC=180°∴∠AEP+∠EPF+∠PFC=∠AEP+∠EPQ+∠QPF+∠PFC=360°(2)根据(1)的结论知:∠AEP+∠PFC=∠EPF=90°∵PF 是∠CFE 的角平分线,∴∠PFC=∠PFE在△PEF 中,∵∠EPF=90°,∴∠PEF+∠PFE=90°∴∠PEF+∠PFE=∠AEP+∠PFC∴∠PEF=∠AEP ,∴PE 是∠AEF 的角平分线(3)①根据(1)的结论知:∠AEP+∠PFC=∠EPF=60°∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=300°∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线∴∠PEQ=QEB ,∠PFQ=∠QFD∴∠PEQ+∠PFQ=150°在四边形PEQF 中,∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-60°-150°=150° ②根据(1)的结论知:∠AEP+∠PFC=∠EPF∴∠BEP+∠PFD=180°-∠AEP+180°-∠PFC=360°-∠EPF∵EQ 、QF 分别是∠PEB 和∠PFD 的角平分线∴∠PEQ=∠QEB ,∠PFQ=∠QFD∴∠PEQ+∠PFQ=()1360EPF 2∠︒-=180°-1EPF 2∠ ∴在四边形PEQF 中: ∠EQF=360°-∠EPF -(∠PEQ+∠PFQ)=360°-EPF ∠-(180°-1EPF 2∠)=180°-1EPF 2∠ 【点睛】本题考查“M ”型模型,解题关键在过两条平行线中间的点作已知平行线的平行线,然后利用平行线的性质进行角度转化可推导结论.4.(1)1001;9999;(2)2754和4848;(3)见解析【解析】【分析】(1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又由029a ≤≤得到a 的可能取值为1,2,3,4;根据百位上的数字与十位上的数字之和是12的倍数,可知m +n =12,得到122a m +=,由a 的可能取值可得m 的取值,即可求得符合条件的“和平数”;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c ,计算它们的和,根据“和平数”的定义可知a+b=c+d ,因式分解可得原式= 1111(a+b ),即可证明.【详解】解:(1)根据“和平数”的定义可得:最小的“和平数”1001,最大的“和平数”9999,故答案为1001;9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又∵029a ≤≤,∴a 的可能取值为1,2,3,4;∵百位上的数字与十位上的数字之和是12的倍数,∴m+n =0或m+n =12,∵“和平数”中a+m =n+2a ,当m+n =0时,即m=n =0,则此时a =0,不符合题意,∴m+n =12,∴a+m =12−m +2a ,解得:122a m +=, ∵a 的可能取值为1,2,3,4;且m 为正整数,∴m 的可能取值为7,8;当a =2时,m =7,这个“和平数”是2754;当a =4时,m =8,这个“和平数”是4848;综上所述,满足条件的“和平数”是2754和4848;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c , ∴(100010010)(100010010)a b c d b a d c +++++++110011001111a b c d =+++1100()11()a b c d =+++由“和平数”的定义可知:a+b =c+d ,∴原式1100()11()a b a b =+++1111()a b =+,∵a ,b 为正整数,则1111()a b +能被1111整除,即(100010010)(100010010)a b c d b a d c +++++++能被1111整除,∴任意的两个“相关和平数”之和是1111的倍数.【点睛】本题考查新定义运算、因式分解的应用;能够读懂题意,根据数的特点,确定数的取值范围,进行正确的因式分解是解题关键.5.(1)①不是;②0;(2)若点(,)p q 在反比例函数8y x =的图象上,则关于x 的方程260px x q -+=是半等分根方程,理由详见解析;(3)详见解析【解析】【分析】(1)①解方程2280x x --=,根据“半等分根方程”定义作出判断即可;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m -=,即:n =-2m 或m =-2n ,分别代入代数式2252m mn n ++=结果均为0 (2)根据点(,)p q 在反比例函数8y x =的图象上,得到8q p =,代入260px x q -+=,得到关于x 的方程2860px x p-+=,解方程,用含p 的式子表示x ,根据“半等分根方程”定义判断即可;(3)根据两点(1,)M t s +,(4,)N t s -都在抛物线上,且纵坐标相等,可以求出对称轴为52x =,根据方程20ax bx c ++=是半等分根方程,得到两根关系,根据抛物线对称轴为 12522x x +=,即可求出两个根,问题得证. 【详解】解:(1)①解方程2280x x --=得124,2x x ==-,不符合“半等分根方程”定义, 故答案为:不是;②解方程(1)()0x mx n -+=得11x =,2n x m =-,所以12n m -=或2n m -=,即:n =-2m 或m =-2n ,当n =-2m 时,()()22225522022m mn n m m n m ++=+-+-=; 当m =-2n 时,()()22225522022m mn n n n n n ++=-+-+=; 故答案为:0;(2)若点(,)p q 在反比例函数8y x =的图象上,则关于x 的方程260px x q -+=是半等分根方程理由:∵点(,)p q 在反比例函数8y x =的图象上 ∴8q p=代入方程260px x q -+=得: 2860px x p -+=解得:12x p =,24x p = ∵1212x x = ∴方程260px x q -+=是半等分根方程(3)∵相异两点(1,)M t s +,(4,)N t s -都在抛物线2y ax bx c =++上, ∴抛物线的对称轴为:(1)(4)522t t x ++-== 又∵方程20ax bx c ++=是半等分根方程∴设20ax bx c ++=的两个根分别为1x 和2x 令1212x x =则有:12522x x += 所以153x =,2103x = 所以方程20ax bx c ++=的一个根为53得证. 【点睛】本题为“新定义问题”,考查了学生自主学习的能力,解决此题关键是理解新定义概念,并结合所学数学知识进行解答.6.E解析:(1)EF =,见解析;(2)BK =;(3)①AGH 是等边三角形,见解析;②14 【解析】【分析】(1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到AE =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案;②由三角形的面积公式得到1DH =,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)EF =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形,EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠= 在Rt AEC ∆中,tan EC EAC AE ∠=3AE EC ∴=,3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==, ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=.AF CD ⊥,垂足为F ,1,902CF DF a BAF AFD ︒∴==∠=∠= 在Rt ADF 中,sin AF ADF AD ∠=, 3AF ∴=在Rt ABF 中,22BF AB AF =+,72BF a ∴= AK BF ⊥,垂足为K ,90AKB FAB ︒∴∠=∠=ABK FBA ∠=∠~Rt AKB Rt FAB ∴∆∆,AB BK FB BA∴=, 27BK a ∴=, (3)如图:①AGH 是等边三角形.理由:连接AC .,60AB BC ABC ︒=∠=,ABC ∴为等边三角形,,60AB AC ABC ACB ︒∴=∠=∠=,120ABG ︒∴∠=. //AB CD ,60BCH ABC ︒∴∠=∠=,120ACH ︒∴∠=ABG ACH ∴∠=∠,又BG CH =,ABG ACH ∴≅,,AG AH GAB HAC ∴=∠=∠.60BAH HAC BAC ︒∠+∠=∠=,60BAH GAB GAH ︒∴∠+∠=∠=,AGH ∴为等边三角形;②ADC 为等边三角形,2,1AD DC AC CF DF ∴=====,AF ∴=.1(32ADH S =, 11(322DH ∴⨯=,1DH ∴=1CH DH CD ∴=-=,HF DH DF =-=AF HF ∴=,AHF ∴为等腰直角三角形,45AHF ︒∴∠=.过点C 作CM AH ⊥,垂足为M .在Rt CMH 中,sin CM CHM CH∠=, 12CM ∴=, 在Rt AMC 中,sin CM MAC AC ∠=, 1sin 4MAC ∴∠=. 又GAB HAC ∠=∠, 1sin sin 4GAB HAC ∴∠=∠=; 【点睛】本题考查了解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的定理和性质,正确作出辅助线进行解题.7.A解析:(1)()1,1E -;(2)12m -≤≤-或01m ≤≤3)9t ≤≤.【解析】【分析】(1)首先要理解点A 是图形M 的“倍增点”的定义,将三个点逐一代入验证即可; (2)分两种情况:①点"倍增点”在O 的外部,分别求得“倍增点”横坐标的最大值和最小值,②点"倍增点"在O 的内部,依次求得“倍增点"横坐标的最大值和最小值,即可确定“倍增点”横坐标的范围;(3)分别求得线段GH 两端点为T "倍增点”时横坐标的最大值和最小值即可.【详解】(1)()1,2D -到线段BC 的距离为2,22(12)(20)1332DC =--+-=<⨯∴()1,2D -不是线段BC 的倍增点;()1,1E -到线段BC 的距离为1,22(12)(10)103EC =--+-=>,∴在线段BC 上必存在一点P 使EP=3,∴()1,1E -是线段BC 的倍增点;()0,2F 到线段BC 的距离为2,22(02)(20)2232FC =-+-=<⨯∴()0,2F 不是线段BC 的倍增点;综上,()1,1E -是线段BC 的倍增点;(2)设直线l 上“倍增点”的横坐标为m ,当点在O 外时,222(2)8,m m +-+≤解方程222(2)8m m +-+=,得1131m =+,2131m =-当点在O 内部时,22224(2)3(44(2))m m m m ++-+≥--+-+解得:m≥0或m≤-2∴直线l 上“倍增点”的橫坐标的取值范围为1312m -≤≤-或0131m ≤≤+;(3)如图所示,当点G(1,0)为T "倍增点"时,T(9,0),此时T 的横坐标为最大值,当点H(0,1)为T “倍增点”时,则T(63,此时T 的横坐标为最小值;∴圆心T(t, 0)的横坐标的取值范围为:639t -≤≤.【点睛】在正确理解点A 是图形M 的“倍增点”定义的基础上,利用(1)判断是否是倍增点的不等关系式,即可列不等式组求解范围.8.A解析:(1)135°;(2)①45°,②不发生变化,45°;(3)60°或45°【解析】【分析】(1)利用三角形内角和定理、两角互余、角平分线性质即可求解;(2)①利用对顶角相等、两角互余、两角互补、角平分线性质即可求解;②证明和推理过程同①的求解过程;(3)由(2)的证明求解思路,不难得出EAF ∠=90°,如果有一个角是另一个角的3倍,所以不确定是哪个角是哪个角的三倍,所以需要分情况讨论;值得注意的是,∠MON=90°,所以求解出的∠ABO 一定要小于90°,注意解得取舍.【详解】(1)()11801802118090180451352AEB EBA BAE OBA BAO ∠=︒-∠-∠=︒-∠+∠=︒-⨯︒=︒-︒=︒(2)①如图所示AD 与BO 交于点E ,()9060301180307521909030602180180756045OBA DBO NBC DEB OEA OAB D DBE DEB ∠=︒-︒=︒∠=∠=︒-︒=︒∠=∠=︒-∠=︒-︒=︒∠=︒-∠-∠=︒-︒-︒=︒②∠D 的度数不随A 、B 的移动而发生变化设BAD α∠=,因为AD 平分∠BAO ,所以2BAO α∠=,因为∠AOB=90°,所以180902ABN ABO AOB BAO α∠=︒-∠=∠+∠=+。

专题40 代数综合压轴题-2023年中考数学二轮复习核心考点拓展训练(解析版)

专题40 代数综合压轴题-2023年中考数学二轮复习核心考点拓展训练(解析版)
∴x2+x=0,即 x(x+1)=0,
解得:x=0 或 x=﹣1,
当 x=0 时,y=1,定点为(0,1);
当 x=﹣1 时,y=0,定点为(﹣1,0),
则无论 m 取何值,抛物线 y=(m﹣1)x2+(m﹣2)x﹣1 总过 x 轴上的一个固定点.
总结提升:此题考查了抛物线与 x 轴的交点,以及根的判别式,在解一元二次方程的根时,利用根的判
(2)法 1:用十字相乘法来转换 y=(m﹣1)x2+(m﹣2)x﹣1,即 y=[(m﹣1)x﹣1](x+1),令 y=0
即可确定出抛物线过 x 轴上的固定点坐标;
法 2:函数解析式变形后,根据题意确定出 x 的值进而得出定点即可.
(1)解:根据题意,得Δ=(m﹣2)2﹣4×(m﹣1)×(﹣1)>0,即 m2>0,
(3)由直线与抛物线都经过 y 轴上的定点(0,1),可知直线与抛物线的两个交点到 x 轴的距离都为 1,
由另一个交点的纵坐标为﹣1,求出这个点的坐标并且代入抛物线的解析式即可求出此时 a 的值;
(4)抛物线 G 与抛物线 G′围成的封闭区域是以 x 轴为对称轴的轴对称图形,这样只考虑 x 轴下方(或
1),
∴另一个交点的纵坐标为﹣1,
当 y=﹣1 时,由﹣1=﹣x+1,得 x=2,
∴另一交点坐标为(2,﹣1),
1
把(2,﹣1)代入 y=ax2﹣4ax+1 得 4a﹣8a+1=﹣1,解得 = .
2
(4)由题意可知,抛物线 G 与抛物线 G′围成的封闭区域是以 x 轴为对称轴的轴对称图形,
∴该区域内 x 轴上有三个横、纵坐标均为整数的点,x 轴的下方和上方各有四个这样的点,且两两关于 x

2023各地中考数学压轴题汇总

2023各地中考数学压轴题汇总

2023各地中考数学压轴题汇总一、各地中考数学压轴题的重要性中考数学压轴题那可是相当重要的呢。

对于初中生来说,这是检验他们数学能力的关键部分。

就像是一场大战中的终极大BOSS,要是能攻克它,那在数学成绩上肯定能有个大飞跃。

而且这些压轴题往往涵盖了初中数学很多重要的知识点,像是函数、几何图形之类的。

它就像是一个知识的大集合,把初中三年的数学精华都浓缩在几道题里啦。

二、2023年各地中考数学压轴题汇总1. 北京卷题目1:(10分比例)已知二次函数y = ax²+bx + c的图像经过点A(1,0),B(3,0),C(0,3),求这个二次函数的解析式,并求出函数的顶点坐标。

题目2:(15分比例)在直角三角形ABC中,∠C = 90°,AC = 3,BC = 4,点D是AB边上的一个动点(不与A、B重合),过点D作DE⊥AC于点E,DF⊥BC于点F,设AE = x,四边形CEDF的面积为y,求y关于x的函数关系式,并求出x的取值范围。

