高中数学苏教版选修21第2章圆锥曲线与方程1word学案

合集下载

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(4.2)word学案

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(4.2)word学案

2.4.2 抛物线的几何性质[学习目标] 1.掌握抛物线的几何性质.2.会用抛物线的标准方程和几何性质处理一些简单的实际问题.[知识链接]类比椭圆、双曲线的几何性质,结合图象,说出抛物线y 2=2px (p >0)的范围、对称性、顶点、离心率.怎样用方程验证? 答:(1)范围:x ≥0,y ∈R ;(2)对称性:抛物线y 2=2px (p >0)关于x 轴对称; (3)顶点:抛物线的顶点是坐标原点;(4)离心率:抛物线上的点M 到焦点的距离和它到准线的距离的比叫抛物线的离心率.用e 表示,由定义可知e =1. [预习导引]1.抛物线的几何性质标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形性质范围x ≥0,y ∈Rx ≤0,y ∈Rx ∈R ,y ≥0x ∈R ,y ≤0对称轴 x 轴x 轴y 轴y 轴顶点 (0,0) 离心率e =1直线过抛物线y 2=2px (p >0)的焦点F ,与抛物线交于A (x 1,y 1)、B (x 2,y 2)两点,由抛物线的定义知,AF =x 1+p 2,BF =x 2+p2,故AB =x 1+x 2+p .3.直线与抛物线的位置关系直线y =kx +b 与抛物线y 2=2px (p >0)的交点个数决定于关于x 的方程k 2x 2+2(kb -p )x +b 2=0的解的个数.当k ≠0时,若Δ>0,则直线与抛物线有两个不同的公共点;当Δ=0时,直线与抛物线有一个公共点;当Δ<0时,直线与抛物线没有公共点.当k =0时,直线与抛物线的对称轴平行或重合,此时直线与抛物线有一个公共点.要点一 抛物线的几何性质例1 抛物线的顶点在原点,对称轴重合于椭圆9x 2+4y 2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程及抛物线的准线方程. 解 椭圆的方程可化为x 24+y 29=1,其短轴在x 轴上, ∴抛物线的对称轴为x 轴,∴设抛物线的方程为y 2=2px 或y 2=-2px (p >0). ∵抛物线的焦点到顶点的距离为3,即p2=3,∴p =6.∴抛物线的方程为y 2=12x 或y 2=-12x , 其准线方程分别为x =-3和x =3.规律方法 (1)注意抛物线各元素间的关系:抛物线的焦点始终在对称轴上,抛物线的顶点就是抛物线与对称轴的交点,抛物线的准线始终与对称轴垂直,抛物线的准线与对称轴的交点和焦点关于抛物线的顶点对称.(2)解决抛物线问题要始终把定义的应用贯彻其中,通过定义的运用,实现两个距离之间的转化,简化解题过程.跟踪演练1 已知双曲线方程是x 28-y 29=1,求以双曲线的右顶点为焦点的抛物线的标准方程及抛物线的准线方程.解 因为双曲线x 28-y 29=1的右顶点坐标为(22,0),所以p2=22,且抛物线的焦点在x 轴正半轴上,所以,所求抛物线方程为y 2=82x ,其准线方程为x =-2 2. 要点二 抛物线的焦点弦问题例2 已知抛物线y 2=6x ,过点P (4,1)引一条弦P 1P 2使它恰好被点P 平分,求这条弦所在的直线方程及P 1P 2.解 设直线上任意一点坐标为(x ,y ),弦两端点P 1(x 1,y 1),P 2(x 2,y 2).∵P 1,P 2在抛物线上,∴y 21=6x 1,y 22=6x 2.两式相减,得(y 1+y 2)(y 1-y 2)=6(x 1-x 2). ∵y 1+y 2=2,∴k =y 1-y 2x 1-x 2=6y 1+y 2=3,∴直线方程为y -1=3(x -4),即3x -y -11=0.由⎩⎪⎨⎪⎧y 2=6x ,y =3x -11,得y 2-2y -22=0, ∴y 1+y 2=2,y 1·y 2=-22. ∴P 1P 2=1+1922-4×(-22)=22303. 规律方法 (1)解决抛物线的焦点弦问题时,要注意抛物线定义在其中的应用,通过定义将焦点弦长度转化为端点的坐标问题,从而可借助根与系数的关系进行求解. (2)设直线方程时要特别注意斜率不存在的直线应单独讨论.跟踪演练2 已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A 、B 两点. (1)若直线l 的倾斜角为60°,求AB 的值; (2)若AB =9,求线段AB 的中点M 到准线的距离. 解 (1)因为直线l 的倾斜角为60°, 所以其斜率k =tan60°=3, 又F (32,0).所以直线l 的方程为y =3(x -32).联立⎩⎪⎨⎪⎧y 2=6x ,y =3(x -32)消去y 得x 2-5x +94=0.若设A (x 1,y 1),B (x 2,y 2).则x 1+x 2=5, 而AB =AF +BF =x 1+p 2+x 2+p2=x 1+x 2+p .所以AB =5+3=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义知 AB =AF +BF =x 1+p 2+x 2+p2=x 1+x 2+p =x 1+x 2+3=9,所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3, 又准线方程是x =-32,所以M 到准线的距离等于3+32=92.要点三 直线与抛物线的位置关系例3 已知抛物线的方程为y 2=4x ,直线l 过定点P (-2,1),斜率为k ,k 为何值时,直线l 与抛物线y 2=4x :只有一个公共点;有两个公共点;没有公共点? 解 由题意,设直线l 的方程为y -1=k (x +2).由方程组⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x ,(*)可得ky 2-4y +4(2k +1)=0.① (1)当k =0时,由方程①得y =1. 把y =1代入y 2=4x ,得x =14.这时,直线l 与抛物线只有一个公共点(14,1).(2)当k ≠0时,方程①的判别式为 Δ=-16(2k 2+k -1). 1°由Δ=0,即2k 2+k -1=0, 解得k =-1,或k =12.于是,当k =-1,或k =12时,方程①只有一个解,从而方程组(*)只有一个解.这时,直线l 与抛物线只有一个公共点. 2°由Δ>0,得2k 2+k -1<0, 解得-1<k <12.于是,当-1<k <12,且k ≠0时,方程①有两个解,从而方程组(*)有两个解.这时,直线l 与抛物线有两个公共点. 3°由Δ<0,即2k 2+k -1>0, 解得k <-1,或k >12.于是,当k <-1,或k >12时,方程①没有实数解,从而方程组(*)没有解.这时,直线l 与抛物线没有公共点. 综上,我们可得当k =-1,或k =12,或k =0时,直线l 与抛物线只有一个公共点;当-1<k <12,且k ≠0时,直线l 与抛物线有两个公共点;当k <-1,或k >12时,直线l 与抛物线没有公共点.规律方法 直线与抛物线交点的个数,等价于直线方程、抛物线方程联立得到的方程组解的个数.注意直线斜率不存在和得到的方程二次项系数为0的情况.跟踪演练3 如图,过抛物线y 2=x 上一点A (4,2)作倾斜角互补的两条直线AB ,AC 交抛物线于B ,C 两点,求证:直线BC 的斜率是定值.证明 设k AB =k (k ≠0),∵直线AB ,AC 的倾斜角互补,∴k AC =-k (k ≠0), ∵AB 的方程是y =k (x -4)+2.由方程组⎩⎪⎨⎪⎧y =k (x -4)+2,y 2=x ,消去y 后,整理得k 2x 2+(-8k 2+4k -1)x +16k 2-16k +4=0. ∵A (4,2),B (x B ,y B )是上述方程组的解. ∴4·x B =16k 2-16k +4k 2,即x B =4k 2-4k +1k 2.以-k 代换x B 中的k , 得x C =4k 2+4k +1k 2,∴k BC =y B -y C x B -x C =k (x B -4)+2-[-k (x C -4)+2]x B -x C=k (x B +x C -8)x B -x C =k (8k 2+2k 2-8)-8kk 2=-14.∴直线BC 的斜率为定值.1.以x 轴为对称轴的抛物线的通径(过焦点且与x 轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为________________. 答案 y 2=8x 或y 2=-8x解析 设抛物线y 2=2px 或y 2=-2px (p >0),p =4.2.若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为________. 答案 (18,±24)解析 由题意知,点P 到焦点F 的距离等于它到顶点O 的距离,因此点P 在线段OF 的垂直平分线上,而F (14,0),所以P 点的横坐标为18,代入抛物线方程得y =±24,故点P 的坐标为(18,±24). 3.若抛物线y =4x 2上一点到直线y =4x -5的距离最短,则该点坐标为________. 答案 (12,1)解析 因为y =4x 2与y =4x -5不相交,设与y =4x -5平行的直线方程为y =4x +m .则⎩⎪⎨⎪⎧y =4x 2,y =4x +m⇒4x 2-4x -m =0.① 设此直线与抛物线相切有Δ=0, 即Δ=16+16m =0,∴m =-1.将m =-1代入①式得x =12,从而y =14×4=1,所求点的坐标为(12,1).4.经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是________________. 答案 6x -4y -3=0解析 设直线l 的方程为3x -2y +c =0,抛物线y 2=2x 的焦点为F (12,0),所以3×12-2×0+c =0,所以c =-32,故直线l 的方程是6x -4y -3=0.1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以根据待定系数法求抛物线的方程.2.直线与抛物线有一个交点,是直线与抛物线相切的必要不充分条件.3.直线与抛物线的相交弦问题共有两类,一类是过焦点的弦,一类是不过焦点的弦.解决弦的问题,大多涉及到抛物线的弦长、弦的中点、弦的斜率.常用的办法是将直线与抛物线联立,转化为关于x 或y 的一元二次方程,然后利用根与系数的关系,这样避免求交点.尤其是弦的中点问题,还应注意“点差法”的运用.一、基础达标1.设AB 为过抛物线y 2=2px (p >0)的焦点的弦,则AB 的最小值为________. 答案 2p解析 当AB 垂直于对称轴时,AB 取最小值,此时AB 即为抛物线的通径,长度等于2p . 2.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为________. 答案 x =-1解析 抛物线的焦点为F (p 2,0),所以过焦点且斜率为1的直线方程为y =x -p 2,即x =y +p2,代入y 2=2px 得y 2=2p ⎝⎛⎭⎫y +p 2=2py +p 2,即y 2-2py -p 2=0,由根与系数的关系得y 1+y 22=p =2(y 1,y 2分别为点A ,B 的纵坐标),所以抛物线方程为y 2=4x ,准线方程为x =-1.3.过抛物线y 2=2px (p >0)的焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在准线上的射影为A 1、B 1,则∠A 1FB 1等于________. 答案 90°解析 如图,由抛物线定义知AA 1=AF ,BB 1=BF ,所以∠AA 1F =∠AF A 1,又∠AA 1F =∠A 1FO , ∴∠AF A 1=∠A 1FO , 同理∠BFB 1=∠B 1FO ,于是∠AF A 1+∠BFB 1=∠A 1FO +∠B 1FO =∠A 1FB 1.故∠A 1FB 1=90°. 4.抛物线y 2=8x 的准线方程是________. 答案 x =-2解析 抛物线y 2=2px (p >0),p =4.5.过抛物线y 2=4x 的焦点作直线交抛物线于A ,B 两点,设A (x 1,y 1),B (x 2,y 2).若x 1+x 2=6,则AB =________. 答案 8解析 如图,作AA ′⊥l ,BB ′⊥l ,垂足分别为A ′,B ′. 由抛物线定义知 AF =AA ′=x 1+p2,BF =BB ′=x 2+p2.∴AB =AF +BF =x 1+x 2+p =6+2=8.6.已知O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A 的坐标是__________________. 答案 (1,2)或(1,-2)解析 ∵抛物线的焦点为F (1,0),设A (y 204,y 0),则OA →=(y 204,y 0),AF →=(1-y 204,-y 0),由OA →·AF →=-4,得y 0=±2, ∴点A 的坐标是(1,2)或(1,-2).7.如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若BC =2BF ,且AF =3,求此抛物线的方程. 解 过A 、B 分别作准线的垂线AA ′、BD , 垂足分别为A ′、D ,则BF =BD ,又2BF =BC ,∴在Rt △BCD 中,∠BCD =30°. 又AF =3,∴AA ′=3,AC =6,FC =3.∴F 到准线距离p =12FC =32.∴y 2=3x . 二、能力提升8.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =________. 答案 -45解析 由⎩⎪⎨⎪⎧y 2=4x ,y =2x -4得x 2-5x +4=0,∴x =1或x =4.不妨设A (4,4),B (1,-2),则|F A →|=5,|FB →|=2,F A →·FB →=(3,4)·(0,-2)=-8, ∴cos ∠AFB =F A →·FB →|F A →|·|FB →|=-85×2=-45.9.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若F A =2FB ,则k =________. 答案223解析 设A (x 1,y 1),B (x 2,y 2),易知x 1>0,x 2>0,y 1>0,y 2>0,由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,得k 2x 2+(4k 2-8)x +4k 2=0, ∴x 1x 2=4,①∵F A =x 1+p2=x 1+2,FB =x 2+p2=x 2+2,且F A =2FB ,∴x 1=2x 2+2.② 由①②得x 2=1,∴B (1,22),代入y =k (x +2),得k =223.10.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF为等边三角形,则p =________. 答案 6解析 抛物线的焦点坐标F (0,p 2),准线方程为y =-p 2.代入x 23-y 23=1得|x |=3+p 24.若要使△ABF 为等边三角形,则tan π6=|x |p=3+p 24p =33,解得p 2=36,p =6. 11.已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b 2=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交点为P (32,6),求抛物线方程和双曲线方程.解 依题意,设抛物线方程为y 2=2px (p >0), ∵点(32,6)在抛物线上,∴6=2p ×32,∴p =2,∴所求抛物线方程为y 2=4x . ∵双曲线左焦点在抛物线的准线x =-1上, ∴c =1,即a 2+b 2=1, 又点(32,6)在双曲线上,∴94a 2-6b 2=1, 由⎩⎪⎨⎪⎧a 2+b 2=1,94a 2-6b 2=1, 解得:a 2=14,b 2=34.∴所求双曲线方程为4x 2-43y 2=1.12.已知顶点在原点,焦点在x 轴上的抛物线被直线y =2x +1截得的弦长为15,求抛物线的方程.解 设抛物线的方程为y 2=2ax ,则⎩⎪⎨⎪⎧y 2=2ax ,y =2x +1,消去y ,得 4x 2-(2a -4)x +1=0,设直线y =2x +1与抛物线交于A 、B 两点,其坐标为A (x 1,y 1),B (x 2,y 2),x 1+x 2=a -22,x 1x 2=14.AB =1+k 2|x 1-x 2|=5(x 1+x 2)2-4x 1x 2 =5(a -22)2-4×14=15. 则a 24-a =3,a 2-4a -12=0, a =-2或6.∴y 2=-4x 或y 2=12x . 三、探究与创新13.已知过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A 、B 两点,设A (x 1,y 1),B (x 2,y 2),则称AB 为抛物线的焦点弦. 求证:(1)y 1y 2=-p 2;x1x 2=p 24; (2)1F A +1FB =2p; (3)以AB 为直径的圆与抛物线的准线相切. 证明 如图所示.(1)抛物线y 2=2px (p >0)的焦点F (p 2,0),准线方程:x =-p2.设直线AB 的方程为x =ky +p2,把它代入y 2=2px ,化简,得y 2-2pky -p 2=0.∴y 1y 2=-p 2,∴x 1x 2=y 212p ·y 222p =(y 1y 2)24p 2=(-p 2)24p 2=p 24.(2)根据抛物线定义知第- 11 -页 共11页 F A =AA 1=x 1+p 2,FB =BB 1=x 2+p 2, ∴1F A +1FB =1x 1+p 2+1x 2+p 2=22x 1+p +22x 2+p=2(2x 2+p )+2(2x 1+p )(2x 1+p )(2x 2+p )=4(x 1+x 2)+4p 4x 1x 2+2p (x 1+x 2)+p 2=4(x 1+x 2+p )2p (x 1+x 2+p )=2p . (3)设AB 中点为C (x 0,y 0),过A 、B 、C 分别作准线的垂线,垂足分别为A 1,B 1,C 1.则CC 1=12(AA 1+BB 1)=12(AF +BF )=12·AB . ∴以线段AB 为直径的圆与抛物线的准线相切.。