2. 上海卷题目3:(12分比例)如图,在梯形ABCD中,AD∥BC,AB = CD,AD = 3,BC = 7,∠B = 60°,点P是BC边上的一个动点(不与B、C重合),过点P作∠APE = ∠B,PE交CD于点E,设BP = x,CE = y,求y关于x的函数关系式,并求出x的取值范围。

题目4:(18分比例)在平面直角坐标系中,已知点A(0,3),B(4,0),点C在第一象限,且∠ACB = 90°,设点C的坐标为(x,y),求y关于x 的函数关系式,并求出x的取值范围。

3. 广东卷题目5:(10分比例)如图,在矩形ABCD中,AB = 3,BC = 4,点E是BC边上的一个动点(不与B、C重合),连接AE,将△ABE沿AE折叠,点B落在点F处,连接CF,求CF的最小值。

题目6:(15分比例)已知抛物线y = -x²+bx + c经过点A(-1,0),B(3,0),与y轴交于点C,点P是抛物线上的一个动点(不与A、B重合),过点P作PD⊥x轴于点D,交直线BC于点E,设点P的横坐标为m,求线段PE的长度关于m的函数关系式,并求出m的取值范围。

中考各省压轴之圆综合问题(9考点39题)—2024年中考数学压轴题(全国通用)(解析版)

中考各省压轴之圆综合问题(9考点39题)—2024年中考数学压轴题(全国通用)(解析版)

中考各省压轴之圆综合问题(9考点39题)一.圆周角定理(共3小题)1.如图,在⊙O中,将沿弦AB翻折,使恰好经过圆心O,C是劣弧AB上一点.已知AE=2,tan∠CBA=,则AB的长为( )A.B.6C.D.【答案】C【解答】解:连接EO并延长交⊙O于点H,连接AH,过点O作OF⊥AB于F,延长OF交⊙O于点G,连接OB,∵EH是⊙O的直径,∴∠EAH=90°,∴tan∠AHE=,∵∠AHE=∠CBA,tan∠CBA=,∴tan∠AHE=tan∠CBA=,∴=,∵AE=2,∴AH=4,∴EH==2,∴⊙O的半径为,∴OG=OB=,∵OG⊥AB于F,∴AB=2BF,根据折叠的性质得,OF=GF,∴OF=OG=,∴BF==,∴AB=,故选:C.2.如图,AB是半圆的直径,点C是弧AB的中点,点E是弧AC的中点,连接EB,CA交于点F,则=( )A.B.C.1﹣D.【答案】D【解答】解:方法1:连接AE、CE.作AD∥CE,交BE于D.∵点E是弧AC的中点,∴可设AE=CE=1,根据平行线的性质得∠ADE=∠CED=45°.∴△ADE是等腰直角三角形,则AD=,BD=AD=.所以BE=+1.再根据两角对应相等得△AEF∽△BEA,则EF==﹣1,BF=2.所以=.方法2:过点C作CO⊥AB于点O,∵AB是半圆的直径,点C是弧AB的中点,∴点O是圆心.连接OE,BC,OE与AC交于点M,∵E为弧AC的中点,易证OE⊥AC,∵∠ACB=90°,∠AOE=45°,∴OE∥BC,设OM=1,则AM=1,∴AC=BC=2,OA=,∴OE=,∴EM=﹣1,∵OE∥BC,∴==.故选:D.3.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为弧AN的中点,P是直径MN上一动点,则P A+PB的最小值为.【答案】见试题解答内容【解答】解:作点B关于MN的对称点C,连接AC交MN于点P,连接OB,则P点就是所求作的点.此时P A+PB最小,且等于AC的长.连接OA,OC,∵∠AMN=30°,∴∠AON=60°,∵=∴∠AOB=∠BON=30°,∵MN⊥BC,∴=,∴∠CON=∠NOB=30°,则∠AOC=90°,又OA=OC=1,则AC=.二.切线的性质(共1小题)4.为了测量一个圆形铁环的半径,小华采用了如下方法:将铁环平放在水平桌面上,用一个锐角为30°的直角三角板和一个刻度尺,按如图所示的方法得到有关数据,进而求得铁环的半径,若测得AB=10cm,则铁环的半径是 .【答案】见试题解答内容【解答】解:如图所示:连接OB,OC,OA,∵AB为圆O的切线,∴OB⊥AB,即∠OBA=90°,又AC为圆O的切线,∴OC⊥AC,即∠OCA=90°,在Rt△ADE中,∠E=30°,∠ADE=90°,∴∠EAD=60°,∠BAC=120°,∵AC及AB为圆O的切线,∴OA为∠BOC的平分线,则∠BAO=∠OAC,可得∠BOA=∠COA,又∠OBA=∠OCA=90°,∴∠OAB=∠OAC=∠BAC=60°,在Rt△OBA中,∠OBA=90°,∠OAB=60°,AB=10cm,∴tan60°=,即=,则圆的半径OB=10cm.故答案为:10cm三.切线的判定与性质(共2小题)5.如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①∠F=30°;②CE=CF;③线段EF的最小值为2;④当AD=1时,EF与半圆相切;⑤当点D从点A运动到点B时,线段EF扫过的面积是8.其中正确的结论的序号为.【答案】②③④.【解答】解:①连接CD,如图1所示.∵点E与点D关于AC对称,∴CE=CD.∴∠E=∠CDE.∵DF⊥DE,∴∠EDF=90°.∴∠E+∠F=90°,∠CDE+∠CDF=90°.∴∠F=∠CDF.只有当CD⊥AB时,∠F=∠CDF=∠CBA=30°,故①错误;②又∵∠F=∠CDF,∴CD=CF,∴CE=CD=CF.故②正确;③当CD⊥AB时,如图2所示.∵AB是半圆的直径,∴∠ACB=90°,∵AB=4,∠CBA=30°,∴∠CAB=60°,AC=2,BC=2,∵CD⊥AB,∠CBA=30°,∴CD=BC=,根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为2.故③正确;④当AD=1时,连接OC,如图3所示,∵OA=OC,∠CAB=60°,∴△OAC是等边三角形.∴CA=CO,∠ACO=60°.∵AO=2,AD=1,∴DO=1.∴AD=DO,∴∠ACD=∠OCD=30°,∵点E与点D关于AC对称,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切.故④正确;⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称.∴EF扫过的图形就是图5中阴影部分.∴S阴影=2S△ABC=2וAC•BC=4.故⑤错误.故答案为②③④.6.如图,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD⊥OC于C,ED⊥AB 于F,(1)判断△DCE的形状;(2)设⊙O的半径为1,且OF=,求证:△DCE≌△OCB.【答案】见试题解答内容【解答】解:(1)△DCE为等腰三角形,理由为:∵∠ABC=30°,圆周角∠ABC与圆心角∠AOC都对,∴∠AOC=2∠ABC=60°,又∵OA=OC,∴△OAC为等边三角形,∴∠OAC=∠OCA=60°,∵OC⊥CD,∴∠OCD=90°,∴∠DCE=180°﹣90°﹣60°=30°,又∵EF⊥AF,∴∠AFE=90°,∴∠E=180°﹣90°﹣60°=30°,∴∠DCE=∠E,∴DC=DE,则△DCE为等腰三角形;(2)∵OA=OB=1,OF=,∴AF=AO+OF=1+=,OA=AC=OC=1,在Rt△AEF中,∠E=30°,∴AE=2AF=+1,∴CE=AE﹣AC=+1﹣1=,又∵AB为圆O的直径,∴∠ACB=90°,在Rt△ABC中,∠B=30°,∴cos30°=,即BC=AB cos30°=,∴CB=CE=,在△OBC和△DCE中,∵,∴△OBC≌△DCE(ASA).四.三角形的内切圆与内心(共1小题)7.如图,Rt△ABC中,∠C=90°,AC=8,BC=6,I为Rt△ABC的内心,若M、N分别是斜边AB和直角边AC上的动点,连接IM、MN,则IM+MN的最小值为.【答案】5.2.【解答】解:分别作ID⊥BC,IE⊥AC,IF⊥AB,垂足分别为点D、E、F,延长IF到I',使I'F=IF,作I'N⊥AC于点N,交AB于点M,延长DI,交I'N于点G,连接BI,∵IF⊥AB,I'F=IF,∴IM=I'M,∴IM+MN=I'M+MN,当I'、M、N三点共线,且I'N⊥AC时,I'N最短,即IM+MN的值最小.∵I为Rt△ABC的内心,ID⊥BC,IE⊥AC,IF⊥AB,∴ID=IE=IF,设ID=IE=IF=r,又∵ID⊥BC,IE⊥AC,∠C=90°,∴四边形CEID是正方形,∴CD=IE=CE=ID=r,∵Rt△ABC中,∠C=90°,AC=8,BC=6,∴AB=10,∴BD=6﹣r,AE=8﹣r,在Rt△BID和Rt△BIF中,,∴Rt△BID≌Rt△BIF(HL),∴BD=BF,同理AE=AF,∵AB=AF+BF,∴6﹣r+(8﹣r)=10,解得r=2,∵I'F=IF,∴II'=4,∵IF⊥AB,I'N⊥AC,∠FMI'=∠NMA,∴∠I'=∠A,又∵∠C=90°,I'N⊥AC,∴BC∥I'N,∵ID⊥BC,∴IG⊥I'N,∴四边形CDGN为矩形,△II'G∽△BAC,∴GN=CD=2,,即,∴I'G=3.2,∴I'N=I'G+GN=3.2+2=5.2,∴IM+MN的最小值为5.2.故答案为:5.2.五.圆与圆的位置关系(共1小题)8.如图,⊙O1和⊙O2的半径为1和3,连接O1O2,交⊙O2于点P,O1O2=8,若将⊙O1绕点P按顺时针方向旋转360°,则⊙O1与⊙O2共相切 次.【答案】见试题解答内容【解答】解:两圆相切时,O1O2之间的距离等于4(外切)或者2(内切)时即可,当⊙O1绕P点顺时针旋转时360°时,O1O2的变化范围从8到2再到8,其中有两次外切和一次内切.可以用尺规作图的方法来做,以P为圆心做一个半径为5的圆,再以O2为圆心,做一个半径为4的圆,两者相交即为外切,然后以O2为圆心做一个半径为2的圆,两者相交即为内切.故答案为:3.六.弧长的计算(共1小题)9.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC =40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为 cm.【答案】见试题解答内容【解答】解:A点滚动到D点其圆心所经过的路线=(60+40+40)﹣+=(cm).故答案为:().七.扇形面积的计算(共1小题)10.如图,在△ABC中,AB=8cm,BC=4cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的C′′处,那么AC边扫过的图形(图中阴影部分)的面积是 cm2(结果保留π).【答案】见试题解答内容【解答】解:×(64﹣16)=20πcm2.八.圆锥的计算(共3小题)11.现有30%圆周的一个扇形彩纸片,该扇形的半径为40cm,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为 .【答案】见试题解答内容【解答】解:20π=解得:n=90°,∵扇形彩纸片是30%圆周,因而圆心角是108°∴剪去的扇形纸片的圆心角为108°﹣90°=18°.剪去的扇形纸片的圆心角为18°.故答案为18°.12.如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC.用此剪下的扇形铁皮围成一个圆锥,该圆锥的侧面积为 .【答案】见试题解答内容【解答】解:连接OA,过点O作OD⊥AB,∵∠CAB=60°,∴∠OAD=30°,∵AO=2,∴DO=1,∴AD=,∴AB=2,∴S阴影==2π.故答案为:2π.13.如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从A点出发绕侧面一周,再回到A点的最短的路线长是.【答案】3.【解答】解:∵图扇形的弧长是2π,根据弧长公式得到2π=,∴n=120°即扇形的圆心角是120°,∴弧所对的弦长AA′=2×3sin60°=3,故答案为3.九.圆的综合题(共26小题)14.如图,半径为4的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E为⊙O 上一动点,CF⊥AE于点F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为( )A.B.C.D.【答案】C【解答】解:连接AC,AO,∵AB⊥CD,∴G为AB的中点,即AG=BG=AB,∵⊙O的半径为4,弦AB⊥CD且过半径OD的中点,∴OG=2,∴在Rt△AOG中,根据勾股定理得:AG==2,又∵CG=CO+GO=4+2=6,∴在Rt△AGC中,根据勾股定理得:AC==4,∵CF⊥AE,∴△ACF始终是直角三角形,点F的运动轨迹为以AC为直径的半圆,当E位于点B时,CG⊥AE,此时F与G重合;当E位于D时,CA⊥AE,此时F与A 重合,∴当点E从点B出发顺时针运动到点D时,点F所经过的路径长,在Rt△ACG中,tan∠ACG==,∴∠ACG=30°,∴所对圆心角的度数为60°,∵直径AC=4,∴的长为=π,则当点E从点B出发顺时针运动到点D时,点F所经过的路径长为π.故选:C.15.定义:如果一个三角形中有两个内角α,β满足α+2β=90°,那我们称这个三角形为“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,则∠A= 度;(2)如图1,在Rt△ABC中,∠BAC=90°,AB=3,AC=4.若BD是∠ABC的平分线,①求证:△BDC是“近直角三角形”;②在边AC上是否存在点E(异于点D),使得△BCE也是“近直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.(3)如图2,在Rt△ABC中,∠BAC=90°,点D为AC边上一点,以BD为直径的圆交BC于点E,连接AE交BD于点F,若△BCD为“近直角三角形”,且AB=5,AF=3,求tan∠C的值.【答案】见试题解答内容【解答】解:(1)∠B不可能是α或β,当∠A=α时,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,则β=20°,故答案为20;(2)①如图1,设∠ABD=∠DBC=β,∠C=α,则α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在边AC上是否存在点E(异于点D),使得△BCE是“近直角三角形”,AB=3,AC=4,则BC=5,则∠ABE=∠C,则△ABC∽△AEB,即,即,解得:AE=,则CE=4﹣=;(3)①如图2所示,当∠ABD=∠DBC=β时,则AE⊥BF,则AF=FE=3,则AE=6,AB=BE=5,过点A作AH⊥BC于点H,设BH=x,则HE=5﹣x,则AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=;cos∠ABE===cos2β,则tan2β=,则tanα=;②如图3所示,当∠ABD=∠C=β时,过点A作AH⊥BE交BE于点H,交BD于点G,则点G是圆的圆心(BE的中垂线与直径的交点),∵∠AEB=∠DAE+∠C=α+β=∠ABC,故AE=AB=5,则EF=AE﹣AF=5﹣3=2,∵DE⊥BC,AH⊥BC,∴ED∥AH,则AF:EF=AG:DE=3:2,则DE=2k,则AG=3k=R(圆的半径)=BG,点H是BE的中点,则GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=4k,∵∠C+∠ABC=90°,∠ABC+∠BAH=90°,∴∠C=∠BAH,∴tan C=tan∠BAH===,综上,tan C的值为或.16.四边形ABCD内接于⊙O,AC是⊙O的直径,连结BD交AC于点G,AF⊥BD,垂足为E.(1)如图1,若AF交BC于点F.①求证:∠BAF=∠CAD;②若⊙O的直径为10,,BF:CG=3:5,求AF的长.(2)如图2,若AF交CD于点F,连结OD,若OD∥AB,,DF=2CF,求⊙O 的直径.【答案】(1)①见解析;②AF=.(2)⊙O的直径为.【解答】(1)①证明:∵AC是⊙O的直径,AF⊥BD,∴∠ABC=90°=∠AEB,∴∠ABE+∠CBD=90°,∠ABE+∠BAF=90°,∴∠CBD=∠BAF,又∵,∴∠CBD=∠CAD,∴∠BAF=∠CAD.②解:如图,过点G作GK⊥BC于点K,在Rt△ABC中,AC=10,cos∠BCA=,∴BC=8,由勾股定理得AB===6,∴sin∠BCA==,tan∠BCA==,在Rt△GKC中,sin∠KCG=sin∠BCA==,tan∠KCG=tan∠BCA==,又∵BF:CG=3:5,∴BF=GK,在△ABF和△BKG中,,∴△ABF≌△BKG(AAS),∴AB=BK=6,∴CK=BC﹣BK=8﹣6=2,∴KG=CK•tan∠KCG=2×=,即BF=KG=,∴AF===.(3)解:如图,设AF交OD于点Q,过点O作OH⊥AF于点H,链接BO并延长交AF 于点P,延长AF交⊙O于点G,连接CG,∵AF⊥BD,OH⊥AF,∴∠OHO=∠BEG=90°,∴OH∥BD,∴∠QOH=∠ODB,∠POH=∠OBD,又∵OB=OD,∴∠ODB=∠OBD,∴∠QOH=∠POH,∴QH=PH,∵AC为⊙O的直径,∴∠AGC=90°=∠OHQ=∠AEB,∴CG∥OH∥BD,∴△AOH∽△ACG⇒⇒CG=2OH,△DEF∽△CGF⇒=⇒DE=2CG⇒DE=4OH,△DEQ∽△OHQ⇒==4⇒QE=4PH,DQ=4OQ⇒EP=6PH,DQ=,△OPH∽△BPE⇒=⇒BE=6OH,∴,∵OD∥AB,∴△ABE∽△QDE,∴⇒QE=⇒AQ==,∵,OD=OC,∴∠OCD=∠ABD=∠ODC,∴∠BAE=90°﹣∠ABD=90°﹣∠ODC=∠ODA,∵OD∥AB,OA=OD,∴∠AQD=∠BAQ=∠ODA=∠OAD,∴AD=AQ=,△DAQ∽△DOA,∴,即AD2=OD•DQ,设⊙O的半径为r,则OD=r,DQ=,∴=,∴r=,∴⊙O的直径为.17.如图,在平面直角坐标系xOy中,点S(﹣1,0),T(1,0).对于一个角α(0°<α≤180°),将一个图形先绕点S顺时针旋转α,再绕点T逆时针旋转α,称为一次“α对称旋转”.(1)点R在线段ST上,则在点A(1,﹣1),B(3,﹣2),C(2,﹣2),D(0,﹣2)中,有可能是由点R经过一次“90°对称旋转”后得到的点是;(2)x轴上的一点P经过一次“α对称旋转”得到点Q.①当α=60°时,PQ= ;②当α=30°时,若QT⊥x轴,求点P的坐标;(3)以点O为圆心作半径为1的圆.若在⊙O上存在点M,使得点M经过一次“α对称旋转”后得到的点在x轴上,直接写出α的取值范围.【答案】(1)B,C;(2)①2;②P(﹣1+,0).(3)0°<α≤30°或150°≤α≤180°.【解答】解:(1)如图,当点R与点O重合时,点R绕点S顺时针旋转90°得到点R′,点R′绕点T逆时针旋转90°得到点C;当点R与点T重合时,点R绕点S顺时针旋转90°得到点R″,点R″绕点T逆时针旋转90°得到点B;故答案为:B,C;(2)①当α=60°时,如图,∵x轴上的一点P经过一次“α对称旋转”得到点Q,∴△SPP′和△TQP′均为等边三角形,∴SP′=PP′,TP′=QP′,∠SP′P=∠TP′Q=60°,∴∠SP′T+∠TP′P=∠TP′P+∠PP′Q,∴∠SP′T=∠PP′Q,∴△P′ST≌△P′PQ(SAS),∴PQ=ST=2,故答案为:2;②当α=30°时,设点P绕点S顺时针旋转30°得到点P′,则SP′=SP,如图,将x轴作一次“α对称旋转”后得到直线y=﹣1,∵QT⊥x轴,点P经过一次“α对称旋转”得到点Q,∴点Q的坐标为Q(1,﹣1),∵点P′绕点T逆时针旋转30°得到点Q,∴P′T=QT=1,∠P′TQ=30°,∴∠STP′=90°﹣∠P′TQ=60°,∵∠TSP′=30°,∴∠SP′T=180°﹣∠STP′﹣∠TSP′=90°,∵ST=2,∴SP′==,∴SP=SP′=,∴点P的坐标为P(﹣1+,0).(3)点M在⊙O上,则M绕S顺时针旋转α度以后的M′的轨迹为O绕S顺时针旋转α度以后的⊙O′上,M′关于T逆时针旋转α度以后得到点N,则N在O′关于T逆时针旋转α度以后的⊙O″上,若满足题意,只需⊙O′与x轴有交点O″在粉弧上,且O′T=O″T,如图,⊙O″与x轴相切,则O″H=1,在x轴上取点R,连接O″R,使O″R=2,″∴HR=,∴∠O″RH=30°,TR=O′S=1,O″R=ST=2,O″T=O′T,∴△O″TR≌△TO′S(SSS),∴∠TSO′=∠O″RT=30°,故0°<α≤30°;如图,⊙O″与x轴相切,则O″H=1,在x轴上取点R,连接O″R,使O″R=2,∴∠HRO″=30°,ST=O″R,∴∠TRO″=150°,∵∠SO′T+∠STO′=∠STO′+∠RTO″,∴∠SO′T=∠RTO″,∵O′T=TO″,∴△O′ST≌△TRO″(SAS),∴∠O′ST=∠TRO″=150°,∴α=150°,∴150°≤α≤180°;综上所述,0°<α≤30°或150°≤α≤180°.18.