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(3.1)word学案

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(3.1)word学案

2.3 双曲线2.3.1 双曲线的标准方程[学习目标] 1.了解双曲线的标准方程.2.会求双曲线的标准方程.3.会用双曲线的标准方程处理简单的实际问题.[知识链接]1.与椭圆类比,能否将双曲线定义中“动点M 到两定点F 1、F 2距离之差的绝对值为定值2a ”中,“绝对值”三个字去掉.答:不能.否则所得轨迹仅是双曲线一支.2.如何判断双曲线x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b 2=1(a >0,b >0)的焦点位置?答:x 2系数是正的焦点在x 轴上,否则焦点在y 轴上. [预习导引] 1.双曲线的定义把平面内到两个定点F 1,F 2的距离的差的绝对值等于常数(小于F 1F 2的正数)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 2.双曲线的标准方程焦点在x 轴上 焦点在y 轴上 标准方程 x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 焦点 F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )焦距F 1F 2=2c ,c 2=a 2+b 2要点一 求双曲线的标准方程例1 根据下列条件,求双曲线的标准方程. (1)经过点P (3,154),Q (-163,5);(2)c =6,经过点(-5,2),焦点在x 轴上.解 (1)方法一 若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),∴点P (3,154)和Q (-163,5)在双曲线上,∴⎩⎨⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎪⎨⎪⎧a 2=-16,b 2=-9. (舍去)若焦点在y 轴上,设双曲线的方程为 y 2a 2-x 2b 2=1(a >0,b >0), 将P 、Q 两点坐标代入可得⎩⎨⎧22516a 2-9b 2=1,25a 2-2569b 2=1,解之得⎩⎪⎨⎪⎧a 2=9,b 2=16,∴双曲线的标准方程为y 29-x 216=1.方法二 设双曲线方程为x 2m +y 2n =1(mn <0).∵P 、Q 两点在双曲线上,∴⎩⎨⎧9m +22516n =1,2569m +25n =1,解得⎩⎪⎨⎪⎧m =-16,n =9.∴所求双曲线的标准方程为y 29-x 216=1.(2)方法一 依题意可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).依题设有⎩⎪⎨⎪⎧a 2+b 2=6,25a 2-4b 2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=1,∴所求双曲线的标准方程为x 25-y 2=1.方法二 ∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2),∴25λ-46-λ=1,∴λ=5或λ=30(舍去). ∴所求双曲线的标准方程是x 25-y 2=1.规律方法 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程,然后用待定系数法求出a ,b 的值.若焦点位置不确定,可按焦点在x 轴和y 轴上两种情况讨论求解,此方法思路清晰,但过程复杂,注意到双曲线过两定点,可设其方程为mx 2+ny 2=1(mn <0),通过解方程组即可确定m 、n ,避免了讨论,实为一种好方法. 跟踪演练1 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和(94,5),求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.解(1)由已知可设所求双曲线方程为y 2a 2-x2b 2=1 (a >0,b >0),则⎩⎨⎧32a 2-9b 2=1,25a 2-8116b 2=1,解得⎩⎪⎨⎪⎧a 2=16,b 2=9, ∴双曲线的方程为y 216-x 29=1.(2)方法一 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).由题意易求得c =2 5.又双曲线过点(32,2),∴(32)2a 2-4b 2=1.又∵a 2+b 2=(25)2,∴a 2=12,b 2=8. 故所求双曲线方程为x 212-y 28=1.方法二 设双曲线方程为x 216-k -y 24+k =1 (-4<k <16),将点(32,2)代入得k =4, ∴所求双曲线方程为x 212-y 28=1.要点二 由方程判断曲线的形状例2 已知0°≤α≤180°,当α变化时,方程x 2cos α+y 2sin α=1表示的曲线怎样变化? 解 (1)当α=0°时,方程为x 2=1,它表示两条平行直线x =±1.(2)当0°<α<90°时,方程为x 21cos α+y 21sin α=1.①当0°<α<45°时0<1cos α<1sin α,它表示焦点在y 轴上的椭圆.②当α=45°时,它表示圆x 2+y 2= 2.③当45°<α<90°时,1cos α>1sin a >0,它表示焦点在x 轴上的椭圆.(3)当α=90°时,方程为y 2=1.它表示两条平行直线y =±1.(4)当90°<α<180°时,方程为y 21sin α-x 21-cos α=1,它表示焦点在y 轴上的双曲线.(5)当α=180°时,方程为x 2=-1,它不表示任何曲线.规律方法 像椭圆的标准方程一样,双曲线的标准方程也有“定型”和“定量”两个方面的功能:①定型:以x 2和y 2的系数的正负来确定;②定量:以a 、b 的大小来确定. 跟踪演练2 方程ax 2+by 2=b (ab <0)表示的曲线是____________________. 答案 焦点在y 轴上的双曲线解析 原方程可化为x 2b a +y 2=1,∵ab <0,∴ba <0,知曲线是焦点在y 轴上的双曲线.要点三 与双曲线有关的轨迹问题例3 如图,在△ABC 中,已知AB =42,且三内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.解 以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系如图所示,则A (-22,0),B (22,0).由正弦定理,得sin A =a 2R ,sin B =b 2R ,sin C =c2R (R 为△ABC 的外接圆半径).∵2sin A +sin C =2sin B ,∴2a +c =2b ,即b -a =c2,从而有CA -CB =12AB =22<AB .由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点). ∵a =2,c =22,∴b 2=c 2-a 2=6,即所求轨迹方程为 x 22-y 26=1(x >2). 规律方法 求解与双曲线有关的点的轨迹问题,常见的方法有两种:(1)列出等量关系,化简得到方程;(2)寻找几何关系,由双曲线的定义,得出对应的方程.求解双曲线的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双曲线的一支还是两支.跟踪演练3 如图所示,已知定圆F 1:(x +5)2+y 2=1,定圆F 2:(x -5)2+y 2=42,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.解 圆F 1:(x +5)2+y 2=1,圆心F 1(-5,0),半径r 1=1; 圆F 2:(x -5)2+y 2=42,圆心F 2(5,0),半径r 2=4. 设动圆M 的半径为R ,则有MF 1=R +1,MF 2=R +4, ∴MF 2-MF 1=3<10=F 1F 2.∴点M 的轨迹是以F 1,F 2为焦点的双曲线的左支,且a =32,c =5,于是b 2=c 2-a 2=914.∴动圆圆心M 的轨迹方程为x 294-y 2914=1(x ≤-32).1.椭圆x 234-y 2n 2=1和双曲线x 2n 2-y 216=1有相同的焦点,则实数n 的值是________.答案 ±3解析 由题意知34-n 2=n 2+16,∴2n 2=18,n 2=9.∴n =±3.2.若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是________________________. 答案 焦点在y 轴上的双曲线解析 将已知方程化为标准形式,根据项的系数符号进行判断.原方程可化为y 2k 2-1-x 21+k =1.∵k >1,∴k 2-1>0,1+k >0.∴已知方程表示的曲线为焦点在y 轴上的双曲线. 3.过点(1,1)且ba =2的双曲线的标准方程是________________________.答案 x 212-y 2=1或y 212-x 2=1解析 由于b a =2,∴b 2=2a 2.当焦点在x 轴上时,设双曲线方程为x 2a 2-y 22a 2=1,代入(1,1)点,得a 2=12.此时双曲线方程为x 212-y 2=1.同理求得焦点在y 轴上时,双曲线方程为y 212-x 2=1.4.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足PF 1-PF 2=6,则动点P 的轨迹方程是______________. 答案 x 29-y 216=1(x ≥3)解析 根据双曲线的定义可得.1.双曲线定义中|PF 1-PF 2|=2a (2a <F 1F 2)不要漏了绝对值符号,当2a =F 1F 2时表示两条射线. 2.在双曲线的标准方程中,a >b 不一定成立.要注意与椭圆中a ,b ,c 的区别.在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b2.3.用待定系数法求双曲线的标准方程时,要先判断焦点所在的位置,设出标准方程后,由条件列出a ,b ,c 的方程组.如果焦点不确定要分类讨论,采用待定系数法求方程或用形如mx 2+ny 2=1 (mn <0)的形式求解.一、基础达标1.双曲线x 210-y 22=1的焦距为________.答案 43解析 由双曲线的标准方程可知,a 2=10,b 2=2.于是有c 2=a 2+b 2=12,则2c =4 3. 2.若方程y 24-x 2m +1=1表示双曲线,则实数m 的取值范围是________.答案 m >-1解析 依题意应有m +1>0,即m >-1.3.已知A (0,-5)、B (0,5),P A -PB =2a ,当a =3或5时,P 点的轨迹为________________. 答案 双曲线一支或一条射线解析 当a =3时,2a =6,此时AB =10, ∴点P 的轨迹为双曲线的一支(靠近点B ). 当a =5时,2a =10,此时AB =10,∴点P 的轨迹为射线,且是以B 为端点的一条射线.4.设双曲线C 的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C 的方程为________.答案 x 2-y 2=1解析 由题意可知,双曲线的焦点在x 轴上, 且c =2,a =1,则b 2=c 2-a 2=1, 所以双曲线C 的方程为x 2-y 2=1.5.已知动圆M 过定点B (-4,0),且和定圆(x -4)2+y 2=16相切,则动圆圆心M 的轨迹方程为________. 答案 x 24-y 212=1解析 设动圆M 的半径为r ,依题意有MB =r ,另设A (4,0),则有MA =r ±4,即MA -MB =±4.亦即动圆圆心M 到两定点A 、B 的距离之差的绝对值等于常数4,又4<AB ,因此动点M 的轨迹为双曲线,且c =4,2a =4,∴a =2,a 2=4,b 2=c 2-a 2=12,故轨迹方程是x 24-y 212=1. 6.若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若AB =5,则△AF 1B 的周长为________. 答案 18解析 由双曲线定义可知AF 1=2a +AF 2=4+AF 2; BF 1=2a +BF 2=4+BF 2,∴AF 1+BF 1=8+AF 2+BF 2=8+AB =13. △AF 1B 的周长为AF 1+BF 1+AB =18.7.已知△ABC 的一边的两个顶点B (-a,0),C (a,0)(a >0),另两边的斜率之积等于m (m ≠0).求顶点A 的轨迹方程,并且根据m 的取值情况讨论轨迹的图形. 解 设顶点A 的坐标为(x ,y ),则 k AB =y x +a ,k AC =y x -a. 由题意,得y x +a ·y x -a=m ,即x 2a 2-y 2ma 2=1(y ≠0).当m >0时,轨迹是中心在原点,焦点在x 轴上的双曲线(两顶点除外);当m <0且m ≠-1时,轨迹是中心在原点,以坐标轴为对称轴的椭圆(除去与x 轴的两个交点),其中当-1<m <0时,椭圆焦点在x 轴上;当m <-1时,椭圆焦点在y 轴上; 当m =-1时,轨迹是圆心在原点,半径为a 的圆(除去与x 轴的两个交点). 二、能力提升8.焦点在x 轴上的双曲线经过点P (42,-3),且Q (0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为________. 答案 x 216-y 29=1解析 设焦点F 1(-c,0),F 2(c,0)(c >0),则由QF 1⊥QF 2,得kQF 1·kQF 2=-1, ∴5c ·5-c=-1,∴c =5, 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),∵双曲线过点P (42,-3),∴32a 2-9b 2=1,又∵c 2=a 2+b 2=25,∴a 2=16,b 2=9, ∴双曲线的标准方程为x 216-y 29=1.9.在平面直角坐标系xOy 中,方程x 2k -1+y 2k -3=1表示焦点在x 轴上的双曲线,则k 的取值范围为________. 答案 (1,3)解析 将方程化为x 2k -1-y 23-k =1,若表示焦点在x 轴上的双曲线,则有k -1>0且3-k >0,即1<k <3.10.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的两个焦点,若PF 1=17,则PF 2的值为________. 答案 33解析 由双曲线方程x 264-y 236=1知,a =8,b =6,则c =a 2+b 2=10.∵P 是双曲线上一点,∴|PF 1-PF 2|=2a =16, 又PF 1=17,∴PF 2=1或PF 2=33. 又PF 2≥c -a =2,∴PF 2=33.11.双曲线x 2m -y 2m -5=1的一个焦点到中心的距离为3,求m 的值.解 (1)当焦点在x 轴上时,有m >5, 则c 2=m +m -5=9,∴m =7; (2)当焦点在y 轴上时,有m <0, 则c 2=-m +5-m =9,∴m =-2; 综上,m =7或m =-2.12.已知方程kx 2+y 2=4,其中k ∈R ,试就k 的不同取值讨论方程所表示的曲线类型. 解 (1)当k =0时,方程变为y =±2,表示两条与x 轴平行的直线; (2)当k =1时,方程变为x 2+y 2=4表示圆心在原点,半径为2的圆;(3)当k <0时,方程变为y 24-x 2-4k =1,表示焦点在y 轴上的双曲线.(4)当0<k <1时,方程变为x 24k +y 24=1,表示焦点在x 轴上的椭圆;(5)当k >1时,方程变为x 24k +y 24=1,表示焦点在y 轴上的椭圆.三、探究与创新13.已知双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有相同的焦点. (1)求双曲线的标准方程;(2)若点M 在双曲线上,F 1、F 2为左、右焦点,且MF 1+MF 2=63,试判断△MF 1F 2的形状. 解 (1)椭圆方程可化为x 29+y 24=1,焦点在x 轴上,且c =9-4=5,故设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0), 则有⎩⎪⎨⎪⎧9a 2-4b 2=1,a 2+b 2=5,解得a 2=3,b 2=2,所以双曲线的标准方程为x 23-y 22=1.(2)不妨设M 点在右支上,则有MF 1-MF 2=23, 又MF 1+MF 2=63,故解得MF 1=43,MF 2=23,又F 1F 2=25, 因此在△MF 1F 2中,MF 1边最长,而cos ∠MF 2F 1=MF 22+F 1F 22-MF 212·MF 2·F 1F 2<0,所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.。