问题提出(1)如图①,已知直线a∥b,点A,B在直线a上,点C,D在直线b上,则S△ACD S(填“>”“<”或“=”);△BCD问题探究(2)如图②,⊙O的直径为20,点A,B,C都在⊙O上,AB=12,求△ABC面积的最大值;问题解决(3)如图③,在△ABC中,∠ACB=90°,AB=20,BC=10,根据设计要求,点D为∠ABC内部一点,且∠ADB=60°,过点C作CE∥AD交BD于点E,连接AE,CD,试求满足设计要求的四边形ADCE的最大面积.【答案】(1)=;(2)△ABC面积的最大值为108;(3)四边形ADCE的最大面积是75.【解答】解:(1)如图①所示,分别过A、B两点向直线b作垂线,垂足为M、N.∵a∥b,∴∠MAB=∠AMN=90°,∴四边形AMNB是矩形,∴AM=BN,∴CD•AM=CD•BN又S△ACD=CD•AM,S△BCD=CD•BN,∴S△ACD=S△BCD;故答案为:=;(2)取优弧的中点记为C1,过C1作AB的垂线,垂足为D,由垂径定理知C1D过O 且AD=BD,如图②所示.过点C作AB的平行线a,∵当直线a向上平移时,a距AB的距离增大,即△ABC的AB边上的高增大,∴当a运动到最高点C时,△ABC的AB边上的高最大,又∵AB为常数,∴当C运动到C1时,△ABC的面积最大,下面计算△ABC1的面积:连接OB,在Rt△OBD中,∵AB=12,⊙O的直径为20,∴BD=6,BO=10,OC1=10,由勾股定理得:OD===8,∴C1D=OD+OC1=8+10=18,∴△ABC1的面积为:AB•C1D=×12×18=108,∴△ABC面积的最大值为108;(3)过点C作CF∥BD交AD的延长线于F,如图③﹣1所示,∵CF∥BD,∴∠F=∠ADB=60°,∵AD∥CE,∴四边形DECF是平行四边形,∴DF=CE,FC=DE,∵DC=CD∴△DFC≌△CED(SSS),∴S△DFC=S△CED,又由(1)的结论知S△DAC=S△DAE,∴S四边形ADCE=S△DAE+S△CED=S△DAC+S△DFC=S△AFC,所以只需求得S△AFC最大值即得S四边形ADCE的最大值.以AC为边向△ABC外作等边△AGC,再作等边△AGC的外接圆,过G作GJ⊥AC于J,如图③﹣2所示,∵∠F=60°,∴点F在△AGC的外接圆上,由第(2)问的解决知,当F运动到点G时,S△AFC最大=S△ACG;在Rt△ABC中:由勾股定理得AC===10,∴AJ=AC=5,∴GJ=×10=15,∴S△ACG=AC×GJ=×10×15=75;∴四边形ADCE的最大面积是75.19.课本再现(1)在圆周角和圆心角的学习中,因为圆内接四边形的每一个角都是圆周角,所以我们可以利用圆周角定理,来研究圆内接四边形的角之间的关系.如图1,四边形ABCD为⊙O的内接四边形,AC为直径,则∠B=∠D= 度,∠BAD+∠BCD= 度.(2)如果⊙O的内接四边形ABCD的对角线AC不是⊙O的直径,如图2、图3,请选择一个图形证明:圆内接四边形的对角互补.知识运用(3)如图4,等腰三角形ABC的腰AB是⊙O的直径,底边和另一条腰分别与⊙O交于点D,E.点F是线段CE的中点,连接DF,求证:DF是⊙O的切线.【答案】(1)90,180;(2)证明见解答;(3)证明见解答.【解答】(1)解:∵四边形ABCD为⊙O的内接四边形,AC为直径,∴∠B=∠D=90°,∴∠BAD+∠BCD=360°﹣(∠B+∠D)=360°﹣180°=180°,故答案为:90,180;(2)证明:如图2,连接OB,OD,∵=,∴∠BOD=2∠C,∠1=2∠A,∵∠BOD+∠1=360°,∴2∠C+2∠A=360°,∴∠C+∠A=180°,在四边形ABCD中,∠ABC+∠ADC=360°﹣(∠A+∠C)=180°,即圆内接四边形的对角互补;如图3,连接OA,OC,∵=,∴∠AOC=2∠B,∠1=2∠D,∵∠AOC+∠1=360°,∴2∠B+2∠D=360°,∴∠B+∠D=180°,在四边形ABCD中,∠BAD+∠DCB=360°﹣(∠B+∠D)=180°,即圆内接四边形的对角互补;(3)证明:连接OD,DE,如图4,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵四边形ABDE是圆内接四边形,∴∠B+∠AED=180°,∵∠DEC+∠AED=180°,∴∠B=∠DEC,∴∠C=∠DEC,∴DC=DE,∵点F是线段CE的中点,∴DF⊥AC,∴OD∥AC,∴DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线.20.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E是BC的中点,连接OE、DE.(1)求证:DE是⊙O的切线;(2)若sin C=,DE=5,求AD的长;(3)求证:2DE2=CD•OE.【答案】(1)证明见解答;(2)AD的长为;(3)证明见解答.【解答】(1)证明:连接OD,BD,在Rt△ABC中,∠ABC=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠BDC=180°﹣∠ADB=90°,∵点E是BC的中点,∴DE=BE=EC,∵OB、OD是⊙O的半径,∴OB=OD,又∵OE=OE,∴△ODE≌△OBE(SSS),∴∠ODE=∠OBE=90°,∴半径OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,如图,由(1)知:DE=BE=EC,∠ADB=∠BDC=∠ABC=90°,∵DE=5,∴BC=10,∵sin C=,∴=,∴BD=8,∵∠C+∠CBD=∠ABD+∠CBD=90°,∴∠ABD=∠C,∴sin∠ABD=sin∠C=,∴=,设AD=4x,则AB=5x,∵AD2+BD2=AB2,∴(4x)2+82=(5x)2,解得:x=(负值舍去),∴AD=4x=4×=;(3)证明:连接BD,由(1)(2)得:∠BDC=∠OBE=90°,BE=DE,∵点O是AB的中点,点E是BC的中点,∴OE∥AC,BC=2BE,∴∠C=∠OEB,∴△BCD∽△OEB,∴=,即=,∴2DE2=CD•OE.21.已知在Rt△ABC中,∠ACB=90°,BC=6,AC=8,以边AC为直径作⊙O,与AB 边交于点D,点M为边BC的中点,连接DM.(1)求证:DM是⊙O的切线;(2)点P为直线BC上任意一动点,连接AP交⊙O于点Q,连接CQ.①当tan∠BAP=时,求BP的长;②求的最大值.【答案】(1)证明见解答;(2)①BP的长为或;②的最大值为.【解答】(1)证明:如图,连接OD,CD,∵AC是⊙O的直径,∴∠ADC=90°,∴∠BDC=180°﹣∠ADC=90°,∵点M为边BC的中点,∴MC=MD,∴∠MDC=∠MCD,∵OC=OD,∴∠ODC=∠OCD,∵∠ACB=90°,即∠MCD+∠OCD=90°,∴∠MDC+ODC=∠MCD+∠OCD=90°,即∠ODM=90°,∴DM⊥OD,∵OD是⊙O的半径,∴DM是⊙O的切线;(2)①当点P在线段BC上时,如图,过点P作PT⊥AB于点T,在Rt△ABC中,AB===10,设PT=x,∵tan∠BAP=,∴=,∴AT=3PT=3x,∴BT=AB﹣AT=10﹣3x,∵tan∠ABC==,∴=,解得:x=,∴PT=,∵sin∠ABC==,即=,∴BP=;当点P在CB的延长线上时,如图,过点B作BK⊥AP于点K,∵tan∠BAP=,∴=,设BK=a,则AK=3a,在Rt△ABK中,AK2+BK2=AB2,即(3a)2+a2=102,解得:a1=,a2=﹣(舍去),∴AK=3,BK=,∵S△ABP=AP•BK=BP•AC,∴==,设BP=m,则AP=m,在Rt△ACP中,AC2+CP2=AP2,即82+(m+6)2=(m)2,解得:m1=,m2=﹣(舍去),∴BP=;综上所述,BP的长为或;②设CP=n,则AP==,如图,∵AC是⊙O的直径,∴CQ⊥AP,∵CQ•AP=AC•CP,∴CQ==,∴=,∵n>0,∴(n﹣8)2≥0,∴64+n2≥16n,∴=≤=,∴的最大值为.22.如图(1),已知在Rt△ABC中,∠ACB=90°,以AC为直径的圆O交斜边AC于点E,点D为BC中点,连接DE.(1)求证:DE是圆O的切线;(2)如图(2),EH⊥AC,垂足为H,若AC=6,BC=8,求EH的长;(3)如图(3),在⊙O上取一点P,使PE=CE,连接PE,AP,试探究AP、AH、HC 之间的数量关系,并说明理由.【答案】见试题解答内容【解答】(1)连结OE,∵AC是直径,∴∠AEC=90°∴∠CEB=90°,∵D是BC的中点,∴CD=DE,∴∠DCE=∠DEC,∵∠ACB=90°,∴∠DCE+∠OCE=90°,∵OE=OC,∴∠OCE=∠OEC,∴∠OEC+∠DEC=90°,∴OE⊥DE,∵OE是圆O的半径,∴DE是圆O的切线;(2)连结CE,∵AC=6,BC=8,∴,∵∠B=∠B,∠CEB=∠ACB=90°,∴△CEB∽△ACB,∴,∴,∵HE⊥AC,∴∠EHC=90°,∴,∴,∴;(3)在AC上取点M,使CM=AP,∵PE=CE,∠P=∠MCE∴△APE≌△MCE(SAS)∴AE=ME∵EH⊥AC∴AH=MH∴CM=CH﹣MH=CH﹣AH,∴AP=CH﹣AH.23.在平面直角坐标系xOy中,⊙O的半径为1,A为任意一点,B为⊙O上任意一点.给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在⊙O上时,p=0),最大值为q,那么把的值称为点A与⊙O的“关联距离”,记作d(A,⊙O).(1)如图,点D,E,F的横、纵坐标都是整数.①d(D,⊙O)= ;②若点M在线段EF上,求d(M,⊙O)的取值范围;(2)若点N在直线y=上,直接写出d(N,⊙O)的取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,⊙O)的最小值为1,最大值为,直接写出m的最小值和最大值.【答案】(1)①2;②2≤d(M,⊙O)≤3;(2)d(N,⊙O)≥;(3)m的最小值为﹣,最大值为.【解答】解:(1)①∵D(0,2)到⊙O的距离的最小值p=1,最大值q=3,∴d(D,⊙O)==2,故答案为:2;②当M在点E处,d(E,⊙O)=2,当M在点F处,d(F,⊙O)==3,∴2≤d(M,⊙O)≤3;(2)设ON=d,∴p=d﹣r=d﹣1,q=d+r=d+1,∴d(N,⊙O)===d,∵点N在直线y=上,设直线交x轴于点B,交y轴于点A,如图1,则x=0时,y=2,y=0时,x=﹣2,∴A(0,2),B(﹣2,0),∴OA=2,OB=2,∴AB==4,当ON⊥AB时,d(N,⊙O)最小,∴S△AOB=OA•OB=AB•ON,即×2×2=×4ON,∴ON=,∵ON无最大值,∴d(N,⊙O)≥;(3)如图2,∵d(P,⊙O)的最小值为1,最大值为,∴两个同心圆中,小圆的半径为1,大圆的半径为,∵KL=﹣1,∴m的最小值是=﹣,在Rt△OMH中,OM=,OH=m﹣1,MH=m,∴(m﹣1)2+(m)2=()2,解得:m=﹣2(舍去)或m=;∴m的最小值为﹣,最大值为.24.在⊙O中=,顺次连接A、B、C.(1)如图1,若点M是的中点,且MN∥AC交BC延长线于点N,求证:MN为⊙O 的切线;(2)如图2,在(1)的条件下,连接MC,过点A作AP⊥BM于点P,若BP=a,MP =b,CM=c,则a、b、c有何数量关系?(3)如图3,当∠BAC=60°时,E是BC延长线上一点,D是线段AB上一点,且BD =CE,若BE=5,△AEF的周长为9,请求出S△AEF的值?【答案】(1)证明见解答;(2)a=b+c;(3).【解答】解:(1)如图1,连接OM,∵M是的中点,∴OM⊥AC,∵MN∥AC,∴OM⊥MN,∵OM为⊙O的半径,∴MN为⊙O的切线;(2)如图2,连接OM交AC于K,连结AM,∵M是的中点,∴=,∴AM=CM=c,∵AP⊥BM,∴∠APM=∠APB=90°,∴AP2=AM2﹣PM2=c2﹣b2,∴AB2=AP2+BP2=c2﹣b2+a2,∴AC=AB=,∵M是的中点,∴OM⊥AC,∴AK=CK=AC=,∵∠APB=∠CKM=90°,∠ABP=∠MCK,∴△ABP∽△MCK,∴=,∴BP•CM=CK•AB,∴ac=•,∴2ac=c2﹣b2+a2,∴(a﹣c)2﹣b2=0,∴(a+b﹣c)(a﹣b﹣c)=0,∵a+b﹣c>0,∴a﹣b﹣c=0,∴a=b+c;(3)过点B作BH∥AC,过点D作DH∥BC,BH与DH交于点H,连接CH,则∠BDH=∠ABC=60°,∠DBH=∠ACB=60°,∴△BDH是等边三角形,∴BH=BD,∠DBH=60°,∴BH=CE,∠CBH=∠ABC+∠DBH=60°+60°=120°,∵∠ACE=180°﹣∠ACB=120°=∠CBH,AC=BC,∴△ACE≌△CBH(SAS),∴∠CAE=∠BCH,AE=CH,∵DH∥BC,DH=CE,∴四边形CEDH是平行四边形,∴CE∥ED,CH=ED,∴∠BCH=∠BED,CH=AE,∴∠BED=∠CAE,AE=ED,过点E作ET⊥AB于点T,交AC于点L,连接DL,则AT=TD=AD,AL=DL,∵∠BAC=60°,∴△ADL是等边三角形,∴∠ALD=60°=∠ACB,∴DL∥BC,即HD与DL在同一直线上,∴四边形BCLH是平行四边形,∴CL=BH=BD=CE,LH=BC,设CE=x,则CL=x,BC=AC=5﹣x,AD=DL=AL=AC﹣CL=5﹣2x,AT=,∵DF∥CH,∴=,即=,∴LF=,∴AF=AL+LF=5﹣2x+=,在Rt△BET中,ET=BE•sin60°=,∵AE2=AT2+ET2,∴AE2=()2+()2=x2﹣5x+25,延长BH,ED交于点R,则∠RHD=∠FCE,∠R=∠CFE,DH=CE,∴△HDR≌△CEF(AAS),∴DR=EF,∴ER=ED+DR=AE+EF=9﹣AF=9﹣=,∵CH∥ED,∴=,∴CH=•ER=×=,∴AE=,∴x2﹣5x+25=()2,解得:x1=5(舍去),x2=,∴AD=5﹣2×=,AF==10﹣=2,作DM⊥AL于点M,则DM=AD•sin60°=×=,∴S△AEF=S△ADE﹣S△ADF=AD•ET﹣AF•DM=××﹣×2×=.25.在平面直角坐标系xOy中,⊙O的半径为1,AB=1,且A,B两点中至少有一点在⊙O 外.给出如下定义:平移线段AB,得到线段A′B′(A′,B′分别为点A,B的对应点),若线段A′B′上所有的点都在⊙O的内部或⊙O上,则线段AA′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图1,点A1,B1的坐标分别为(﹣3,0),(﹣2,0),线段A1B1到⊙O的“平移距离”为,点A2,B2的坐标分别为(﹣,),(,),线段A2B2到⊙O的“平移距离”为;(2)若点A,B都在直线y=x+2上,记线段AB到⊙O的“平移距离”为d,求d的最小值;(3)如图2,若点A坐标为(1,),线段AB到⊙O的“平移距离”为1,画图并说明所有满足条件的点B形成的图形(不需证明).【答案】(1)2,;(2).(3)所有满足条件的点B形成的图形是以A为圆心圆心角为120°的.【解答】解:(1)根据“平移距离”的定义可得:线段A1B1到⊙O的“平移距离”为2,如图1,设A2B2与y轴交于E,线段A2B2向下平移得到⊙O的弦A′2B′2,线段A′2B′2与y轴交于点F,则A′2F=,OA′2=1,OE=,∴OF=,∴A2A′2=EF=OE﹣OF=﹣=,∴线段A2B2到⊙O的“平移距离”为,故答案为:2,;(2)如图2中,作等边△OEF,点E在x轴上,OE=EF=OF=1,设直线y=x+2交x轴于M,交y轴于N.则M(﹣2,0),N(0,2),过点E作EH⊥MN于H,∵OM=2,ON=2,∴tan∠NMO=,∴∠NMO=60°,∴EH=EM•sin60°=,观察图象可知,线段AB到⊙O的“平移距离”为d1的最小值为.(3)如图3,连接OA,交⊙O于点A′,则OA==2,∴OA到⊙O任意一点距离的最小值为OA′=OA﹣1=1,∴点A′(,),设平移后圆上另一点为B′,由题意得:A′B′=1,有三种情况:①点B′与点O重合,则点B的坐标为(,);②点B′与点(1,0)重合,则点B的坐标为(,);③点B′与点(﹣,)重合,则点B的坐标为(0,);如图可知所有满足条件的点B形成的图形是以A为圆心圆心角为120°的.26.【了解概念】定义:在平面直角坐标系xOy中,组成图形的各点中,与点P连线段最短的点叫做点P 于这个图形的短距点,这条最短线段的长度叫做点P这个图形的短距.【理解运用】(1)已知点P(﹣3,0),以原点为圆心,1半径作⊙O,则点P于⊙O的短距点的坐标是;(2)如图,点P(3,),等边三角形OAB的顶点A的坐标为(6,0),顶点B在第一象限,判断点P于△OAB的短距点的个数,并说明理由;【拓展提升】(3)已知P(p,﹣p+6),A(6,0),B(0,6),点C在第一象限内,且∠CBO=75°,∠ACB=90°,若点P到四边形OACB的短距大于2,请直接写出p的取值范围.【答案】(1)(﹣1,0);(2)3个,理由见解答过程;(3)p<﹣或2<p<4或p>6+.【解答】解:(1)如图:根据短距点定义,点P于⊙O的短距点为A,坐标是(﹣1,0),故答案为:(﹣1,0);(2)点P关于△OAB的短距点有3个,理由如下:过P作PC⊥OA于C,PE⊥AB于E,PD⊥OB于D,如图:∵P(3,),∴OC=3,PC=,∴tan∠POC=,∴∠POC=30°,∵△OAB是等边三角形,∴∠BOC=60°,OA=6,∴∠BOP=∠POC=30°,又PC⊥OA,PD⊥OB,∴PD=PC=,∵AC=OA﹣OC=3,PC=,∴tan∠P AC=,∴∠P AC=30°,同理∠P AE=∠P AC=30°,PE=PC,∴PC=PD=PE,即点P关于△OAB的短距点有C、D、E,∴点P关于△OAB的短距点有3个;(3)∵P(p,﹣p+6),∴P在直线y=﹣x+6上,直线经过A(6,0)、B(0,6),且∠ABO=∠BAO=45°,①当p<0时,过P作PD⊥x轴于D,过B作PE⊥PD于E,如图:△PBE是等腰直角三角形,若PB=2,则BE=PE=,而DE=OB=6,∴PD=6+,∴P(﹣,6+),由图可知:此时p<﹣,点P到四边形OACB的短距大于2,②当0≤p≤6时,过P作PD⊥BC于D,设PD=2,作PE⊥OB,PF⊥OA,过P'作P'G ⊥OA,设P'G=2,如图:∵∠PBD=∠OBC﹣∠ABC=30°,PD=2,∴BP=4,∵△PBE是等腰直角三角形,∴BE=PE=2,PF=OE=OB﹣BE=6﹣2,。