苏教版高中数学选修2-1第2章 圆锥曲线与方程.docx

苏教版高中数学选修2-1第2章 圆锥曲线与方程.docx

第2章 圆锥曲线与方程§2.1 圆锥曲线 课时目标 1.理解三种圆锥曲线的定义.2.能根据圆锥曲线的定义判断轨迹的形状.1.圆锥面可看成一条直线绕着与它相交的另一条直线l(两条直线不互相垂直)旋转一周所形成的曲面.其中直线l 叫做圆锥面的轴.2.圆锥面的截线的形状在两个对顶的圆锥面中,若圆锥面的母线与轴所成的角为θ,不过圆锥顶点的截面与轴所成的角为α,则α=π2时,截线的形状是圆;当θ<α<π2时,截线的形状是椭圆;0≤α≤θ时,截线的形状是双曲线;当α=θ时,截线的形状是抛物线.3.椭圆的定义平面内到______________________________等于常数(大于F 1F 2)的点的轨迹叫做椭圆,两个定点F 1,F 2叫做椭圆的________.两焦点间的距离叫做椭圆的________.4.双曲线的定义平面内到____________________________________________等于常数(小于F 1F 2的正数)的点的轨迹叫做双曲线,两个定点F 1,F 2叫做双曲线的________,两焦点间的距离叫做双曲线的________.5.抛物线的定义平面内__________________________________________________________的轨迹叫做抛物线,________叫做抛物线的焦点,__________叫做抛物线的准线.6.椭圆、双曲线、抛物线统称为____________.一、填空题1.已知A ⎝⎛⎭⎫-12,0,B 是圆F :⎝⎛⎭⎫x -122+y 2=4 (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹为________.2.方程5(x +2)2+(y -1)2=|3x +4y -12|所表示的曲线是________.3.F 1、F 2是椭圆的两个焦点,M 是椭圆上任一点,从焦点F 2向△F 1MF 2顶点M 的外角平分线引垂线,垂足为P ,延长F 2P 交F 1M 的延长线于G ,则P 点的轨迹为__________(写出所有正确的序号).①圆;②椭圆;③双曲线;④抛物线.4.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ′,则线段PP ′的中点M 的轨迹是____________.5.一圆形纸片的圆心为O ,点Q 是圆内异于O 点的一定点,点A 是圆周上一点,把纸片折叠使点A 与点Q 重合,然后抹平纸片,折痕CD 与OA 交于P 点.当点A 运动时点P 的轨迹是________.6.若点P 到F(4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹表示的曲线是________.7.已知两点F 1(-5,0),F 2(5,0),到它们的距离的差的绝对值是6的点M 的轨迹是__________.8.一动圆与⊙C 1:x 2+y 2=1外切,与⊙C 2:x 2+y 2-8x +12=0内切,则动圆圆心的轨迹为______________.二、解答题9.已知圆A :(x +3)2+y 2=100,圆A 内一定点B(3,0),动圆P 过B 点且与圆A 内切,求证:圆心P 的轨迹是椭圆.10.已知△ABC 中,BC =2,且sin B -sin C =12sin A ,求△ABC 的顶点A 的轨迹.能力提升11.如图所示,在正方体ABCD—A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是________(写出正确的所有序号).①直线;②圆;③双曲线;④抛物线.12.如图所示,已知点P为圆R:(x+c)2+y2=4a2上一动点,Q(c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.1.椭圆定义中,常数>F 1F 2不可忽视,若常数<F 1F 2,则这样的点不存在;若常数=F 1F 2,则动点的轨迹是线段F 1F 2.2.双曲线定义中,若常数>F 1F 2,则这样的点不存在;若常数=F 1F 2,则动点的轨迹是以F 1、F 2为端点的两条射线.3.抛物线定义中F ∉l ,若F ∈l ,则点的轨迹是经过点F ,且垂直于l 的直线. 第2章 圆锥曲线与方程§2.1 圆锥曲线知识梳理3.两个定点F 1,F 2的距离的和 焦点 焦距4.两个定点F 1,F 2距离的差的绝对值 焦点 焦距5.到一个定点F 和一条定直线l(F 不在l 上)的距离相等的点 定点F 定直线l6.圆锥曲线作业设计1.椭圆解析 由已知,得PA =PB ,PF +BP =2,∴PA +PF =2,且PA +PF>AF ,即动点P 的轨迹是以A 、F 为焦点的椭圆.2.抛物线解析 由题意知(x +2)2+(y -1)2=|3x +4y -12|5. 左侧表示(x ,y)到定点(-2,1)的距离,右侧表示(x ,y)到定直线3x +4y -12=0的距离,故动点轨迹为抛物线.3.①解析∵∠F 2MP =∠GMP ,且F 2P ⊥MP ,∴F 2P =GP ,MG =MF 2.取F 1F 2中点O ,连结OP ,则OP 为△GF 1F 2的中位线.∴OP =12F 1G =12(F 1M +MG) =12(F 1M +MF 2). 又M 在椭圆上,∴MF 1+MF 2=常数,设常数为2a ,则OP =a ,即P 在以F 1F 2的中点为圆心,a 为半径的圆上.4.椭圆5.椭圆6.抛物线解析 由题意知P 到F 的距离与到直线x =-4的距离相等,所以点P 的轨迹是抛物线.7.双曲线8.双曲线的一支9.证明 设PB =r.∵圆P 与圆A 内切,圆A 的半径为10,∴两圆的圆心距PA =10-r ,即PA +PB =10(大于AB).∴点P 的轨迹是以A 、B 两点为焦点的椭圆.10.解 由正弦定理得:sin A =a 2R ,sin B =b 2R ,sin C =c 2R. 代入sin B -sin C =12sin A 得:b -c =12a ,即b -c =1, 即AC -AB =1 (<BC)∴A 的轨迹是以B 、C 为焦点且靠近B 的双曲线的一支,并去掉与BC 的交点.11.④解析 ∵D 1C 1⊥面BCC 1B 1,C 1P ⊂平面BCC 1B 1,∴D 1C 1⊥C 1P ,∴点P 到直线C 1D 1的距离即为C 1P 的长度,由题意知,点P 到点C 1的距离与点P 到直线BC 的距离相等,这恰符合抛物线的定义.12.解 由题意,得MP =MQ ,RP =2a.MR -MQ =MR -MP =RP =2a<RQ =2c.∴点M 的轨迹是以R 、Q 为两焦点,实轴长为2a 的双曲线右支.。

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(2.2(一))word学案

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(2.2(一))word学案

2.2.2 椭圆的几何性质(一)[学习目标] 1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图.[知识链接]观察椭圆x 2a 2+y 2b 2=1 (a >b >0)的形状,你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?答:(1)范围:-a ≤x ≤a ,-b ≤y ≤b ; (2)对称性:椭圆关于x 轴、y 轴、原点都对称;(3)特殊点:顶点A 1(-a,0),A 2(a,0),B 1(0,-b ),B 2(0,b ). [预习导引] 1.椭圆的几何性质2.离心率的作用当椭圆的离心率越接近于1,则椭圆越扁;当椭圆离心率越接近于0,则椭圆越接近于圆.要点一 椭圆的几何性质例1 求椭圆9x 2+16y 2=144的长轴长、短轴长、离心率、焦点和顶点坐标. 解 已知方程化成标准方程为x 216+y 29=1,于是a =4,b =3,c =16-9=7,∴椭圆的长轴长和短轴长分别是2a =8和2b =6, 离心率e =c a =74,又知焦点在x 轴上,∴两个焦点坐标分别是F 1(-7,0)和F 2(7,0),四个顶点坐标分别是A 1(-4,0),A 2(4,0),B 1(0,-3)和B 2(0,3).规律方法 解决此类问题的方法是将所给方程先化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a ,b ,c 之间的关系和定义,求椭圆的基本量.跟踪演练1 求椭圆m 2x 2+4m 2y 2=1 (m >0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率.解 椭圆的方程m 2x 2+4m 2y 2=1 (m >0)可转化为x 21m 2+y 214m 2=1.∵m 2<4m 2,∴1m 2>14m 2,∴椭圆的焦点在x 轴上,并且长半轴长a =1m ,短半轴长b =12m ,半焦距长c =32m.∴椭圆的长轴长2a =2m ,短轴长2b =1m ,焦点坐标为(-32m ,0),(32m,0),顶点坐标为(1m ,0),(-1m ,0),(0,-12m ),(0,12m).离心率e =c a =32m 1m=32.要点二 由椭圆的几何性质求方程例2 求满足下列各条件的椭圆的标准方程.(1)已知椭圆的中心在原点,焦点在y 轴上,若其离心率为12,焦距为8;(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3. 解 (1)由题意知,2c =8,c =4, ∴e =c a =4a =12,∴a =8,从而b 2=a 2-c 2=48,∴椭圆的标准方程是y 264+x 248=1.(2)由已知得⎩⎨⎧ a =2c ,a -c =3,∴⎩⎨⎧a =23,c = 3.从而b 2=9,∴所求椭圆的标准方程为x 212+y 29=1或x 29+y 212=1.规律方法 在求椭圆方程时,要注意根据题目条件判断焦点所在的坐标轴,从而确定方程的形式;若不能确定焦点所在的坐标轴,则应进行讨论,然后列方程(组)确定a ,b . 跟踪演练2 已知椭圆过点(3,0),离心率e =63,求椭圆的标准方程. 解 ∵所求椭圆的方程为标准方程,又椭圆过点(3,0),∴点(3,0)为椭圆的一个顶点. ①当椭圆的焦点在x 轴上时,(3,0)为右顶点,则a =3, ∵e =c a =63,∴c =63a =63×3=6,∴b 2=a 2-c 2=32-(6)2=9-6=3, ∴椭圆的标准方程为x 29+y 23=1.②当椭圆的焦点在y 轴上时,(3,0)为右顶点,则b =3, ∵e =c a =63,∴c =63a ,∴b 2=a 2-c 2=a 2-23a 2=13a 2,∴a 2=3b 2=27,∴椭圆的标准方程为y 227+x 29=1.综上可知,椭圆的标准方程是x 29+y 23=1或y 227+x 29=1.要点三 求椭圆的离心率例3 如图所示,F 1,F 2分别为椭圆的左,右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.解 设椭圆的长半轴、短半轴、半焦距长分别为a ,b ,c . 则焦点为F 1(-c,0),F 2(c,0),M 点的坐标为(c ,23b ),则△MF 1F 2为直角三角形.在Rt △MF 1F 2中,F 1F 22+MF 22=MF 21,即4c 2+49b 2=MF 21. 而MF 1+MF 2=4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a .所以b 2a 2=49.所以e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59,所以e =53.规律方法 求椭圆离心率的方法:①直接求出a 和c ,再求e =ca,也可利用e =1-b 2a2求解. ②若a 和c 不能直接求出,则看是否可利用条件得到a 和c 的齐次等式关系,然后整理成ca 的形式,并将其视为整体,就变成了关于离心率e 的方程,进而求解.跟踪演练3 如图所示,椭圆的中心在原点,焦点F 1,F 2在x 轴上,A ,B 是椭圆的顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,求此椭圆的离心率. 解 设椭圆的方程为x 2a 2+y 2b2=1 (a >b >0).如题图所示,则有F 1(-c,0),F 2(c,0),A (0,b ),B (a,0), 直线PF 1的方程为x =-c ,代入方程x 2a 2+y 2b 2=1,得y =±b 2a ,∴P (-c ,b 2a ).又PF 2∥AB ,∴△PF 1F 2∽△AOB . ∴PF 1F 1F 2=AO OB ,∴b 22ac =ba ,∴b =2c . ∴b 2=4c 2,∴a 2-c 2=4c 2,∴c 2a 2=15.∴e 2=15,即e =55,∴椭圆的离心率为55.1.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为________. 答案 (0,±69)解析 由题意知椭圆焦点在y 轴上,且a =13,b =10,则c =a 2-b 2=69,故焦点坐标为(0,±69).2.若椭圆中心在原点,焦点在x 轴上,焦距为2,离心率为13,则椭圆的标准方程为____________. 答案 x 29+y 28=1解析 ∵c =1,e =13,∴a =3,b 2=32-1=8.∵焦点在x 轴上,∴椭圆的标准方程为x 29+y 28=1.3.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________. 答案 35解析 由题意有2a +2c =2(2b ),即a +c =2b ,又c 2=a 2-b 2,消去b 整理得5c 2=3a 2-2ac ,即5e 2+2e -3=0,∴e =35或e =-1(舍去).4.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为________ 答案 34解析 由题意可得PF 2=F 1F 2,∴2(32a -c )=2c ,∴3a =4c ,∴e =34.1.已知椭圆的方程讨论性质时,若不是标准形式,应先化成标准形式.2.根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定型,再定量”,常用的方法是待定系数法.在椭圆的基本量中,能确定类型的量有焦点、顶点,而不能确定类型的量有长轴长、短轴长、离心率e 、焦距.3.求椭圆的离心率要注意函数与方程的思想、数形结合思想的应用.一、基础达标1.已知点(3,2)在椭圆x 2a 2+y 2b2=1上,则下列说法正确的是________(填序号).①点(-3,-2)不在椭圆上;②点(3,-2)不在椭圆上;③点(-3,2)在椭圆上;④无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上. 答案 ③解析 由椭圆的对称性知(-3,2)必在椭圆上.2.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是________. 答案 10、6、0.8解析 把椭圆的方程写成标准方程为x 29+y 225=1,知a =5,b =3,c =4.∴2a =10,2b =6,ca =0.8.3.椭圆x 2+4y 2=1的离心率为________. 答案32解析 将椭圆方程x 2+4y 2=1化为标准方程x 2+y 214=1,则a 2=1,b 2=14,即a =1,c =a 2-b 2=32,故离心率e =c a =32. 4.过椭圆x 2a 2+y 2b 2=1 (a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为________.答案33解析 记F 1F 2=2c ,则由题设条件, 知PF 1=2c 3,PF 2=4c 3, 则椭圆的离心率e =2c 2a =F 1F 2PF 1+PF 2=2c 2c 3+4c 3=33.5.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是________. 答案 14解析 由题意可得21m =2×2,解得m =14. 6.椭圆x 2a 2+y 2b 2=1和x 2a 2+y 2b 2=k (k >0,a >0,b >0)具有相同的________.答案 离心率解析 不妨设a >b >0,则椭圆x 2a 2+y 2b 2=k 的离心率e 2=ka 2-kb 2ka 2=a 2-b 2a 2. 而椭圆x 2a 2+y 2b2=1的离心率e 1=a 2-b 2a 2. 7.已知椭圆方程为4x 2+9y 2=36,求椭圆的长轴长、短轴长、焦点坐标、顶点坐标和离心率.解 把椭圆的方程化为标准方程x 29+y 24=1.可知此椭圆的焦点在x 轴上,且长半轴长a =3, 短半轴长b =2;又得半焦距c =a 2-b 2=9-4= 5.因此,椭圆的长轴长2a =6,短轴长2b =4;两个焦点的坐标分别是(-5,0),(5,0);四个顶点的坐标分别是(-3,0),(3,0),(0,-2),(0,2);离心率e =c a =53.二、能力提升8.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点(1,12)作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.答案 x 25+y 24=1解析 ∵x =1是圆x 2+y 2=1的一条切线.∴椭圆的右焦点为(1,0),即c =1.设P (1,12),则k OP =12,∵OP ⊥AB ,∴k AB =-2,则直线AB 的方程为y =-2(x -1),它与y轴的交点为(0,2).∴b =2,a 2=b 2+c 2=5,故椭圆的方程为x 25+y 24=1.9.若椭圆x 2+my 2=1的离心率为32,则m =________. 答案 14或4解析 方程化为x 2+y 21m=1,则有m >0且m ≠1.当1m <1时,依题意有1-1m 1=32,解得m =4; 当1m >1时,依题意有1m -11m=32,解得m =14. 综上,m =14或4.10.设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是________. 答案2-1解析 因为△F 1PF 2为等腰直角三角形,所以PF 2=F 1F 2=2c ,PF 1=22c ,又由椭圆定义知PF 1+PF 2=2a ,所以22c +2c =2a ,即(2+1)c =a , 于是e =c a =12+1=2-1.11.分别求适合下列条件的椭圆的标准方程: (1)离心率是23,长轴长是6.(2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6. 解 (1)设椭圆的方程为x 2a 2+y 2b 2=1 (a >b >0)或y 2a 2+x 2b2=1 (a >b >0).由已知得2a =6,e =c a =23,∴a =3,c =2.∴b 2=a 2-c 2=9-4=5.∴椭圆方程为x 29+y 25=1或x 25+y 29=1.(2)设椭圆方程为x 2a 2+y 2b 2=1 (a >b >0).如图所示,△A 1F A 2为一等腰直角三角形,OF 为斜边A 1A 2上的中线(高),且OF =c ,A 1A 2=2b , ∴c =b =3,∴a 2=b 2+c 2=18, 故所求椭圆的方程为x 218+y 29=1.12.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-c,0),F 2(c,0)(c >0),过点E (a 2c ,0)的直线与椭圆相交于点A ,B 两点,且F 1A ∥F 2B ,F 1A =2F 2B ,求椭圆的离心率. 解 由F 1A ∥F 2B ,F 1A =2F 2B , 得EF 2EF 1=F 2B F 1A =12, 从而a 2c -c a 2c +c =12,整理,得a 2=3c 2.故离心率e =c a =33.三、探究与创新13.已知椭圆E 的中心是坐标原点O ,两个焦点分别为A (-1,0),B (1,0),一个顶点为H (2,0).(1)求椭圆E 的标准方程;(2)对于x 轴上的点P (t,0),椭圆E 上存在点M ,使得MP ⊥MH ,求实数t 的取值范围. 解 (1)由题意可得,c =1,a =2, ∴b = 3.∴所求椭圆E 的标准方程为x 24+y 23=1. (2)设M (x 0,y 0)(x 0≠±2),则x 204+y 203=1.① MP →=(t -x 0,-y 0),MH →=(2-x 0,-y 0),由MP ⊥MH 可得MP →·MH →=0,即(t -x 0)(2-x 0)+y 20=0.②由①②消去y 0,整理得t (2-x 0)=-14x 20+2x 0-3. ∵x 0≠2,∴t =14x 0-32. ∵-2<x 0<2,∴-2<t <-1.∴实数t 的取值范围为(-2,-1).。

高中数学 第2章《圆锥曲线与方程》圆锥曲线导学案1 苏教版选修1-1

高中数学 第2章《圆锥曲线与方程》圆锥曲线导学案1 苏教版选修1-1

江苏省响水中学高中数学第2章《圆锥曲线与方程》圆锥曲线导学案1 苏教版选修1-1学习目标:1.通过自己动手尝试画图,发现圆锥曲线的形成过程,进而归纳出它们的定义, 培养观察、辨析、归纳问题的能力.2.根据已知条件结合圆锥曲线的定义判断曲线的类型.3.通过对圆锥曲线性质的研究,感受数形结合的基本思想和理解代数方法研究几何性质的优越性.重点难点:1.圆锥曲线的定义2.根据已知条件结合圆锥曲线的定义判断曲线的类型课前预习:问题1:用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,得到的截面有三种结果,分别是一个点、一条直线、;当平面与圆锥面的轴垂直且不经过顶点时,截得的图形是一个.问题2:用一个不经过顶点的平面截一个圆锥面,设圆锥面的母线与轴所成的角为θ,截面与轴所成的角为α.如图(1),当θ<α<错误!未找到引用源。