中考数学压轴题的常见类型与解题思路

中考数学压轴题的常见类型与解题思路

2021年3期210中考数学压轴题的常见类型与解题思路熊良斌(湖北省武汉市旭光学校,湖北 武汉 430074)一、分类讨论思想数学知识之间存在着紧密联系,知识与知识间形成一个知识网络体系或知识框架,在复习教学中教师应把相应的知识章节看作一个整体,帮学生理顺知识体系,让学生能够理解相互之间依存关系所在。

以几何知识为例,初中数学教学中,几何知识涵盖了诸多图形知识,且在中考压轴题中较为常见,在探究数学几何问题中,依托分类讨论思想,不仅可以改善薄弱分析环节,也是帮助学生多视角、多维度感知几何图形知识的真知灼见,帮助学生提高压轴题解题效率。

例如:已知一个直角三角形的边长为4和6,求另一边。

从表面看,这道例题较为简单,但诸多学生考虑的不够全面,在这道题中没有交代这两边是斜边长还是直角边长。

如基于这两种情况进行探究解题:一是斜边长为6,直角边长为4:二是直角边长为4、6。

基于数学本质而论,分类讨论思想是一种较为高效的数学思想。

二、符号化和化归思想符号化是初中数学代数中的重要思想方法,初中数学教师在代数教学中应重视培养符号化思想,在教学过程中,应首先让学生认识到引进字母的意义。

以“有理数”教学为例,教师可以通过两个不同意义的数来说明“+”与“-”所表示的两个相反量的意义。

化归思想更多的是一种解决问题的策略,在数学问题的解决上有非常重要的意义和作用。

化归思想即把一个复杂的数学问题通过有效地化解和归纳转化为几个简单问题,从而更轻松简单地解答出答案。

初中数学教师在应用题教学中,可以让学生首先掌握纵向化归和横向化归两种思路,让学生明白纵向化归即将问题整体看作一些互相关联的分问题组,找到问题关键思路,逐个击破,而横向化归思路偏向是将问题划分成相互独立的小问题,独立解决,让问题简单化提高解题效率。

三、辩证思想众所周知,辩证思想广泛运用于不同的学科领域当中,是学术知识探讨和学术问题解决的一个基本思想方法。

中国古代“祸福相倚”的故事传说,就充分体现了对立统一转化的辩证思想。

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

2024年九年级中考数学压轴题-圆中的新定义问题(解析版)

圆中的新定义问题1(2023•淮安模拟)在平面直角坐标系xOy 中,对于点P 和线段AB ,若线段PA 或PB 的垂直平分线与线段AB 有公共点,则称点P 为线段AB 的融合点.(1)已知A (3,0),B (5,0),①在点P 1(6,0),P 2(1,-2),P 3(3,2)中,线段AB 的融合点是 P 1,P 3 ;②若直线y =t 上存在线段AB 的融合点,求t 的取值范围;(2)已知⊙O 的半径为4,A (a ,0),B (a +1,0),直线l 过点T (0,-1),记线段AB 关于l 的对称线段为A B .若对于实数a ,存在直线l ,使得⊙O 上有A B 的融合点,直接写出a 的取值范围.【解答】解:(1)①∵P 1(6,0),A (3,0),∴P 1A 的线段垂直平分线与x 轴的交点为92,0,∴P 1是线段AB 的融合点;∵P 2(1,-2),B (5,0),设直线P 2B 的垂直平分线与x 轴的交点为(a ,0),∴(a -1)2+4=(5-a )2,解得a =52,∴直线P 2B 的垂直平分线与x 轴的交点为52,0,∴P 2不是线段AB 的融合点;∵P 3(3,2),B (5,0),设直线P 3B 的垂直平分线与x 轴的交点为(b ,0),∴(b -3)2+4=(5-b )2,解得b =3,∴直线P 3B 的垂直平分线与x 轴的交点为(3,0),∴P 3是线段AB 的融合点;故答案为:P 1,P 3;②线段AB 的融合点在以A 、B 为圆心,AB 为半径的圆及内部,∵A (3,0),B (5,0),∴AB =2,当y =t 与圆相切时,t =2或t =-2,∴-2≤t ≤2时,直线y =t 上存在线段AB 的融合点;(2)由(1)可知,A B 的融合点在以A 、B 为圆心,A B 为圆心的圆及内部,∵A (a ,0),B (a +1,0),∴AB =A B =1,∵⊙O 上有A B 的融合点,∴圆O 与圆A 、B 有交点,∴圆O 与圆A 、圆B 的公共区域为以O 为圆心2为半径,以O 为圆心6为半径的圆环及内部区域,当a >0时,a 的最大值为62-12=35,最小值为22-12-1=3-1,∴3-1≤a ≤35;当a <0时,a 的最大值为-22-12=-3,最小值为-62-12-1=-35-1,∴-35-1≤a ≤-3;综上所述:a 的取值范围为3-1≤a ≤35或-35-1≤a ≤-3.2(2023•西城区校级模拟)在平面内,C 为线段AB 外的一点,若以点A ,B ,C 为顶点的三角形为直角三角形,则称C 为线段AB 的直角点.特别地,当该三角形为等腰直角三角形时,称C 为线段AB 的等腰直角点.(1)如图1,在平面直角坐标系xOy 中,点M 的坐标为(-1,0),点N 的坐标为(1,0),在点P 1(2,1),P 2(-1,2),P 332,12 中,线段MN 的直角点是 P 2、P 3 ;(2)在平面直角坐标系xOy 中,点A ,B 的坐标分别为(t ,0),(0,4).①若t =4,如图2所示,若C 是线段AB 的直角点,且点C 在直线y =-x +8上,求点C 的坐标;②如图3,点D 的坐标为(m ,-2),⊙D 的半径为1,若⊙D 上存在线段AB 的等腰直角点,求出m 的取值范围.【解答】解:(1)∵P 2(-1,2),M (-1,0),∴P 2M ⊥MN ,∴P 2是线段MN 的直角点;∵M (-1,0),N (1,0),∴MN =2,∵P 332,12,∴P 3O =1,∴P 3在以O 为圆心,MN 为直径的圆上,∴∠MP 3N =90°,∴P 3是线段MN 的直角点;故答案为:P 2、P 3;(2)①∵A (4,0),B (0,4),∴OA =OB =4,∴∠OAB =∠OBA =45°.根据题意,若点C 为线段AB 的直角点,则需要分三种情况:当点B 为直角顶点,过点B 作BC 1⊥AB 于点C 1,过点C 1作C 1M ⊥y 轴于点M ,∴∠C 1BM =45°,∴C 1M =BM ,设C 1M =BM =a ,∴C 1(a ,a +4),∴-a +8=a +4,解得a =2,∴C 1(2,6);当点A 为直角顶点,过点A 作AC 2⊥AB 于点C 2,过点C 2作C 2N ⊥x 轴于点N ,∴∠C 2AN =45°,∴C 2N =AN ,设C 2N =AN =b ,∴C 2(b +4,b ),∴-(b +4)+8=b ,解得b =2,∴C 2(6,2);当点C 为直角顶点,取AB 的中点P ,则P (2,2),设C 3的横坐标为t ,则C 3(t ,-t +8),由直角三角形的性质可知,C 3P =BP =AP =22,∴(t -2)2+(-t +6)2=(22)2,解得t =4,∴C3(4,4),综上,点C的坐标为(2,6)或(6,2)或(4,4).②如图,以AB为边向下作正方形ABC1C2,连接AC1,BC2交于点C3,则C1,C2,C3是线段AB的等腰直角点.根据点A的运动可知,点C1在直线l1:x=-4上运动,C2在直线l2:y=-x-4上运动,C3在直线l3:y=-x上运动.设l2与y=-2相交于点K,l3与y=-2相交于点L,∴K(2,-2),L(2,-2).由此可得出临界情况如图:如图3(1)中,当⊙D与l1相切时,m=-5;如图3(2)中,当⊙D与l2相切时,点F为切点,连接DF,则ΔDFK为等腰直角三角形,且DF=1,∴DK=2;∴D(-2+2,-2),即m=-2+2;如图3(3)中,当⊙D与l3相切时,点G为切点,连接DG,则ΔDGL为等腰直角三角形,且DG=1,∴DL=2;∴D(2-2,-2),即m=2-2;如图3(4)中,当⊙D与l3相切时,点H为切点,连接DH,则ΔDHL为等腰直角三角形,且DH=1,∴DL=2;∴D(2+2,-2),即m=2+2;综上,符合题意的m的取值范围:-5≤m≤-2+2或2-2≤m≤2+2.3(2023•秀洲区校级二模)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形,我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”;(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是③.(填序号)①矩形②菱形③正方形(2)如图1,RtΔABC中,∠BAC=90°,以AB为弦的⊙O交AC于D,交BC于E,连接DE、AE、BD,AB=6,sin C=35,若四边形ABED是“婆氏四边形”,求DE的长;(3)如图2,四边形ABCD为⊙O的内接四边形,连接AC,BD,OA,OB,OC,OD,已知∠BOC+∠AOD= 180°,①求证:四边形ABCD是“婆氏四边形”;②当AD+BC=4时,求⊙O半径的最小值.【解答】(1)解:∵平行四边形ABCD为⊙O的内接四边形,∴∠ABC=∠ADC,∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴平行四边形ABCD是矩形,∵四边形ABCD是“婆氏四边形”,∴AC⊥BD,∴矩形ABCD是正方形,故答案为:③;(2)解:∵∠BAC=90°,AB=6,sin C=35,∴BC=10,AC=8,∴BD为直径,∴∠BED =∠DEC =90°,∵四边形ABED 是“婆氏四边形”,∴AE ⊥BD ,∴AD =DE ,AB =BE =6,设AD =DE =m ,则CD =8-m ,EC =4,在Rt ΔEDC 中,m 2+42=(8-m )2,解得m =3,∴DE =3;(3)①证明:如图2,设AC ,BD 相交于点E ,∵∠DCA =12∠AOD ,∠BDC =12∠BOC ,∠BOC +∠AOD =180°,∴∠DCA +∠BDC =12(∠AOD +∠BOC )=12×180°=90°,∴∠CED =90°,∴AC ⊥BD ,∵四边形ABCD 是⊙O 的内接四边形,∴四边形ABCD 是“婆氏四边形”;②解:过点O 作OM ⊥AD 交于M ,过O 作ON ⊥BC 交于N ,∴AM =12AD ,BN =12BC ,∠AMO =∠BNO =90°,∴∠AOM +∠OAM =90°,∵OA =BO =CO =DO ,∴∠AOM =12∠AOD ,∠BON =12∠BOC ,∵∠BOC +∠AOD =180°,∴∠AOM =∠OBN ,∴ΔOAM ≅ΔBON (AAS ),∴ON =AM =12AD ,∵AD +BC =4,设ON =AM =n ,则AD =2n ,BC =4-2n ,BN =2-n ,在Rt ΔBON 中,BO =n 2+(2-n )2=2(n -1)2+2,当n =1时,BO 有最小值2,∴⊙O 半径的最小值为2.4(2022秋•西城区期末)给定图形W 和点P ,Q ,若图形W 上存在两个不重合的点M ,N ,使得点P 关于点M 的对称点与点Q 关于点N 的对称点重合,则称点P 与点Q 关于图形W 双对合.在平面直角坐标系xOy 中,已知点A (-1,-2),B (5,-2),C (-1,4).(1)在点D (-4,0),E (2,2),F (6,0)中,与点O 关于线段AB 双对合的点是 D ,F ;(2)点K 是x 轴上一动点,⊙K 的直径为1,①若点A 与点T (0,t )关于⊙K 双对合,求t 的取值范围;②当点K 运动时,若ΔABC 上存在一点与⊙K 上任意一点关于⊙K 双对合,直接写出点K 的横坐标k 的取值范围.【解答】解:(1)当A 点是D 点的中点时,对应点为(2,-4);当B 点是D 点的中点时,对应点为(14,-4);当A 点是E 点的中点时,对应点为(-4,-6);当B 点是E 点的中点时,对应点为(8,-6);当A 点是F 点的中点时,对应点为(-8,-4);当B 点是F 点的中点时,对应点为(4,-4);当A 点是O 点的中点时,对应点为(-2,-4);当B 点是O 点的中点时,对应点为(10,-4);∴D 、F 与点O 关于线段AB 双对合,故答案为:D 、F ;(2)①设K(k,0),∵A(-1,-2),T(0,t),∴A点关于K点对称点G为(2k+1,2),T点关于K点对称点H为(2k,-t),∵点A与点T(0,t)关于⊙K双对合,∴A点关于点K的对称点在以G为圆心,∵⊙K的直径为1,∴点A关于点K的对称点在以G点为圆心,1为半径的圆上,点T关于点K的对称点在以H为圆心,1为半径的圆上,如图所示,∵点A与点T(0,t)关于⊙K双对合,∴当圆G与圆H有交点,∵GH=1+(t+2)2,∴1+(t+2)2≤2,解得-2-3≤t≤-2+3;②∵A(-1,-2),B(5,-2),C(-1,4),K(k,0),∴A点关于K点的对称点F(2k+1,2),B点关于K点的对称点E(2k-5,2),C点关于K点的对称点G(2k+1, -4),∴ΔABC上任意一点关于K点对称点在阴影区域,∵ΔABC上存在一点与⊙K上任意一点关于⊙K双对合,∴阴影区域与圆K有公共交点,∵阴影部分是由ΔEGF边上任意一点为圆心,1为半径的圆构成的区域,如图1时,k-(2k+1)=12+1,解得k=-52;如图2时,2k+1-k=12+1,解得k=12;∴-52≤k≤12时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;过点K作KN⊥EG交于N,直线EG交x轴于点M,设直线EG的解析式为y=k x+b,∴(2k-5)k +b=2 (2k+1)k +b=-4 ,解得k =-1b=2k-3 ,∴y=-x+2k-3,∴M(2k-3,0),∵直线y=-x与y=-x+2k-3平行,∴∠KMN=45°,∴KM=2KN=322,如图3时,k-(2k-3)=322,解得k=3-322,如图4时,2k-3-k=322,解得k=3+322,∴3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合;综上所述:-52≤k≤12或3-322≤k≤3+322时,ΔABC上存在一点与⊙K上任意一点关于⊙K双对合.5(2022•钟楼区模拟)概念认识:平面内,M为图形T上任意一点,N为⊙O上任意一点,将M、N两点间距离的最小值称为图形T到⊙O的“最近距离”,记作d(T-⊙O).例:如图1,在直线l上有A、C、O三点,以AC为对角线作正方形ABCD,以点O为圆心作圆,与l交于E、F两点,若将正方形ABCD记为图形T,则C、E两点间的距离称为图形T到⊙的“最近距离”.数学理解:(1)在平面内有A、B两点,以点A为圆心,5为半径作⊙A,将点B记为图形T,若d(T-⊙A)=2,则AB= 3或7.(2)如图2,在平面直角坐标系中,以O(0,0)为圆心,半径为2作圆.①将点C(4,3)记为图形T,则d(T-⊙O)=.②将一次函数y=kx+22的图记为图形T,若d(T-⊙)>0,求k的取值范围.推广运用:(3)在平面直角坐标系中,P的坐标为(t,0),⊙P的半径为2,D、E两点的坐标分别为(5,5)、(5,-5),将ΔDOE记为图形T,若d(T-⊙P)=1,则t=.【解答】解:(1)如图1中,∵d(T-⊙A)=2,∴CB=CB′=2,∵AC=5,∴AB′=5-2=3,AB=5+2=7.故答案为:3或7.(2)①如图2中,连接OC交⊙O于E.∵C(4,3),∴OC=42+32=5,∵OE=2,∴EC=3,∴d(T-⊙O)=3.故答案为:3.②如图,设直线y=kx+22与⊙O相切于E,K.连接OK,OE.∵OE⊥DE,OK⊥DK,OD=22,OE=OK=2,∴DK=OD2?OK2=(22)2-22=2,DE=OD2?OE2=(22)2-22=2,∴DE=OE=DK=OK,∴四边形DEOK是菱形,∵∠DKO=∠DEO=90°,∴四边形DEOK是正方形,∴∠ODE=∠ODK=45°,∴直线DE的解析式为y=-x+22,直线DK的解析式为y=x+22,∵d(T-⊙O)>0,∴观察图象可知满足条件的k的值为-1<k<1且k≠0.(3)如图3-1中,当点P在DE的右边时.∵D(5,5),∴∠DOP=45°,∵d(T-⊙P)=1,∴OP=5+1+2=8∴t=8.如图3-2中,当点P在∠DOE的外侧时,由题意可知OM=1,OP=1+2=3,t=-3.综上所述,满足条件的t的值为8或-3.6(2022秋•昌平区期末)已知:对于平面直角坐标系xOy中的点P和⊙O,⊙O的半径为4,交x轴于点A,B,对于点P给出如下定义:过点C的直线与⊙O交于点M,N,点P为线段MN的中点,我们把这样的点P叫做关于MN的“折弦点”.(1)若C(-2,0).①点P1(0,0),P2(-1,1),P3(2,2)中是关于MN的“折弦点”的是 P1,P2 ;②若直线y=kx+3(k≠0).上只存在一个关于MN的“折弦点”,求k的值;(2)点C在线段AB上,直线y=x+b上存在关于MN的“折弦点”,直接写出b的取值范围.【解答】解:(1)①连接OP,∵P点是弦MN的中点,∴OP⊥MN,∴∠CPO=90°,∴P点在以CO为直径的圆上,∵C(-2,0),∴P点在以(-1,0)为圆心,1为半径的圆上,∵点P1(0,0),P2(-1,1)在该圆上,∴点P1(0,0),P2(-1,1)是关于MN的“折弦点”,故答案为:P1,P2;②由①可知,P点在以(-1,0)为圆心,1为半径的圆上,设圆心D(-1,0),∵直线y=kx+3(k≠0)上只存在一个关于MN的“折弦点”,∴直线y=kx+3(k≠0)与圆D相切,过点D作DF垂直直线y=kx+3交于点F,∵直线y=kx+3与x轴交于点E-3k,0,与y轴交于点G(0,3),∴DE=-1+3k,OF=3k,OG=3,∵∠DFE=∠EOG=90°,∴ΔEGO∽ΔEFD,∴DF GO =ED EG,∴13=3k-13+3k2,解得k=3 3;(2)由(1)可知,P点在以OC为直径的圆上,∵直线y=x+b上存在关于MN的“折弦点”,∴直线y=x+b与圆D相交或相切,过D点作DF垂直直线y=x+b交于点F,∵直线y=x+b与x轴交于点(-b,0),与y轴交于点(0,b),当C点与A点重合时,b有最大值,此时D(-2,0),∴(-2+b)2=8,解得b=22+2或b=22+2(舍);当C点与B点重合时,b有最小值,此时D(2,0),∴(-b-2)2=8,解得b=22-2(舍)或b=-22-2;∴-22-2≤b≤22+2时,直线y=x+b上存在关于MN的“折弦点”.7(2022秋•东城区校级月考)如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若60°<∠MPN<180°,则称P为⊙T的环绕点.(1)当⊙O半径为1时,①在P1(2,2),P2(2,0),P3(2,1)中,⊙O的环绕点是 P1 ;②直线y=3x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;(2)⊙T的半径为2,圆心为(0,t),以-m,33m(m>0)为圆心,33m为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.【解答】解:(1)①如图,PM,PN是⊙T的两条切线,M,N为切点,连接TM,TN,当∠MPN=60°时,∵PT平分∠MPN,∴∠TPN=∠MPT=30°,∵TM⊥PM,TN⊥PN,∴∠TNP=∠PMT=90°,∴TP =2TM =2,以T 为圆心,TP 为半径作⊙T .观察图象可知:当60°<∠MPN <180°时,⊙T 的环绕点在图中的圆环内部(包括大圆上的点不包括小圆上的点),故答案为:P 1;②如图中,设小圆交y 轴的正半轴于F ,当直线y =3x +b 经过点F 时,b =1,当直线y =3x +b 与大圆相切于K (在第二象限)时,连接OK ,由题意B (0,b ),A -b 3,0,所以OB =b ,OA =b 3,AB =103b ,∵OK =2,12×AB ×OK =12×OA ×OB ,∴b =210,观察图象可知,当1<b <210时,线段AB 上存在⊙的环绕点,根据对称怀可知:当-210<b <-1时,线段AB 上存在⊙的环绕点,综上所述,满足条件的b 的值为1<b <210或-210<b <-1;(2)如图中,不妨设E -m ,33m (m >0),则点E 直线y =-33x 上,∵m >0,∴点E 在射线OE 上运动,作EM ⊥x 轴;∵E -m ,33m (m >0),∴OM =m ,EM =33m ,以E -m ,33m (m >0)为圆心,33m 为半径的⊙E 与x 轴相切,作⊙E 的切线ON ,观察图象可知:以E -m ,33m (m >0)为圆心,33m 为半径的所有圆构成图形H ,图形H 即为∠MON 的内部,包括射线OM ,ON 上,当⊙T 的圆心在y 轴的正半轴上时,假设以T 为圆心,4为半径的圆与射线ON 相切于D ,连接TD ,∵tan ∠EOM =EM OM=33,∴∠EOM =30°,∵OM ,ON 是⊙E 的切线,∴∠EON =∠EOM =30°.∴∠TOD =30°,∴OT =2DT =8,∴T (0,8),当⊙T 的圆心在y 轴的负半轴上时,且经过点O (0.0)时,T (0,-4),观察图象可知,当-4<t <8时,在图象上存在⊙T 的环绕点.8(2022秋•海淀区校级月考)对于平面直角坐标系中的线段AB 和点P (点P 不在线段AB 上),给出如下定义:当PA =PB 时,过点A (或点B )向直线PB (或PA )作垂线段,则称此垂线段为点P 关于线段AB 的“测度线段”,垂足称为点P 关于线段AB 的“测度点”.如图所示,线段AD 和BC 为点P 关于线段AB 的“测度线段”,点C 与点D为点P关于线段AB的“测度点”.(1)如图,点M(0,4)、N(2,0),①点P的坐标为(5,4),直接写出点P关于线段MN的“测度线段”的长度4;②点H为平面直角坐标系中的一点,且HM=HN,则下列四个点:Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,是点H 关于线段MN的“测度点”的是;(2)直线y=-34x+6与x轴、y轴分别交于点A与点B,①点G为平面直角坐标系中一点,且GA=GB,若一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,直接写出k的取值范围为;②⊙O的半径为r,点C与点D均在⊙O上,且线段CD=65r.点K与点O位于线段CD的异侧,且KC=KD,若在线段AB上存在点K关于线段CD的“测度点”,直接写出r的取值范围为.【解答】解:(1)①∵M(0,4)、P(5,4),∴MP⎳x轴,∴点P关于线段MN的“测度线段”的长度为4,故答案为:4;②∵过点N作NF⊥MH交于F点,过点M作MG⊥NH交于点G,∵∠MFN=∠MGN=90°,∴F、G点在以MN为直径的圆上,设MN的中点为E,∵点M(0,4)、N(2,0),∴E(1,2),MN=25,∴点H关于线段MN的“测度点”在以E为圆心,5为半径的圆上,且不与M、N重合,∵Q1(0,0),Q2(3,3),Q3(1,0),Q4(0,4)中,Q1E=5,Q2E=5,Q3E=2,Q4E=5,∴Q1,Q2是点H关于线段MN的“测度点”,故答案为:Q1,Q2;(2)①当x=0时,y=6,∴B(0,6),当y=0时,x=8,∴A(8,0),∴AB的中点F(4,3),AB=10,由(1)可知,点G关于线段AB的“测度点”在以F为圆心,5为半径的圆上,且不与A、B点重合,∵一次函数y=kx-14k+3上存在点G关于线段AB的“测度点”,∴直线y=kx-14k+3与圆F相切或相交,过点F作FK垂直直线y=kx-14k+3交于点K,直线与y轴的交点为T,过点F作FL⎳KT交于交y轴于点L,过点L作SL⊥KT交于点S,∴LS =FK =5,∴LF 的直线解析式为y =kx -4k +3,∴L (0,-4k +3),T (0,-14k +3),∴TL =-10k ,∵sin ∠LTS =5-10k =11+k 2,∴k =±33,∴-33≤k ≤33时,一次函数y =kx -14k +3上存在点G 关于线段AB 的“测度点”,故答案为:-33≤k ≤33;②由(1)可知,K 点关于线段CD 的“测度点”在以CD 为直角的半圆上,且不与C 、D 重合,当CD ⎳AB ,且AB 与圆P 相切时,r 有最小值,由①可得,45=35r 6-r ,解得r =247,当CD 在AB 上时,r 有最大值,r =6,∴247≤r <6时,线段AB 上存在点K 关于线段CD 的“测度点”,故答案为:247≤r <6.9(2022•盐城一模)对于平面内的两点K 、L ,作出如下定义:若点Q 是点L 绕点K 旋转所得到的点,则称点Q 是点L 关于点K 的旋转点;若旋转角小于90°,则称点Q 是点L 关于点K 的锐角旋转点.