时,截线的形状是椭圆,如图(2),当α=θ时,截线的形状是抛物线,如图(3),当0<α<θ时,截线的形状是双曲线.问题3:圆锥曲线的定义椭圆:平面内与两个定点F1、F2的距离的等于常数(大于|F1F2|)的点的轨迹叫作椭圆,两个定点F1、F2叫作椭圆的,两焦点间的距离叫作椭圆的.双曲线:平面内与两个定点F1、F2的距离的等于常数(小于|F1F2|)的点的轨迹叫作双曲线,两个定点F1、F2叫作双曲线的,两焦点间的距离叫作双曲线的.抛物线:平面内与一个定点F和一条定直线l(F不在l上)的距离的点的轨迹叫作抛物线,定点F叫作抛物线的,定直线l叫作抛物线的.椭圆、双曲线、抛物线统称为圆锥曲线.问题4:圆锥曲线定义中的注意事项1.椭圆的定义表达式为|PF1|+|PF2|=2a(2a>|F1F2|).当2a=|F1F2|时,点的轨迹为;当2a<|F1F2|时,点的轨迹.2.双曲线的定义表达式为||PF1|-|PF2||=2a(0<2a<|F1F2|).当|PF1|-|PF2|=2a时,点的轨迹为双曲线靠近的一支;当|PF1|-|PF2|=-2a时,点的轨迹为双曲线靠近的一支;当2a>|F1F2|时,点的轨迹.3.抛物线的定义表达式为|PF|=|PL|(L为过点P且垂直于准线的直线与准线的交点).F不能在直线l上,否则,动点的轨迹是过定点F且垂直于l的直线.课堂探究:1、已知☉C1:(x-4)2+y2=132,☉C2:(x+4)2+y2=32,动圆C与☉C1内切同时与☉C2外切,求证:动圆圆心C的轨迹是椭圆.2、若动圆O'与定圆(x-2)2+y2=1外切,又与直线x+1=0相切,求证:动圆圆心O'的轨迹是抛物线.3、已知点M在半径为r的圆C上运动,定的A在圆C外,线段AM的垂直平分线为l,直线l与直线CM交于点P,求点P的轨迹。

高中数学 第二章(圆锥曲线)学案 苏教版选修2-1 学案

高中数学 第二章(圆锥曲线)学案 苏教版选修2-1 学案

圆锥曲线【知识网络】3.1 椭圆【考点透视】一、考纲指要1.熟练掌握椭圆的定义、标准方程、简单的几何性质及参数方程.2.考查椭圆的离心率,直线的方程,平面向量的坐标表示,方程思想等数学思想方法和综合解题能力.二、命题落点圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题,主要考查直线方程,平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题以及推理能力.【典例精析】例1:已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与)1,3(-=共线.(1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值.解析:(1)设椭圆方程为22221(0),(,0)x ya b F c a b +=>>,则直线AB 的方程y x c =-代入22221x y a b+=,化简得22222222()20a b x a cx a c a b +-+-=. 令1122(,),(,)A x y B x y ,则22222222212122,a c a c a bx x x x a b a b-+==++. 由1212(,),(3,1),OA OB x x y y a OA OB +=++=-+与a 共线, 得 12123()()0y y x x +++=,又1122,y x c y x c =-=-,12121233(2)()0,2cx x c x x x x ∴+-++=∴+=.即222232a c c a b=+,所以223a b = ,c ∴==故离心率c e a ==.(2)由(1)知223a b =,所以椭圆22221x y a b+=可化为22233x y b +=设(,)OM x y =,由已知得1122(,)(,)(,)x y x y x y λμ=+,1212,.x x x y y y λμλμ=+⎧⎪∴⎨=+⎪⎩ (,)M x y 在椭圆上,2221212()3()3x x y y b λμλμ∴+++=,即222222211221212(3)(3)2(3)3x y x y x x y y b λμλμ+++++= ① 由(1)知222212331,,222x x c a c b c +===, 222222212121212123,833()()a c ab x xc a bx x y y x x x c x c -∴==+∴+=+--2121222243()3393220.x x x x c c c c c =-++=-+=又222222112233,33x y b x y b +=+=代入①,得221λμ+=.故22μλ+为定值,定值为1 .例2:如图,点A 、B 分别是椭圆2213620x y +=长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PA PF ⊥. (1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于MB ,求椭圆上的点到点M的距离d 的最小值.解析:(1)由已知可得点A (-6,0),F (4,0) 设点P 的坐标是},4{},,6{),,(y x FP y x AP y x -=+=则,x由已知得.623,018920)4)(6(120362222-===-+⎪⎩⎪⎨⎧=+-+=+x x x x y x x y x 或则由于).325,23(,325,23,0的坐标是点于是只能P y x y ∴==> (2)直线AP 的方程是.063=+-y x 设点M 的坐标是(m ,0),则M 到直线AP 的距离是2|6|+m , 于是,2,66|,6|2|6|=≤≤--=+m m m m 解得又椭圆上的点),(y x 到点M 的距离d ,有,1529(94952044)2(222222+-=-++-=+-=x x x x y x d由于.15,29,66取得最小值时当d x x =∴≤≤-例3:已知方向向量为)3,1(=v 的直线l 过点(32,0-)和椭圆)0(1:2222>>=+b a by a x C 的焦点,且椭圆C 的中心关于直线l 的对称点在椭圆C 的右准线上.(1)求椭圆C 的方程;(2)是否存在过点E (-2,0)的直线m 交椭圆C 满足43OM ON ⋅=cot∠MON≠0(O 为原点).若存在,求直线m 的方程;若不存在,请说明理由. 解析:(1)直线:l y =- ①过原点垂直l 的直线方程为x y 33-=, ② 解①②得.23=x ∵椭圆中心(0,0)关于直线l 的对称点在椭圆C 的右准线上,.32322=⨯=∴c a∵直线l 过椭圆焦点,∴该焦点坐标为(2,0)..2,6,222===∴b a c 故椭圆C 的方程为.12622=+y x ③(2)设M (11,y x ),N (22,y x ).当直线m 不垂直x 轴时,直线)2(:+=x k y m 代入③,整理得,061212)13(2222=-+++k x k x k,13612,131222212221+-=⋅+-=+∴k k x x k k x x,13)1(62136124)1312(14)(1||22222222212212++=+-⋅-+-+=-++=k k k k k k kx x x x kMN点O 到直线MN 的距离21|2|kk d +=.,cot 634MON ON OM ∠=⋅ ||||cos 0,OM ON MON ⋅∠≠ ||.632,634sin ||||⋅∴=∴=∠⋅∴∆d MN S MON ON OM OMN 即).13(6341||6422+=+k k k整理得.33,312±=∴=k k 当直线m 垂直x 轴时,也满足632=∆OMN S . 故直线m 的方程为,33233+=x y 或,33233--=x y 或.2-=x 经检验上述直线均满足0≠⋅OM .所以所求直线方程为,33233+=x y 或,33233--=x y 或.2-=x 【常见误区】解析几何问题,基本上都与方程思想相结合,因而要注意直线方程与曲线方程联立起来,结合根与系数的关系,或直接解出根,是高考常用的方法,要注意有关方法的练习、归纳,要注意运算的优化,要注意利用数形结合,挖掘隐含性质,这也是考生思维的一个障碍点.【基础演练】1.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21,则m=( ) A .3B .23C .38D .322.设b a b a b a +=+∈则,62,,22R 的最小值是( )A .22-B .335-C .-3D .27-3.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )A .22B .212C .22D 21 4.点)1,3(-P 在椭圆)0(12222>>=+b a by a x 的左准线上,过点P 且方向为)5,2(-=的光线经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为 ( )A .33B .31C .22D .215.已知B A ),0,21(-是圆221:()4(2F x y F -+=为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为.6.如图所示, 底面直径为12cm 的圆柱被与底面成30的平面所截, 其截口是一个椭圆,则这个椭圆的长轴长, 短轴长,离心率为.7.已知椭圆)0(12222>>=+b a b y a x 的左、右焦点分别是 )0,(1c F -、)0,(2c F ,Q 是椭圆外的动点,满足a Q F ||1=,QyxO1F 2F P点P是线段Q F 1与该椭圆的交点,点T在线段Q F 2上,并且 满足0||,022≠=⋅TF TF .(1)设x 为点P的横坐标,证明 x aca F +=||1; (2)求点T的轨迹C的方程;(3)试问:在点T的轨迹C上,是否存在点M,使△21MF F 的面积2b S =.若存在,求∠21MF F 的正切值;若不存在,请说明理由.8.已知椭圆C :22a x +22by =1(a >b >0)的左、右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB . (1)证明:λ=1-e 2; (2)若43=λ,△PF 1F 2的周长为6,写出椭圆C 的方程; (3)确定λ的值,使得△PF 1F 2是等腰三角形.9.设A 、B 是椭圆λ=+223y x 上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(1)确定λ的取值X 围,并求直线AB 的方程;(2)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.3.2 双曲线【考点透视】一、考纲指要熟练掌握双曲线的定义、标准方程、简单的几何性质. 二、命题落点1.考查了圆锥曲线中双曲线的渐近线方程与准线方程,以及标准方程中a,b,c 之间的关系,两渐近线间的夹角的求法,如例1.2.双曲线的第一、第二定义在解题中的灵活运用,如例2;3.考查等边三角形的性质,焦点三角形公式及离心率公式,灵活运用焦点三角形公式避免了繁琐的运算,突出观察研究能力的考查,如例3.【典例精析】例1:已知双曲线22a x -22b y =1(a >0,b >0)的右焦点为F ,右准线与一条渐近线交于点A ,△OAF 的面积为22a (O 为原点),则两条渐近线的夹角( )A .30ºB .45ºC .60ºD .90º解析:双曲线的右焦点F(c,0),右准线方程为x=c a 2,一条渐近线方程为y=a bx ,可得点A的坐标(c a 2,c ab ),△OAF 的面积S △OAF =21OF│Y A │=21c ab c ⋅=21ab,又题意已知S △OAF =21a 2,所以a=b,两条渐近线间的夹角为900.答案: D例2:已知双曲线2212yx-=的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到x 轴的距离为( )A .43B .53C.3D解析: 设M 到x 轴的距离为h,∵1,a b c ==∴=,又∵222121212012(2)MF MF MF MF c MFMF ⋅=⇒⊥⇒+==,由双曲线定义得22121212||224MF MF MF MF MFMF ⋅-=⇒+-=,再由1212121122MF F MF MF F F h S ⋅∆=⨯=⨯⋅,∴h =答案: C例3:已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( )A .324+B .13-C .213+ D .13+解析:令12(,0),(,0)F c F c ,边MF 1交双曲线于点N ,连结2F N 易知的边长,且点必在轴上,可得的坐标(0,3C )又为正三角形由焦点三角形面积公式121122121290MF F F FC M y M MF F F NMF F NF又又c 又e=a1212122212222222222cot211132322223(1)242313NF F NF F MF F F NF Sb b S S C Cb c b c a a cc ea答案: D例4.设双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q两点,如果PQF ∆是直角三角形,则双曲线的离心率___________e =.解析:如图所示,PF QF ⊥且PF QF =,2(,0)(,)aab F c P c c ,在PFQ ∆中MF =,OF OM -=. ①(PF = ②2,a OF c OM c== ③将②③代入①式化简得:,2a c e c a=== 答案【常见误区】1.对双曲线离心率、双曲线渐近线等基本知识考察时, 应想法利用已知曲线构造等式,从而解出,c a 的比值,即双曲线的离心率.这一点考生常不能注意到,致使离心率求解出错,如例3、例4.2.解题过程中,特别是客观题中,应注意双曲线第一第二定义的应用,此问题考生常会忽视,如例1、例2.【基础演练】1.已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( )A B .3C .2D . 4 2.设双曲线以椭圆192522=+y x 长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A .2±B .34±C .21±D .43± 3.平面内有两个定点12,F F 和一动点M ,设命题甲,12||||||MF MF -是定值,命题乙:点M 的轨迹是双曲线,则命题甲是命题乙的 ( )A .充分但不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.双曲线和它的共轭双曲线的离心率分别为12,e e ,则12,e e 应满足的关系是( ) A .22121e e +=B .22121e e -= C .1112221=-e e D .1112221=+e e 5.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________. 6.以下几个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线;②设定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+则动点P 的轨迹为椭圆;③方程22520x x -+=的两根可分别作为椭圆和双曲线的离心率;④双曲线221259x y -=与椭圆22135x y +=(写出所有真命题的序号) 7.已知双曲线22125144x y -=的左右焦点分别为12,F F ,左准线为l ,能否在双曲线的左支上求一点P ,使1||PF 是P 到l 的距离d 与2||PF 的等比中项?若能,求出P 的坐标,若不能,说明理由.8.过双曲线22221(0,0)x y a b a b-=>>的右焦点F 作双曲线在第一、第三象限的渐近线的垂线l ,垂足为P ,l 与双曲线的左、右支的交点分别为,A B .(1)求证:P 在双曲线的右准线上; (2)求双曲线离心率的取值X 围.9.是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由. (1)渐近线方程为20,20x y x y +=-=,(2)点(5,0)A 到双曲线上动点P .3.3 抛物线【考点透视】一、考纲指要掌握抛物线的定义、标准方程和简单的几何性质. 二、命题落点1.考察抛物线过焦点的性质,如例1;2.抛物线上X 直角问题的探究, 考察抛物线上互相垂直的弦的应用,如例2;3.定值及定点问题是解几问题研究的重点内容,此类问题在各类考试中是一个热点,如例3.【典例精析】例1:设1122(,),(,)A x y B x y 两点在抛物线22y x =上,l 是AB 的垂直平分线, (1)当且仅当12x x +取何值时,直线l 经过抛物线的焦点F ?证明你的结论; (2)当直线l 的斜率为2时,求l 在y 轴上截距的取值X 围.解析:(1)∵抛物线22y x=,即22y x=,∴14p =, ∴焦点为1(0,)8F(i )直线l 的斜率不存在时,显然有12x x+=0;(ii )直线l 的斜率存在时,设为k , 截距为b, 即直线l :y=kx+B .由已知得:12121212221k b k y y x x y y x x ⎧++⎪=⋅+⎪⎨-⎪=-⎪-⎩2212122212122212222k b k x x x x x x x x ⎧++=⋅+⎪⎪⇒⎨-⎪=-⎪-⎩22121212212k b k x x x x x x +⎧+=⋅+⎪⎪⇒⎨⎪+=-⎪⎩ 2212104b x x ⇒+=-+≥14b ⇒≥即l 的斜率存在时,不可能经过焦点1(0,)8F 所以当且仅当12x x+=0时,直线l 经过抛物线的焦点F(2)设l 在y 轴上截距为b ,即直线l :y=2x+b ,AB :12y x m =-+.由2122y x m y x ⎧=-+⎪⎨⎪=⎩得2420x m x +-=,∴1214x x +=-,且10,32m ∆>>-即, ∴121211222164b m b y y x x ++=⋅+⇒+=-+, ∴551916163232b m =+>-=. 所以l 在y 轴上截距的取值X 围为9(,)32+∞例2:在平面直角坐标系xoy 中,抛物线2x y =满足BO AO ⊥(如图所示)(1)求AOB ∆得重心G (即三角形三条中线的交点) 的轨迹方程;(2)AOB ∆的面积是否存在最小值?若存在,请求出 最小值;若不存在,请说明理由.解析:(1)∵直线AB 的斜率显然存在, ∴设直线AB 的方程为b kx y +=,),(),,(2211y x B y x A ,依题意得0,,22=--⎩⎨⎧=+=b kx x y xy b kx y 得消去由,①∴k x x =+21,② b x x -=21 ③∵OB OA ⊥,∴02121=+y y x x ,即 0222121=+x x x x ,④ 由③④得,02=+-b b ,∴)(01舍去或==b b ∴设直线AB 的方程为1+=kx y∴①可化为 012=--kx x ,∴121-=x x ⑤, 设AOB ∆的重心G 为),(y x ,则33021k x x x =++= ⑥ , 3232)(3022121+=++=++=k x x k y y y ⑦, 由⑥⑦得 32)3(2+=x y ,即3232+=x y ,这就是AOB ∆的重心G 的轨迹方程.(2)由弦长公式得2122124)(1||x x x x k AB -+⋅+=把②⑤代入上式,得 41||22+⋅+=k k AB ,设点O 到直线AB 的距离为d ,则112+=k d ,∴ 24||212+=⋅⋅=∆k d AB S AOB, ∴ 当0=k ,AOB S ∆有最小值,∴AOB ∆的面积存在最小值,最小值是1 .例3: M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB . (1)若M 为定点,证明:直线EF 的斜率为定值;(2)若M 为动点,且∠EMF=90°,求△EMF 的重心G 的轨迹方程.解析:(1)设M (y 20,y 0),直线ME 的斜率为k(k>0),则直线MF 的斜率为-k ,方程为200().y y k x y -=-∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消200(1)0x ky y y ky -+-=得,解得20021(1),F F ky ky y x k k --=∴=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值). 所以直线EF 的斜率为定值.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23,333(1)(1),333M E F M E F y y y y x x x x y y y y y y y y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122().9273y x x =->【常见误区】1.运算正确率太低, 这是考生在解解析几何问题中常出现的问题, 即会而不对. 2.抛物线中的焦点坐标与准线方程求解过程中常误求出二倍关系;3.定点与定值问题总体思路不能定位,引入参变量过多,没有求简意识,使问题复杂化.【基础演练】1.双曲线)0(122≠=-mn ny m x 的离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A .163B .83C .316D .38 2.已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( )A .632+B .21C .21218+D .213.已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为()A .23B .23C .26D .332 4.抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .1617B .1615C .87D .0 5.过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线条.6.连接抛物线上任意四点组成的四边形可能是(填写所有正确选项的序号). ①菱形 ②有3条边相等的四边形 ③梯形④平行四边形⑤有一组对角相等的四边形7.抛物线以y 轴为准线,且过点(,)(0)M a b a ≠,证明:不论M 点在坐标平面内的位置如何变化,抛物线顶点的轨迹的离心率是定值.8. 已知抛物线22(0)y px p =>,过动点(,0)M a 且斜率为1的直线l 与该抛物线交于不同两点,A B ,||2AB p ≤, (1)求a 取值X 围;(2)若线段AB 垂直平分线交x 轴于点N ,求NAB ∆面积的最大值9.已知动圆过定点P(1,0),且与定直线:1l x =-相切,点C 在l 上. (1)求动圆圆心的轨迹M 的方程;(2)设过点P,M 相交于A,B 两点. (i)问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由; (ii)当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值X 围.3.4直线与圆锥曲线的位置关系【考点透视】一、考纲指要1.掌握直线与圆锥曲线的位置关系的判定方法,能够把研究直线与圆锥曲线的位置关系的问题转化为研究方程组的解的问题;2.会利用直线与圆锥曲线的方程所组成的方程组消去一个变量,将交点问题转化为一元二次方程根的问题,结合根与系数关系及判别式解决问题;3.能利用弦长公式解决直线与圆锥曲线相交所得的弦长的有关问题,会运用圆锥曲线的第二定义求焦点弦长;4.体会“设而不求”、“方程思想”和“待定系数”等方法. 二、命题落点1.考查直线与椭圆相切、直线方程、直线到直线的距离等知识,如例1;2.考查直线与圆、圆锥曲线的位置关系.处理直线与曲线的位置关系的一般方法是方程思想:由直线方程与曲线方程联立方程组,通过判别式△确定解的个数(交点个数),而直线与圆可以用圆心到直线距离与半径的大小关系进行判定,如例2;3.考查椭圆的几何性质、椭圆方程,两条直线的夹角、点的坐标等基础知识,考查解析几何的基本思想方法和综合解题能力,如例3.【典例精析】例1:设直线:220l x y ++=关于原点对称的直线为l ',若l '与椭圆2214y x +=的交点为A 、B 、,点P 为椭圆上的动点,则使PAB ∆的面积为12的点P 的个数为( ) A .1 B .2 C .3 D .4解析:如右图,根据题意易得AB ='l 与l 关系O 对称':220l x y ∴+-=设过圆上一点且平行与'l 的直线方程为'':l 2y x b =-+22244y x b y x=-+⎧⎨=-⎩联立得:228440x bx b -+-= 若''l 与椭圆相切则0∆=可求得:b =±即'':20l y x +±=,''l 到'l<① ''l 到'l>② 1122PAB S AB h ∆==⨯⨯,(h 为P 到AB 的距离),5AB =,h ∴=. 由①②式可知满足条件的点有两个.答案: B 例2:若直线mx+ ny -3=0与圆x 2+y 2=3没有公共点,则m,n 满足的关系式为_______;以(m,n )为点P 的坐标,过点P 的一条直线与椭圆x 27+y 23=1的公共点有____个.解析: ∵直线mx+ny -3=0与圆x 2+y 2=3没有公共点,∴3m 2+n2>3,解得0<m 2+n 2<3.∴m 27+n 23< m 23+n 23<1,即点P(m ,n )在椭圆内部,故过P 的直线必与椭圆有两个交点.x =答案: 0<m 2+n 2<3,2.例3.已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(1)求动圆圆心C 的轨迹的方程;(2)设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且αβ+=4π时,证明直线AB 恒过定点,并求出该定点的坐标. 解析:(1)如图,设M 为动圆圆心,记,02p ⎛⎫⎪⎝⎭为F ,过点M 作直线2p x =-的垂线,垂足为N ,由题意知:MF MN =即动点M 到定点F与定直线2px =-的距离相等由抛物线的定义知,点M 的轨迹为抛物线, 其中,02p F ⎛⎫⎪⎝⎭为焦点,2px =-为准线 ∴轨迹方程为22(0)y px p =>;(2)如图,设()()1122,,,A x y B x y ,由题意得12,0x x ≠ 又直线OA 、OB 的倾斜角α、β满足α+β=4π,故0<α,β<4π. ∴直线AB 的斜率存在,否则OA 、OB 直线的倾斜角之和为π,从而设其方程为y kx b =+.显然221212,22y y x x p p==. 将y kx b =+与22(0)y px P =>联立消去x ,得2220ky py pb -+=. 由韦达定理知121222,p pby y y y k k +=⋅=. (*) 由4παβ+=,得tantan()4παβ=+=tan tan 1tan tan αβαβ+-=122122()4p y y y y p +-. 将(*)式代入上式整理化简可得:22b p pk =+,此时,直线AB 的方程可表示为y kx =+22p pk +即()(2)20k x p y p +--=, ∴直线AB 恒过定点()2,2p p -.【常见误区】1.注意数形结合思想的应用,比如直线过定点时,要考虑定点与曲线的位置关系;2.考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.向量的知识考生常不能灵活应用。