如图1,点Q 是点L 关于点K 的锐角旋转点.(1)已知点A (4,0),在点Q 1(0,4),Q 2(2,23),Q 3(-2,23),Q 4(22,-22)中,是点A 关于点O 的锐角旋转点的是 Q 2,Q 4 .(2)已知点B (5,0),点C 在直线y =2x +b 上,若点C 是点B 关于点O 的锐角旋转点,求实数b 的取值范围.(3)点D 是x 轴上的动点,D (t ,0),E (t -3,0),点F (m ,n )是以D 为圆心,3为半径的圆上一个动点,且满足n ≥0.若直线y =2x +6上存在点F 关于点E 的锐角旋转点,请直接写出t 的取值范围.【解答】解:(1)如图,∵A (4,0),Q 1(0,4),∴OA =OQ 1=4,∠AOQ 1=90°,∴点Q 1不是点A 关于点O 的锐角旋转点;∵Q 2(2,23),作Q 2F ⊥x 轴于点F ,∴OQ 2=OF 2+Q 2F 2=22+(23)2=4=OA ,∵tan ∠Q 2OF =232=3,∴∠Q 2OF =60°,∴点Q 2是点A 关于点O 的锐角旋转点;∵Q 3(-2,23),作Q 3G ⊥x 轴于点G ,则tan ∠Q 3OG =Q 3G OG=232=3,∴∠Q3OG =60°,∴OQ 3=OG cos ∠Q 3OG =2cos60°=4=OA ,∵∠AOQ 3=180°-60°=120°,∴Q 3不是点A 关于点O 的锐角旋转点;∵Q 4(22,-22),作Q 4H ⊥x 轴于点H ,则tan ∠Q 4OH =Q 4H OH =2222=1,∴∠Q 4OH =45°,∵OQ 4=OH cos ∠Q 4OH =22cos45°=4=OA ,∴Q 4是点A 关于点O 的锐角旋转点;综上所述,在点Q 1,Q 2,Q 3,Q 4中,是点A 关于点O 的锐角旋转点的是Q 2,Q 4,故答案为:Q 2,Q 4.(2)在y 轴上取点P (0,5),当直线y =2x +b 经过点P 时,可得b =5,当直线y =2x +b 经过点B 时,则2×5+b =0,解得:b =-10,∴当-10<b <5时,OB 绕点O 逆时针旋转锐角时,点C 一定可以落在某条直线y =2x +b 上,过点O 作OG ⊥直线y =2x +b ,垂足G 在第四象限时,如图,则OT =-b ,OS =-12b ,∴ST =OS 2+OT 2=-12b 2+(-b )2=-52b ,当OG =5时,b 取得最小值,∵5×-52b =-b ×-12b ,∴b =-55,∴-55≤b <5.(3)根据题意,点F 关于点E 的锐角旋转点在半圆E 上,设点P 在半圆S 上,点Q 在半圆T 上(将半圆D 绕点E 旋转),如图3(1),半圆扫过的区域为图3(1)中阴影部分,如图3(2)中,阴影部分与直线y =2x +6相切于点G ,tan ∠EMG =2,SG =3,过点G 作GI ⊥x 轴于点I ,过点S 作SJ ⊥GI 于点J ,∴∠SGJ =∠EMG ,∴tan ∠SGJ =tan ∠EMG =2,∴GJ =355,SJ =655,∴GI =GJ +JI =3+355,∴MI =12GI =32+3510,∴OE =IE +MI -OM =352-32,即x E =t -3=352-32,解得t =352+32,如图3(3)中,阴影部分与HK 相切于点G ,tan ∠OMK =tan ∠EMH =2,EH =6,则MH =3,EM =35,∴x E =t -3=-3-35,解得t =-35,观察图象可知,-35≤t <3+352+32.10(2022秋•姜堰区期中)如图1,在平面内,过⊙T 外一点P 画它的两条切线,切点分别为M 、N ,若∠MPN ≥90°,则称点P 为⊙T 的“限角点”.(1)在平面直角坐标系xOy 中,当⊙O 半径为1时,在①P 1(1,0),②P 2-1,12,③P 3(-1,-1),④P 4(2,-1)中,⊙O 的“限角点”是②④;(填写序号)(2)如图2,⊙A 的半径为2,圆心为(0,2),直线l :y =-34x +b 交坐标轴于点B 、C ,若直线l 上有且只有一个⊙A 的“限角点”,求b 的值.(3)如图3,E (2,3)、F (1,2)、G (3,2),⊙D 的半径为2,圆心D 从原点O 出发,以2个单位/s 的速度沿直线l :y =x 向上运动,若ΔEFG 三边上存在⊙D 的“限角点”,请直接写出运动的时间t (s )的取值范围.【解答】解:(1)∵⊙O 半径为1,∴当P 为圆O 的“限角点”时,1<OP ≤2,∵OP 1=1,OP 2=52,OP 3=2,OP 4=5,∴⊙O 的“限角点”是P 2,P 3,故答案为:②③;(2)∵⊙A 的半径为2,∴当P 为圆A 的“限角点”时,2<AP ≤2,设直线l 上有且只有一个⊙O 的“限角点”P m ,-34m +b ,∴PA =2,此时AP ⊥BC ,令x =0,则y =b ,∴C (0,b ),令y =0,则x =43b ,∴B 43b ,0 ,∴tan ∠OCB =OB OC =43=AP CP ,∴CP =32,∴AC =52,∴|b -2|=52,∴b =92或b =-12;(3)∵圆心D 从原点O 出发,以2个单位/s 的速度沿直线l 移动,∴圆沿x 轴正方向移动t 个单位,沿y 轴正方向移动t 个单位,∴移动后D 点坐标为(t ,t ),设ΔEFG 边上的点P 是圆D 的“限角点”,则2<PD ≤2,在圆D 移动的过程中,当DF =2时,(t -1)2+(t -2)2=4,解得t =3-72或t =3+72,当t =3-72时,ΔEFG 边上开始出现⊙D 的“限角点”,当圆D 移动到E 点在圆上时,DE =2,(t -2)2+(t -3)2=2,解得t =5+32或t =5-32,∴3-72≤t <5-32时,ΔEFG 边上存在⊙D 的“限角点”,当圆D 再次移动到点F 在圆上时,DF =2,(t -2)2+(t -1)2=2,解得t =3+32或t 3-32,当t =3+32时,ΔEFG 三边上开始又要出现⊙D 的“限角点”;设直线EG 的解析式为y =kx +b ,直线y =x 与直线EG 的交点设为点H ,∴2k +b =33k +b=2 ,解得k =-1b =5 ,解得y =-x +5,联立方程组y =-x +5y =x,解得x =52y =52,∴H 52,52,当DH =2时,2t -52 2=4,解得t =2+52或t =-2+52,∴当t =2+52,ΔEFG 边上存在⊙D 的“限角点”,∴3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”;综上所述:3-72≤t <5-32或3+32<t ≤2+52时,ΔEFG 边上存在⊙D 的“限角点”.11(2022秋•西城区校级期中)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P绕点M逆时针旋转90°,得到点P ,点P 关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图1,若点M在坐标原点,点N(1,1),①点P(-2,0)的“对应点”Q的坐标为 (2,0) ;②若点P的“对应点”Q的坐标为(-1,3),则点P的坐标为;(2)如图2,已知⊙O的半径为1,M是⊙O上一点,点N(0,2),若P(m,0)(m>1)为⊙O外一点,点Q为点P的“对应点”,连接PQ.①当点M(a,b)在第一象限时,求点Q的坐标(用含a,b,m的式子表示);②当点M在⊙O 上运动时,直接写出PQ长的最大值与最小值的积为.(用含m的式子表示)【解答】解:(1)①∵P(-2,0),∴P点绕点M逆时针旋转90°得到点P (0,-2),∵点P 关于点N的对称点为Q,∴Q(2,0);故答案为:(2,0);②∵Q的坐标为(-1,3),∴Q点关于N(1,1)的对称点为P (3,-1),将P 绕M点顺时针旋转90°得到点P,过P 作P F⊥x轴于点F,过点P作PE⊥x轴于点E,∵∠P OP=90°,∴∠POE+∠FOP =90°,∵∠EPO+∠EOP=90°,∴∠FOP =∠EPO,∵OP=OP ,∴ΔPOE≅△OP F(AAS),∴EO=P F=1,PE=OF=3,∴P(-1.-3),故答案为:(-1,-3);(2)①过点M作EF⊥x轴于点F,过点P 作P E⊥EF交于点E,由(1)可得ΔMPF≅△P ME(AAS),∴MF=EP ,FP=ME,∵M(a,b),P(m,0),∴EF=b+m-a,EP =b,∴P (a+b,b+m-a),∵点N(0,2),∴Q(-a-b,4-b-m+a);②P点绕O点逆时针旋转90°后得到点G,∴G(0,m),∵P (a+b,b+m-a),∴GP =2(a 2+b 2),∵M (a ,b )在圆O 上,∴a 2+b 2=1,∴GP =2,∴P 在以G 为圆心,2为半径的圆上,设G 点关于N 点的对称点为H ,则H (0,4-m ),∴QH =2(a 2+b 2)=2,∴Q 点在以H 为圆心2为半径的圆上,∴PQ 的最大值为PH +2,PQ 的最小值为PH -2,∴PQ 长的最大值与最小值的积为(PH +2)(PH -2)=2m 2-8m +14,故答案为:2m 2-8m +14.12(2022•秦淮区二模)【概念认识】与矩形一边相切(切点不是顶点)且经过矩形的两个顶点的圆叫做矩形的第Ⅰ类圆;与矩形两边相切(切点都不是顶点)且经过矩形的一个顶点的圆叫做矩形的第Ⅱ类圆.【初步理解】(1)如图①~③,四边形ABCD 是矩形,⊙O 1和⊙O 2都与边AD 相切,⊙O 2与边AB 相切,⊙O 1和⊙O 3都经过点B ,⊙O 3经过点D ,3个圆都经过点C .在这3个圆中,是矩形ABCD 的第Ⅰ类圆的是①,是矩形ABCD 的第Ⅱ类圆的是.【计算求解】(2)已知一个矩形的相邻两边的长分别为4和6,直接写出它的第Ⅰ类圆和第Ⅱ类圆的半径长.【深入研究】(3)如图④,已知矩形ABCD ,用直尺和圆规作图.(保留作图痕迹,并写出必要的文字说明)①作它的1个第Ⅰ类圆;②作它的1个第Ⅱ类圆.【解答】解:(1)由定义可得,①的矩形有一条边AD 与⊙O 1相切,点B 、C 在圆上,∴①是第Ⅰ类圆;②的矩形有两条边AD 、AB 与⊙O 2相切,点C 在圆上,∴②是第Ⅱ类圆;故答案为:①,②;(2)如图1,设AD =6,AB =4,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =4-r ,由垂径定理可得,BF =CF =3,在Rt ΔBOF 中,r 2=(4-r )2+32,解得r =258;如图2,设AD =4,BC =6,切点为E ,过点O 作EF ⊥BC 交BC 于F ,交AD 于E ,连接BO ,设BO =r ,则OE =r ,OF =6-r ,由垂径定理可得,BF =CF =2,在Rt ΔBOF 中,r 2=(6-r )2+22,解得r =103;综上所述:第Ⅰ类圆的半径是258或103;如图3,AD =6,AB =4,过点O 作MN ⊥AD 交于点M ,交BC 于点N ,连接OC ,设AB 边与⊙O 的切点为G ,连接OG ,∴GO ⊥AB ,设OM =r ,则OC =r ,则ON =4-r ,∵OG =r ,∴BN =r ,∴NC =6-r ,在Rt ΔOCN 中,r 2=(4-r )2+(6-r )2,解得r =10-43,∴第Ⅱ类圆的半径是10-43;(3)①如图4,第一步,作线段AD 的垂直平分线交AD 于点E ,第二步,连接EC ,第三步,作EC 的垂直平分线交EF 于点O ,第四步,以O 为圆心,EO 为半径作圆,∴⊙O 即为所求第Ⅰ类圆;②如图5,第一步:作∠BAD 的平分线;第二步:在角平分线上任取点E ,过点E 作EF ⊥AD ,垂足为点F ;第三步:以点E 为圆心,EF 为半径作圆E ,交AC 于点G ,连接FG ;第四步:过点C 作CH ⎳FG ,CH 交AD 于点H ;第五步:过点H 作AD 的垂线,交∠BAD 的平分线于点O ;第六步:以点O 为圆心,OH 为半径的圆,⊙O 即为所求第Ⅱ类圆.13(2021秋•海淀区校级期末)新定义:在平面直角坐标系xOy 中,若几何图形G 与⊙A 有公共点,则称几何图形G 的叫⊙A 的关联图形,特别地,若⊙A 的关联图形G 为直线,则称该直线为⊙A 的关联直线.如图,∠M 为⊙A 的关联图形,直线l 为⊙A 的关联直线.(1)已知⊙O 是以原点为圆心,2为半径的圆,下列图形:①直线y =2x +2;②直线y =-x +3;③双曲线y =2x,是⊙O 的关联图形的是①③(请直接写出正确的序号).(2)如图1,⊙T 的圆心为T (1,0),半径为1,直线l :y =-x +b 与x 轴交于点N ,若直线l 是⊙T 的关联直线,求点N 的横坐标的取值范围.(3)如图2,已知点B (0,2),C (2,0),D (0,-2),⊙I 经过点C ,⊙I 的关联直线HB 经过点B ,与⊙I 的一个交点为P ;⊙I 的关联直线HD 经过点D ,与⊙I 的一个交点为Q ;直线HB ,HD 交于点H ,若线段PQ 在直线x =6上且恰为⊙I 的直径,请直接写出点H 横坐标h 的取值范围.【解答】解:(1)由题意①③是⊙O的关联图形,故答案为①③.(2)如图1中,∵直线l1y=-x+b是⊙T的关联直线,∴直线l的临界状态是和⊙T相切的两条直线l1和l2,当临界状态为l1时,连接TM(M为切点),∴TM=1,TM⊥MB,且∠MNO=45°,∴ΔTMN是等腰直角三角形,∴TN=2,OT=1,∴N(1+2,0),把N(1+2,0)代入y=-x+b中,得到b=1+2,同法可得当直线l2是临界状态时,b=-2+1,∴点N的横坐标的取值范围为-2+1≤N x≤2+1.(3)如图3-1中,当点Q在点P是上方时,连接BQ,PD交于点H,当圆心I在x轴上时,点H与点C重合,此时H(2,0),得到h的最大值为2,如图3-2中,当点P在点Q是上方时,直线PB,QD交于点H,当圆心I在x轴上时,点H(-6,0)得到h的最小值为-6,综上所述,-6≤h<0,0<h≤2.14(2022春•海淀区校级月考)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”.已知O(0,0),A(1,1),B(m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2,n=1时,如图1,线段BC与线段OA的“冰雪距离”是1.②当m=2时,线段BC与线段OA的“冰雪距离”是1,则n的取值范围是.(2)如图2,若点B落在圆心为A,半径为1的圆上,当n≥1时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为1,线段BC的中点为M.求点M随线段BC运动所走过的路径长.【解答】解:(1)①当m=2,n=1时,B(2,1),C(2,3).线段BC与线段OA的冰雪距离为AB=1.故答案为:1.②当m=2时,点A到直线BC的距离为1.若线段BC与线段OA的冰雪距离是1,则点A到BC的垂线的垂足在线段BC上,∴n≤1≤n+2,即-1≤n≤1.故答案为:-1≤n ≤1.(2)如图,B 2(0,1)为圆A 与y 轴的切点,B 11-22,1+22满足∠B 1AO =90°.当B 在B 1右侧时,冰雪距离d ≥B 1A =22.当B 在弧B 1B 2上时,冰雪距离d 为点B 到OA 的距离,结合图象可知,当且仅当B 处在点B 2时,d 取最小值22.(3)如图,当点B 位于图中弧DI 、线段IH 、弧HG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当点C 位于图中弧DE 、线段EF 、弧FG 时,线段BC 与线段OA 的“冰雪距离”始终为1.当线段BC 由图中B 1D 向上平移到DC 3时,或由B 2G 向上平移到GC 4时,线段BC 与线段OA 的“冰雪距离”始终为1.对应中点M 所走过的路线长为:2π+4+22.15(2022•东城区校级开学)对于⊙C 和⊙C 上的一点A ,若平面内的点P 满足:射线AP 与⊙C 交于点Q (点Q 可以与点P 重合),且1≤PAQA ≤2,则点P 称为点A 关于⊙C 的“生长点”.已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标 (2,0)(答案不唯一);(2)若点B 是点A 关于⊙O 的“生长点”,且满足∠BAO =30°,求点B 的纵坐标t 的取值范围;(3)直线y =3x +b 与x 轴交于点M ,且与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是.【解答】解:(1)根据“生长点”定义,点P 的坐标可以是(2,0),故答案为:(2,0)(答案不唯一);(2)如图,在x 轴上方作射线AM ,与⊙O 交于M ,使得∠OAM =30°,并在射线AM 上取点N ,使AM =MN ,并由对称性,将MN 关于x 轴对称,得M N ,则由题意,线段MN 和M N 上的点是满足条件的点B .作MH ⊥x 轴于H ,连接MC ,∴∠MHA =90°,即∠OAM +∠AMH =90°.∵AC 是⊙O 的直径,∴∠AMC =90°,即∠AMH +∠HMC =90°.∴∠OAM =∠HMC =30°.∴tan30°=MH AH=HC MH =33,设MH=y,则AH=3y,CH=33y,∴AC=AH+CH=433y=2,解得y=32,即点M的纵坐标为32.又由AN=2AM,A为(-1,0),可得点N的纵坐标为3,故在线段MN上,点B的纵坐标t满足:32≤t≤3,由对称性,在线段M N 上,点B的纵坐标t满足:?3≤t≤?3 2,∴点B的纵坐标t的取值范围是:32≤t≤3或?3≤t≤?32.(3)如图,Q是⊙O上异于点A的任意一点,延长AQ到P,使得PA=2AQ,∵Q的轨迹是以O为圆心,1为半径的圆,∴点P的运动轨迹是以K(1,0)为圆心,2为半径的圆,当直线MN与⊙K相切于点R时,连接KR,在RtΔKMR中,∠KRM=90°,∵直线y=3x+b与x轴夹角为60°,∴∠KMR=60°,KR=2,∴KM=2÷sin60°=433,∴OM=1+433,∴ON=3OM=4+3,∴b=-4-3,当直线MN经过G(0,-1)时,满足条件,此时b=-1,观察图象可知:当-4-3≤b≤-1时,线段MN上存在点A关于⊙O的“生长点”,根据对称性,同法可得当1≤b≤4-3时,也满足条件.故答案为:-4-3≤b≤-1或1≤b≤4-3.16(2022•东城区校级开学)在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的“近距离”,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0,如图,点A(-23,0),B(0,2).(1)如果⊙O的半径为2,那么d(A,⊙O)= 23-2 ,d(B,⊙O)=;(2)如果⊙O的半径为r,且d(⊙O,AB)>0,求r的取值范围;(3)如果C(0,m)是y轴上的动点,⊙C的半径为1,使d(⊙C,AB)<1,直接写出m的取值范围为.【解答】解:(1)∵⊙O的半径为2,A(-23,0),B(0,2),∴OB=2,OA=23>2,∴点A在⊙O外,点B在⊙O上,∴d(A,⊙O)=23-2,d(B,⊙O)=0,故答案为:23-2;0;(2)如图1,过点O 作OD ⊥AB 于点D ,在Rt ΔAOB 中,∵tan ∠BAO =OB OA =223=33,∴∠BAO =30°.在Rt ΔADO 中,sin ∠BAO =DO OA =12=DO23,∴DO =3,∵d (⊙O ,AB )=0,∴r 的取值范围是0<r <3或r >23;(3)如图2,过点C 作CN ⊥AB 于点N ,由(2)知,∠BAO =30°.∵C (m ,0),当点C 在点B 的上边时,m >2,此时,d (⊙C ,AB )=BC ,∴BC ≤1,即m -2≤1,解得m ≤3;当点C 与点B 重合时,m =2,此时d (⊙C ,AB )=0,当点C 在点B 的下边时,m <2,∴BC =2-m ,∴CN =BC ⋅sin ∠OBA =32(2-m ).∵d (⊙C ,AB )<1,⊙C 的半径为1,∴0<32(2-m )<1.∴2-233<m <2.综上所述:2-233<m ≤3.故答案为:2-233<m ≤3.17(2021秋•润州区校级月考)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的反称点的定义如下:若在射线CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时,①分别判断点M (3,1),N 32,0,T (-1,3)关于⊙O 的反称点是否存在?若存在,直接求其坐标;②将⊙O 沿x 轴水平向右平移1个单位为⊙O ′,点P 在直线y =-x +1上,若点P 关于⊙O ′的反称点P ′存在,且点P ′不在坐标轴上,则点P 的横坐标的取值范围 1-2≤x ≤1+2且x ≠2-2 ;(2)⊙C 的圆心在x 轴上,半径为1,直线y =-x +12与x 轴,y 轴分别交于点A 、B ,点E 与点D 分别在点A 与点B 的右侧2个单位,线段AE 、线段BD 都是水平的,若四边形ABDE 四边上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,直接写出圆心C 的横坐标的取值范围.。