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(2.2(二))word学案

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(2.2(二))word学案

2.2.2椭圆的几何性质(二)[学习目标] 1.进一步巩固椭圆的几何性质.2.掌握直线与椭圆位置关系的相关知识.[知识链接]已知直线和椭圆的方程,怎样判断直线与椭圆的位置关系?答:直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的解的个数来确定,通常用消元后的关于x(或y)的一元二次方程的根的判别式来判断.Δ>0⇔直线和椭圆相交;Δ=0⇔直线和椭圆相切;Δ<0⇔直线和椭圆相离.[预习导引]1.点P(x0,y0)与椭圆x2a2+y2b2=1(a>b>0)的位置关系点P在椭圆上⇔x20a2+y20b2=1;点P在椭圆内部⇔x20a2+y20b2<1;点P在椭圆外部⇔x20a2+y20b2>1. 2.直线与椭圆的位置关系直线y=kx+m与椭圆x2a2+y2b2=1(a>b>0)的位置关系判断方法:联立⎩⎪⎨⎪⎧y=kx+m,x2a2+y2b2=1.消y得到一个关于x的一元二次方程.3.弦长公式设直线方程为y=kx+m(k≠0),椭圆方程为x2a2+y2b2=1(a>b>0)或y2a2+x2b2=1(a>b>0),直线与椭圆的两个交点为A(x1,y1),B(x2,y2),则AB =1+k 2(x 1+x 2)2-4x 1x 2. 或AB =1+1k2(y 1+y 2)2-4y 1y 2. 其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y (或x )后得到关于x (或y )的一元二次方程得到.要点一 直线与椭圆的位置关系例1 在椭圆x 24+y 27=1上求一点P ,使它到直线l :3x -2y -16=0的距离最短,并求出最短距离.解 设与椭圆相切并与l 平行的直线方程为y =32x +m ,代入x 24+y 27=1,并整理得4x 2+3mx +m 2-7=0, Δ=9m 2-16(m 2-7)=0 ⇒m 2=16⇒m =±4,故两切线方程为y =32x +4和y =32x -4,显然y =32x -4距l 最近d =|16-8|32+(-2)2=813=8 1313, 切点为P ⎝⎛⎭⎫32,-74. 规律方法 本题通过对图形的观察分析,将求最小距离问题转化为直线与椭圆的位置关系问题.解此类问题的常规解法是直线方程与椭圆方程联立,消去y 或x 得到关于x 或y 的一元二次方程,则(1)直线与椭圆相交⇔Δ>0;(2)直线与椭圆相切⇔Δ=0;(3)直线与椭圆相离⇔Δ<0,所以判定直线与椭圆的位置关系,方程及其判别式是最基本的工具.跟踪演练1 已知椭圆x 225+y 29=1,直线l :4x -5y +40=0.椭圆上是否存在一点,它到直线l 的距离最小?最小距离是多少?解 如图,由直线l 的方程与椭圆的方程可以知道,直线l 与椭圆不相交.设直线m 平行于直线l ,则直线m 的方程可以写成4x -5y +k =0.①由方程组⎩⎪⎨⎪⎧4x -5y +k =0,x 225+y 29=1,消去y ,得25x 2+8kx +k 2-225=0.② 令方程②的根的判别式Δ=0, 得64k 2-4×25(k 2-225)=0.③ 解方程③得k 1=25,或k 2=-25.由图可知,当k =25时,直线m 与椭圆的交点到直线l 的距离最近,此时直线m 的方程为4x -5y +25=0.直线m 与直线l 间的距离d =|40-25|42+(-5)2=154141.所以,最小距离是154141.要点二 直线与椭圆的相交弦问题例2 椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若AB =22,OC 的斜率为22,求椭圆的方程. 解 方法一 设A (x 1,y 1)、B (x 2,y 2), 代入椭圆方程并作差得a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0. 而y 1-y 2x 1-x 2=-1,y 1+y 2x 1+x 2=k OC =22,代入上式可得b =2a .再由AB =1+k 2|x 2-x 1|=2|x 2-x 1|=22, 其中x 1、x 2是方程(a +b )x 2-2bx +b -1=0的两根, 故(2b a +b )2-4·b -1a +b=4, 将b =2a 代入得a =13,∴b =23,∴所求椭圆的方程是x 23+2y 23=1.方法二 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y =1,得(a +b )x 2-2bx +b -1=0.设A (x 1,y 1)、B (x 2,y 2),则AB =(k 2+1)(x 1-x 2)2 =2·4b 2-4(a +b )(b -1)(a +b )2.∵AB =22,∴a +b -aba +b=1.①设C (x ,y ),则x =x 1+x 22=b a +b ,y =1-x =aa +b ,∵OC 的斜率为22,∴a b =22. 代入①,得a =13,b =23.∴椭圆方程为x 23+23y 2=1.规律方法 处理直线与椭圆相交的关系问题的通法是通过解直线与椭圆构成的方程.利用根与系数的关系或中点坐标公式解决,涉及弦的中点,还可使用点差法:设出弦的两端点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的关系.跟踪演练2 已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程. 解 (1)由已知可得直线l 的方程为y -2=12(x -4),即y =12x .由⎩⎨⎧y =12x ,x 236+y29=1,可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=0,x 1x 2=-18. 于是AB =(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+14(x 1-x 2)2=52(x 1+x 2)2-4x 1x 2=52×62=310. 所以线段AB 的长度为310.(2)方法一 设l 的斜率为k ,则其方程为y -2=k (x -4). 联立⎩⎪⎨⎪⎧x 236+y 29=1,y -2=k (x -4),消去y 得(1+4k 2)x 2-(32k 2-16k )x +(64k 2-64k -20)=0. 若设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=32k 2-16k 1+4k 2,由于AB 的中点恰好为P (4,2), 所以x 1+x 22=16k 2-8k 1+4k 2=4,解得k =-12,且满足Δ>0.这时直线的方程为y -2=-12(x -4),即x +2y -8=0.方法二 设A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧x 2136+y 219=1,x 2236+y229=1,两式相减得x 22-x 2136+y 22-y 219=0,整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1), 由于P (4,2)是AB 的中点, 所以x 1+x 2=8,y 1+y 2=4, 于是k AB =-9×836×4=-12,于是直线AB 的方程为y -2=-12(x -4),即x +2y -8=0.要点三 椭圆中的最值(或范围)问题 例3 已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.解 (1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m得5x 2+2mx +m 2-1=0,因为直线与椭圆有公共点, 所以Δ=4m 2-20(m 2-1)≥0,解得-52≤m ≤52. (2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由(1)知:5x 2+2mx +m 2-1=0, 所以x 1+x 2=-2m 5,x 1x 2=15(m 2-1),所以AB =(x 1-x 2)2+(y 1-y 2)2 =2(x 1-x 2)2=2[(x 1+x 2)2-4x 1x 2] =2⎣⎡⎦⎤4m 225-45(m 2-1)=2510-8m 2. 所以当m =0时,AB 最大,此时直线方程为y =x .规律方法 解析几何中的综合性问题很多.而且可与很多知识联系在一起出题,例如不等式、三角函数、平面向量以及函数的最值问题等.解决这类问题需要正确地应用转化思想、函数与方程思想和数形结合思想.其中应用比较多的是利用方程根与系数的关系构造等式或函数关系式,这其中要注意利用根的判别式来确定参数的限制条件.跟踪演练3 如图,点A 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴位于y 轴下方的端点,过点A 且斜率为1的直线交椭圆于点B ,若P 在y 轴上,且BP ∥x 轴,AB →·AP →=9.(1)若点P 的坐标为(0,1),求椭圆C 的标准方程; (2)若点P 的坐标为(0,t ),求t 的取值范围. 解 ∵直线AB 的斜率为1,∴∠BAP =45°, 即△BAP 是等腰直角三角形,|AB →|=2|AP →|. ∵AB →·AP →=9,∴|AB →||AP →|cos45°=2|AP →|2cos45°=9, ∴|AP →|=3.(1)∵P (0,1),∴|OP →|=1,|OA →|=2, 即b =2,且B (3,1).∵B 在椭圆上,∴9a 2+14=1,得a 2=12,∴椭圆C 的标准方程为x 212+y 24=1.(2)由点P 的坐标为(0,t )及点A 位于x 轴下方,得点A 的坐标为(0,t -3), ∴t -3=-b ,即b =3-t .显然点B 的坐标是(3,t ),将它代入椭圆方程得: 9a 2+t 2(3-t )2=1,解得a 2=3(3-t )23-2t . ∵a 2>b 2>0,∴3(3-t )23-2t>(3-t )2>0.∴33-2t >1,即33-2t -1=2t 3-2t>0, ∴所求t 的取值范围是0<t <32.1.AB 为过椭圆x 2a 2+y2b 2=1(a >b >0)中心的弦,F (c,0)为椭圆的右焦点,则△AFB 面积的最大值为________. 答案 bc解析 当直线AB 与y 轴重合时面积最大,AB =2b ,△AFB 的高为c ,∴此时S △AFB =12·2b ·c =bc .2.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是________________.答案 (1,3)∪(3,+∞)解析 由⎩⎪⎨⎪⎧y =x +2,x 2m +y 23=1⇒(3+m )x 2+4mx +m =0,∵Δ>0,∴m >1或m <0.又∵m >0,∴m >1且m ≠3.3.如图所示,直线l :x -2y +2=0过椭圆的左焦点F 1和一个顶点B ,则椭圆的离心率为________.答案255解析 由条件知,F 1(-2,0),B (0,1),∴b =1,c =2, ∴a =22+12=5,∴e =c a =25=255.4.椭圆x 212+y 23=1的左焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是________. 答案 ±34解析 由条件可得F 1(-3,0),PF 1的中点在y 轴上, ∴P 坐标(3,y 0),又P 在椭圆x 212+y 23=1上得y 0=±32,∴M 的坐标为(0,±34).解决直线与椭圆的位置关系问题经常利用设而不求的方法,解题步骤为 (1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2); (2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程; (4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解.一、基础达标1.直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是________.答案 [1,5)∪(5,+∞)解析 ∵直线y =kx +1恒过(0,1)点,若5>m ,则m ≥1,若5<m ,则必有公共点,∴m ≥1且m ≠5.2.椭圆x 225+y 29=1上的点P 到椭圆左焦点的最大距离和最小距离分别是________.答案 9,1解析 因为a =5,c =4,所以最大距离为a +c =9,最小距离为a -c =1.3.已知直线l :x +y -3=0,椭圆x 24+y 2=1,则直线与椭圆的位置关系是________.答案 相离解析 把x +y -3=0代入x 24+y 2=1,得x 24+(3-x )2=1,即5x 2-24x +32=0.∵Δ=(-24)2-4×5×32=-64<0, ∴直线与椭圆相离.4.已知点(m ,n )在椭圆8x 2+3y 2=24上,则2m +4的取值范围是__________________. 答案 [4-23,4+23]解析 方程可化为x 23+y 28=1,故椭圆焦点在y 轴上,又a =22,b =3,所以-3≤m ≤3,故4-23≤2m +4≤23+4.5.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为________. 答案 6解析 由椭圆方程得F (-1,0),设P (x 0,y 0), 则OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 20.∵P 为椭圆上一点,∴x 204+y 23=1.∴OP →·FP →=x 20+x 0+3⎝⎛⎭⎫1-x 204=x 204+x 0+3=14(x 0+2)2+2. ∵-2≤x 0≤2,∴OP →·FP →的最大值在x 0=2时取得,且最大值等于6.6.人造地球卫星的运行是以地球中心为一个焦点的椭圆,近地点距地面p 千米,远地点距地面q 千米,若地球半径为r 千米,则运行轨迹的短轴长为________千米. 答案 2(p +r )(q +r )解析 ∵⎩⎪⎨⎪⎧p +r =a -c ,q +r =a +c ,∴b 2=a 2-c 2=(a +c )(a -c )=(p +r )(q +r ), ∴2b =2(p +r )(q +r )(千米).7.椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,椭圆与直线x +2y +8=0相交于P 、Q 两点,且PQ =10,求椭圆方程. 解 ∵椭圆的离心率e =32, ∴b 2=a 2-c 2=a 2-34a 2=14a 2,∴椭圆的方程为x 2+4y 2=a 2.由⎩⎪⎨⎪⎧x 2+4y 2=a 2,x +2y +8=0得2x 2+16x +64-a 2=0, 由Δ=162-8(64-a 2)>0得a 2>32. 设P (x 1,y 1)、Q (x 2,y 2), x 1+x 2=-8,x 1·x 2=32-a 22.PQ =1+⎝⎛⎭⎫-122(x 1+x 2)2-4x 1x 2 =54[64-2(64-a 2)]=10. 解得a 2=36,∴b 2=9,即椭圆的方程为x 236+y 29=1.二、能力提升8.过椭圆x 2+2y 2=4的左焦点F 作倾斜角为π3的弦AB ,则弦AB 的长为________.答案167解析 椭圆的方程可化为x 24+y 22=1,∴F (-2,0).又∵直线AB 的斜率为3, ∴直线AB 的方程为y =3x + 6.由⎩⎨⎧y =3x +6,x 2+2y 2=4,得7x 2+122x +8=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-1227, x 1·x 2=87, ∴AB =(1+k 2)[(x 1+x 2)2-4x 1x 2]=167. 9.已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若F 2A +F 2B =12,则AB =________.答案 8解析 由题意知(AF 1+AF 2)+(BF 1+BF 2)=AB +AF 2+BF 2=2a +2a ,又由a =5,可得AB +(BF 2+AF 2)=20,即AB =8.10.椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,焦距为2c ,若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.答案 3-1 解析 由直线方程y =3(x +c ),得直线的倾斜角∠MF 1F 2=π3,且过点F 1(-c,0),∵∠MF 1F 2=2∠MF 2F 1,∴∠MF 1F 2=2∠MF 2F 1=π3,即F 1M ⊥F 2M ,∴在Rt △F 1MF 2中,F 1F 2=2c ,F 1M =c ,F 2M =3c ,∴由椭圆定义可得2a =c +3c ,∴c a =21+3=3-1. 11.已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率. (1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程.解 (1)由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2), 其离心率为32,故a 2-4a =32,解得a =4. 故椭圆C 2的方程为y 216+x 24=1. (2)方法一 A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上,因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4, 所以x 2A =41+4k 2. 将y =kx 代入y 216+x 24=1中,得(4+k 2)x 2=16, 所以x 2B =164+k 2. 又由OB →=2OA →,得x 2B =4x 2A ,即164+k 2=161+4k 2, 解得k =±1.故直线AB 的方程为y =x 或y =-x .方法二 A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上,因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4, 所以x 2A =41+4k 2. 由OB →=2OA →,得x 2B =161+4k 2,y 2B =16k 21+4k 2. 将x 2B ,y 2B 代入y 216+x 24=1中,得4+k 21+4k 2=1, 即4+k 2=1+4k 2,解得k =±1.故直线AB 的方程为y =x 或y =-x .12.在平面直角坐标系xOy 中,点P 到两点(0,-3),(0,3)的距离之和等于4,设点P 的轨迹为C .(1)写出C 的方程;(2)设直线y =kx +1与C 交于A 、B 两点,k 为何值时OA →⊥OB →?此时AB 的值是多少?解 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆.它的短半轴长b =22-(3)2=1,故曲线C 的方程为x +4 1. (2)设A (x 1,y 1),B (x 2,y 2),其坐标满足⎩⎪⎨⎪⎧ x 2+y 24=1,y =kx +1.消去y ,并整理得(k 2+4)x 2+2kx -3=0,故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. ∵OA →⊥OB →,∴x 1x 2+y 1y 2=0.∵y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1 =-4k 2+1k 2+4. 又x 1x 2+y 1y 2=0,∴k =±12. 当k =±12时,x 1+x 2=∓417,x 1x 2=-1217. AB =(x 2-x 1)2+(y 2-y 1)2 =(1+k 2)(x 2-x 1)2,而(x 2-x 1)2=(x 2+x 1)2-4x 1x 2=42172+4×1217=43×13172, ∴AB =54×43×13172=46517. 三、探究与创新13.已知椭圆C 的两个焦点分别为F 1(-1,0)、F 2(1,0),短轴的两个端点分别为B 1、B 2.(1)若△F 1B 1B 2为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点F 2的直线l 与椭圆C 相交于P 、Q 两点,且F 1P →⊥F 1Q →,求直线l 的方程.解 (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0). 根据题意知⎩⎪⎨⎪⎧a =2b ,a 2-b 2=1,解得a 2=43,b 2=13,故椭圆C 的方程为43+13=1. (2)容易求得椭圆C 的方程为x 22+y 2=1. 当直线l 的斜率不存在时,其方程为x =1,不符合题意; 当直线的斜率存在时,设直线l 的方程为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),x 22+y 2=1得(2k 2+1)x 2-4k 2x +2(k 2-1)=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k 22k 2+1,x 1x 2=2(k 2-1)2k 2+1, F 1P →=(x 1+1,y 1),F 1Q →=(x 2+1,y 2).因为F 1P →⊥F 1Q →,所以F 1P →·F 1Q →=0,即(x 1+1)(x 2+1)+y 1y 2=x 1x 2+(x 1+x 2)+1+k 2(x 1-1)(x 2-1)=(k 2+1)x 1x 2-(k 2-1)(x 1+x 2)+k 2+1=7k 2-12k 2+1=0, 解得k 2=17,即k =±77. 故直线l 的方程为x +7y -1=0或x -7y -1=0.。