初三数学压轴题解题方法技巧

初三数学压轴题解题方法技巧

初三数学压轴题解题方法技巧初三数学压轴题解题方法技巧一般地,中考数学压轴题通常有3小问,其中第一问比较简单,中等水平的学生能够比较轻易地解出来。

所以,同学们看到压轴题,不要产生恐惧心理,拿下第一问还能得两三分。

第二问通常有些难度,通常要利用第一问的条件和结论,所以,如果第一问做不出来,后面就别提了。

第三问难度最大,考验的是同学的综合能力。

1、以坐标系为桥梁,运用数形结合思想纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

2、以直线或抛物线知识为载体,运用函数与方程思想直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。

因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。

例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。

3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。

4、综合多个知识点,运用等价转换思想任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。

中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。

因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。

2025年中考数学压轴题型解析课件++题型二+填空压轴题

2025年中考数学压轴题型解析课件++题型二+填空压轴题
∠ACB和∠BAC的平分线相交于点O. (1)∠AOC =_1_1_2_._5_∘ ; 【解析】∵△ ABC是等腰直角三角形, ∠ACB = 90∘, CO平分∠ACB,AO平分∠CAB, ∴ ∠ACO = 45∘, ∠CAO = 22.5∘ , ∴ ∠AOC = 180∘ − 45∘ − 22.5∘ = 112.5∘ .
(第3题)
(2)延长AO交BC于点D,则AADO的值为___2_. (第3题)
【解析】如图,过点D作DF//OC,交AC的延长线
于点F,∴ ∠FCD = 90∘
,∠F = 45∘
,∴
DF CD
=
2.
∵ ∠COD = 180∘ − ∠AOC = 67.5∘ ,
∠CDO = 180∘ − 90∘ − 22.5∘ = 67.5∘ ,
120∘

EF = ED,∴ ∠DFE = 30∘ .
(第4题)
63
(2)点H为EF的中点,连接CH,交DF于点O,则OD =___5_.
(第4题)
【解析】如图,延长FE,CD交于点K,延长
CH,AF交于点M,易得△ EDK为等边三角
形,∴ DK = EK = DE = 2,∴ CK = 4. ∵ 点
∴ AH = EH = 2 AE = 2 × 2 =
2
2
2,∴ GH = AG − AH = 3 2 −
2 = 2 2,
∴ EG = EH2 + GH2 = 10.∵ 点F为DE的中点,点A为GD的中点,∴ AF
为△ DGE的中位线,∴ AF = 1 EG =
2
210(依据:三角形的中位线定理).
.
(2)若代数式a2

2ab
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立足数学核心素养分析中考压轴题作者:***来源:《中学数学杂志(初中版)》2022年第01期【摘要】本文用核心素养的三个水平分析压轴题,建议数学试题命制中可融入核心素养制作多维细目表,用核心素养三个水平来调控试题的难度,也可评定结构不良试题的得分.启发教师在教学中应培养学生数学正迁移能力,精准把握学情,来逐层落实数学核心素养.【关键词】核心素养;三个水平;正迁移;逐层《普通高中数学课程标准(2017年版)》提出发展学生的六个数学核心素养,切实提升思维品质和关键能力.中考数学最后一题,又称为压轴题,有区分选拔功能.笔者立足这六个数学核心素养来分析2018—2020这三年的陕西省数学中考最后一题(第25题),揭示命题特点,给出命题建议和教学建议.1 相关概念知识喻平教授[1]分析了布鲁姆评价模型、PISA数学素养评价框架、SOLO分类评价理论,提出将数学核心素养划分为三个水平,从低到高依次是知识理解、知识迁移和知识创新.同时,参考李先东老师和吴增生老师[2]对初中数学核心素养的三个水平的划分标准,对各试题进行素养观察.数学抽象A、逻辑推理R、数学建模M、数学运算C、直观想象I、数据分析D,A1,A2,A3分别对应数学抽象的三个水平,其他素养类似.2 对近三年陕西省数学中考第25题评析2.1 2018年第25题试题呈现及分析问题提出(1)如图1,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值為;(2分)问题探究(2)如图2,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM 的最大值;(3分)问题解决(3)如图3,AB,AC,BC是某新区的三条规划路,其中,AB=6km,AC=3km,∠BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB,AC 路边分别建物资分站点E,F.也就是,分别在BC、线段AB和AC上选取点P,E,F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE,EF和FP.为了快捷环保和节约成本要使得线段PE,EF,FP之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)(7分)核心素养水平分析:(1)如图4,能画出外接圆,则达到直观想象素养水平1的要求;三步演绎推理出结果,标定为逻辑推理素养水平1.分值标定为I1-1,R1-1.(2)如图5,能发现当射线MO与⊙O相交时,PM最大,则达到直观想象素养水平2的要求;能严谨地论证为什么此时MN最大,则达到逻辑推理素养水平2的要求.分值标定为I2-2,R2-1.(3)如图6,若能在陌生情境中跨学科联想到物理中的“光行最短”原理,将边AB和AC 看作平面镜,点光源P发出的光线经过两次反射回到点P,进而在BC上找一点P,构造将军饮马模型,且发现当连接AO时AP最小,如图7,此时线段MN最小,则达到直观想象素养水平3和数学建模素养水平3的要求,其中也考查了数学抽象素养水平3;能严谨地证明为什么线段MN是PE+EF+PF的最小值,和证明为什么当连接AO时AP最小,则达到逻辑推理素养水平3的要求;能在较复杂的情境中选择合适的运算方法,并体会代数推理,则达到数学运算素养水平3的要求.分值标定为I3-2,A3-1,R3-1,M3-1,C3-2.2.2 2019年第25题试题呈现及分析问题提出(1)如图8,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;(2分)问题探究(2)如图9,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;(5分)问题解决(3)如图10,有一座草根塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的草根景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)(5分)核心素养水平分析:(1)能在熟悉的情境中画出平行四边形,则达到直观想象素养水平1的要求.分值标定I1-2.(2)如图11,能构造出以边BC为直径的圆,则达到直观想象素养水平2的要求;如果能用准确的数学语言演绎推理出所有满足条件的点P,且论证在OB>AB的条件下,⊙O一定与AD相交于点P,则达到逻辑推理素养水平2的要求.分值标定为I2-3,R2-2.(3)能由平行四边形的性质推理出∠BE′D=60°,且严谨地论证EF≤E′A,标定为逻辑推理素养水平2;构造出⊙O,如图12,发现当E′为中点时,面积最大,标定为直观想象素养水平3;计算得到结果,则达到数学运算素养水平2的要求.分值标定为R2-1,C2-2,I3-2.2.3 2020年第25题试题呈现及分析问题提出(1)如图13,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是;(3分)问题探究(2)如图14,AB是半圆O的直径,AB=8.P是AB上一点,且PB=2PA,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长;(4分)问题解决(4)如图15,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C 在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P 分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y (m2).①求y与x之间的函数关系式;②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.(5分)核心素养水平分析:(1)能在熟悉的几何情境中写出证明过程,则达到逻辑推理素养水平1的要求.分值标定R1-3.(2)如图16,能根据求解需要,由PB=2PA想到连接OP,则达到直观想象素养水平2的要求;能将(1)结论迁移,推理出其他元素的关系,标定为逻辑推理素养水平2;在较复杂的图形中,能结合元素间关系和数据选择合适的运算方法,则达到数学运算素养水平2的要求.分值標定为I2-2,R2-1,C2-1.(3)如图17,能在复杂的情境中,用图形旋转转化阴影面积,标定为直观想象素养水平3;能严谨论证阴影面积转化前后不变,探索并用准确的语言推理图形间的数量关系,标定为逻辑推理素养水平2;能在较复杂的几何图形中建立二次函数模型,标定为数学建模素养水平3;其中蕴含了数学运算,为水平2.分值标定为I3-1,R2-1,M3-1,C2-2.2.4 总体评析(1)指向核心素养由表1得:①这三年的直观想象、逻辑推理和数学运算三个素养的权重较大,原因是第25题主要是“图形与几何”内容,在几何直观和空间想象的基础上进行有逻辑地思考,涉及部分代数推理,兼有数学运算素养.2019年数学运算权重增加,平衡代数和几何的比例.②数学抽象和数学建模考查较少.仅2018年问题(3)从跨学科的视角考查了数学抽象.三个试题第(3)问虽都以现实问题为背景,但给出了对应的几何图形,免去了从实际问题抽象出几何图形的过程,可能由于脱离几何图形来描述现实情境容易产生歧义.2020年问题(3),若题目中不给定变量x和y,直接让求阴影面积的最大值,则要求考生在体会图形的形成过程中,来找到决定阴影面积的关键量是线段AP的长度,自己引入变量来列关系式,这样会考查到数学抽象素养.(2)关注内在迁移这三道压轴题的五个核心素养水平2的总权重为50%,考查知识迁移最多.2018年问题(1)中顶角为120°的等腰三角形的线段和角之间的数量关系是解决(3)要用到的.问题(2)中圆内部一点到圆上的距离,什么时候最短或最长:该点和圆心的连线与圆的交点就是最短位置或最长位置,点在圆外也是一样的,这样(2)的活动经验可以来解决(3).2019年问题(1)中根据平行四边形的性质画图,(2)中寻找并求出△BCP面积最大值的数学活动经验,可以迁移解决(3).2020年问题(2)、(3)均用到了(1)的图形和结论,(2)中圆周角定理的推论也是求解(3)要用到的.每个试题的三问之间考查了学生的数学迁移能力.试题的三问从易到难,层层递进,是一个有机的整体.考查考生是否能识别三问之间的共同要素逐步求解问题(3).在设计各小问时,如果后一问用到前一问的结论,考查较简单;若后一问用到前一问的解题思路和活动经验,相对提升了难度,整个图形的元素关系发生较大改变,相应的核心素养水平要求更高.3 命题建议3.1 融入核心素养制作多维细目表这三个试题主要载体是特殊四边形和三角形内容,蕴含数形结合思想,指向直观想象和逻辑推理;2020年增加了函数,指向数学建模和数学运算.可见,“四基”影响着核心素养的内容(即考查哪个核心素养).由于核心素养的三个水平分别对应知识理解、知识迁移和知识创新三种不同的能力,可以用三个水平来调控试题的难度和区分度.一般地,同一个知识内容,核心素养水平级越高,考查的素养类别越多,试题难度就越大.如2018年的第25题第(3)问是这三个试题中难度最大的,考查了五个素养,且均为水平3.基于以上分析,可以制定表2,保证压轴题的综合性和区分度.3.2 用“三个水平”评价结构不良试题可命制结构不良试题[3],如当试题的问题部分的内容缺失或冗余时,让考生通过补充问题或删减多余的问题内容,来提出新问题并解答;或让考生改变题目条件,写出能产生的新结论.对于结构不良试题的评分,可分析所提出的新问题或新结论是对应核心素养的哪个水平,水平越高赋分越高.4 教学启示4.1 “逐层”落实数学核心素养初中数学分为“数与代数”“图形与几何”“概率与统计”和“综合与实践”四个领域,具体地,“数与代数”领域主要指向数学抽象、数学建模、代数推理和数学运算;“图形与几何”内容主要指向直观想象和逻辑推理;“概率与统计”主要指向数据分析.而数学核心素养被划分为知识理解、知识迁移和知识创新三个水平层次,教师应针对每个领域知识,系统地分析教材内容,依托数学内容环环相扣的特点来循序渐进地逐层发展学生的数学核心素养.教师在备课中应分析学生已有的与该章节内容有关的数学核心素养水平级情况,再结合每节教学内容,进一步思考应设置怎样的学习驱动任务,让学生达到相应的核心素养的哪个层级,最终提高数学核心素养水平.4.2 培养数学正迁移能力[4]一方面,当学习A和学习B有共同要素时,迁移就能发生.学习者能否识别概括出共同要素很关键,故可通过提高学习者的概括能力来培养数学正迁移能力.另一方面,当学习者大脑中有一个稳定清晰的数学认知结构时,面对新任务,就能唤醒已有的数学知识和经验来解决问题.如2018年第25题,对于最短路径,初中阶段数学相关依据是“两点之间,线段最短”和“垂线段最短”,物理中有“光行最短”原理,在“将军饮马”模型的构造中关联着等腰三角形的性质.考生若能将以上知识及其关系清晰地有逻辑性地存储在大脑中,形成自己的认知结构,题目便能求解.教师应挖掘知识间的内在逻辑关系,把知识点放在知识结构中去认识,基于单元整体乃至整个初中学段的课程的角度设计教学案例,来完善学生的认知结构.参考文献[1]喻平.学科关键能力的生成与评价[J].教育学报,2018,14(2):34-40.[2]李先东,吴增生.核心素养视角下对数学测评的研究[J].数学教育学报,2017,26(5):36-43.[3]任子朝,赵轩.数学考试中的结构不良问题研究[J].数学通报,2020,59(2):1-3.[4]喻平.数学教学心理学[M].北京:北京师范大学出版社,2018:108-111.作者简介成鸣娟(1988—),女,陕西渭南人,中教一级,硕士;参与完成两项西安市教育规划课题,主持完成一项陕西省教育规划课题“初中生数学迁移能力的培养研究”,多次被评为“希望杯”全国数学竞赛优秀辅导员;发表多篇论文.。

相关文档
最新文档