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(6.2)word学案

高中数学苏教版选修2-1第2章《圆锥曲线与方程》(6.2)word学案

2.6.2求曲线的方程[学习目标] 1.掌握求轨迹方程建立坐标系的一般方法,熟悉求曲线方程的五个步骤.2.掌握求轨迹方程的几种常用方法.[知识链接]求曲线方程要“建立适当的坐标系”,这句话怎样理解.答:坐标系选取的适当,可使运算过程简化,所得方程也较简单,否则,如果坐标系选取不当,则会增加运算的烦杂程度.[预习导引]1.平面解析几何研究的主要问题(1)根据已知条件,求出表示平面曲线的方程.(2)通过方程,研究平面曲线的性质.2.求曲线(图形)的方程一般有下面几个步骤(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标.(2)写出适合条件P的点M的集合P={M|P(M)}.(3)用坐标表示条件P(M),列出方程f(x,y)=0.(4)化方程f(x,y)=0为最简形式.(5)证明以化简后的方程的解为坐标的点都在曲线上.3.求曲线方程(轨迹方程)的常用方法有直接法、代入法、定义法、参数法、待定系数法.要点一直接法求曲线方程例1已知一条直线l和它上方的一个点F,点F到l的距离是2.一条曲线也在l的上方,它上面的每一点到F的距离减去到l的距离的差都是2,建立适当的坐标系,求这条曲线的方程.解如图所示,取直线l为x轴,过点F且垂直于直线l的直线为y轴,建立坐标系xOy.设点M(x,y)是曲线上任意一点,作MB⊥x轴,垂足为B,那么点M属于集合P={M|MF-MB=2}.由两点间的距离公式,点M适合的条件可表示为x2+(y-2)2-y=2,①将①式移项后两边平方,得x2+(y-2)2=(y+2)2,化简得y =18x 2.因为曲线在x 轴的上方,所以y >0.虽然原点O 的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应是y =18x 2 (x≠0).规律方法 直接法是求轨迹方程的最基本的方法,根据所满足的几何条件,将几何条件{M |p (M )}直接翻译成x ,y 的形式F (x ,y )=0,然后进行等价变换,化简为f (x ,y )=0.要注意轨迹上的点不能含有杂点,也不能少点,也就是说曲线上的点一个也不能多,一个也不能少. 跟踪演练1 已知在直角三角形ABC 中,角C 为直角,点A (-1,0),点B (1,0),求满足条件的点C 的轨迹方程. 解 如图,设C (x ,y ),则AC →=(x +1,y ),BC →=(x -1,y ). ∵C 为直角,∴AC →⊥BC →,即AC →·BC →=0. ∴(x +1)(x -1)+y 2=0. 化简得x 2+y 2=1.∵A 、B 、C 三点要构成三角形, ∴A 、B 、C 不共线,∴y ≠0, ∴点C 的轨迹方程为x 2+y 2=1(y ≠0). 要点二 定义法求曲线方程例2 已知圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程. 解 如图,设OQ 为过O 点的一条弦,P (x ,y )为其中点,则CP ⊥OQ ,设M 为OC 的中点,则M 的坐标为(12,0).∵∠OPC =90°,∴动点P 在以点M (12,0)为圆心,OC 为直径的圆上,由圆的方程得(x -12)2+y 2=14(0<x ≤1). 规律方法 如果动点的轨迹满足某种已知曲线的定义,则可依据定义结合条件写出动点的轨迹方程.利用定义法求轨迹要善于抓住曲线的定义特征.跟踪演练2 已知定长为6的线段,其端点A 、B 分别在x 轴、y 轴上移动,线段AB 的中点为M ,求M 点的轨迹方程.解 作出图象如图所示,根据直角三角形的性质可知 OM =12AB =3.所以M 点的轨迹为以原点O 为圆心,以3为半径的圆,故M 点的轨迹方程为x 2+y 2=9. 要点三 代入法求曲线方程例3 已知动点M 在曲线x 2+y 2=1上移动,M 和定点B (3,0)连线的中点为P ,求P 点的轨迹方程.解 设P (x ,y ),M (x 0,y 0),∵P 为MB 的中点.∴⎩⎨⎧x =x 0+32,y =y2,即⎩⎪⎨⎪⎧x 0=2x -3,y 0=2y ,又∵M 在曲线x 2+y 2=1上,∴(2x -3)2+4y 2=1,即⎝⎛⎭⎫x -322+y 2=14. ∴P 点的轨迹方程为⎝⎛⎭⎫x -322+y 2=14. 规律方法 代入法求轨迹方程就是利用所求动点P (x ,y )与相关动点Q (x 0,y 0)坐标间的关系式,且Q (x 0,y 0)又在某已知曲线上,则可用所求动点P 的坐标(x ,y )表示相关动点Q 的坐标(x 0,y 0),即利用x ,y 表示x 0,y 0,然后把x 0,y 0代入已知曲线方程即可求得所求动点P 的轨迹方程.跟踪演练3 已知圆C :x 2+(y -3)2=9.过原点作圆C 的弦OP ,求OP 的中点Q 的轨迹方程. 解 方法一(直接法)如图,因为Q 是OP 的中点,所以∠OQC =90°. 设Q (x ,y ),由题意,得OQ 2+QC 2=OC 2, 即x 2+y 2+[x 2+(y -3)2]=9, 所以x 2+⎝⎛⎭⎫y -322=94(x ≠0). 方法二(定义法)如图所示,因为Q 是OP 的中点,所以∠OQC =90°,则Q 在以OC 为直径的圆上,故Q 点的轨迹方程为x 2+⎝⎛⎭⎫y -322=94(x ≠0). 方法三(代入法)设P (x 1,y 1),Q (x ,y ),由题意,得⎩⎨⎧x =x 12,y =y12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y .又因为P 点在圆C 上,所以x 21+(y 1-3)2=9,所以4x 2+4(y -32)2=9,即x 2+(y -32)2=94(x ≠0).1.已知等腰三角形ABC 底边两端点是A (-3,0),B (3,0),顶点C 的轨迹是__________________.答案 一条直线(C 不与A 、B 共线)解析 注意当点C 与A 、B 共线时,不符合题意,应去掉.2.在第四象限内,到原点的距离等于2的点M 的轨迹方程是________________. 答案 y =-4-x 2(0<x <2)解析 设M (x ,y ),由MO =2得,x 2+y 2=4, 又∵点M 在第四象限, ∴y =-4-x 2(0<x <2).3.到直线4x +3y -5=0的距离为1的点的轨迹方程为________________________. 答案 4x +3y -10=0和4x +3y =0 解析 可设动点坐标为(x ,y ), 则|4x +3y -5|5=1, 即|4x +3y -5|=5.∴所求轨迹为4x +3y -10=0和4x +3y =0.4.设A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且P A =1,则动点P 的轨迹方程是________________. 答案 (x -1)2+y 2=2解析 圆(x -1)2+y 2=1的圆心为B (1,0),半径r =1, 则PB 2=P A 2+r 2.∴PB 2=2. ∴P 的轨迹方程为(x -1)2+y 2=2.1.坐标系建立的不同,同一曲线的方程也不相同.2.一般地,求哪个点的轨迹方程,就设哪个点的坐标是(x ,y ),而不要设成(x 1,y 1)或(x ′,y ′)等.3.方程化简到什么程度,课本上没有给出明确的规定,一般指将方程f (x ,y )=0化成x ,y 的整式.如果化简过程破坏了同解性,就需要剔除不属于轨迹上的点,找回属于轨迹而遗漏的点.求轨迹时需要说明所表示的是什么曲线,求轨迹方程则不必说明.4.“轨迹”与“轨迹方程”是两个不同的概念:求轨迹方程只要求出方程即可;而求轨迹则应先求出轨迹方程,再说明轨迹的形状.一、基础达标1.平面内有两定点A ,B ,且AB =4,动点P 满足|P A →+PB →|=4,则点P 的轨迹是________. 答案 圆解析 以AB 的中点为原点,以AB 所在的直线为x 轴建立直角坐标系,则A (-2,0)、B (2,0).设P (x ,y ),则P A →+PB →=2PO →=2(-x ,-y ).∴x 2+y 2=4.2.已知动点P 到点(1,-2)的距离为3,则动点P 的轨迹方程是________________. 答案 (x -1)2+(y +2)2=9解析 设P (x ,y ),由题设得(x -1)2+(y +2)2=3, ∴(x -1)2+(y +2)2=9.3.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是________________. 答案 x 2+y 2=4 (x ≠±2)解析 设P (x ,y ),∵△MPN 为直角三角形, ∴MP 2+NP 2=MN 2,∴(x +2)2+y 2+(x -2)2+y 2=16,整理得,x 2+y 2=4. ∵M ,N ,P 不共线,∴x ≠±2, ∴轨迹方程为x 2+y 2=4 (x ≠±2).4.与点A (-1,0)和点B (1,0)的连线的斜率之积为-1的动点P 的轨迹方程是________________. 答案 x 2+y 2=1(x ≠±1) 解析 设P (x ,y ),则k P A =y x +1,k PB =yx -1, 所以k P A ·k PB =y x +1·yx -1=-1.整理得x 2+y 2=1,又k P A 、k PB 存在,所以x ≠±1.所以所求轨迹方程为x 2+y 2=1(x ≠±1).5.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是_______________. 答案 4x -3y -16=0或4x -3y +24=0解析 由两点式,得直线AB 的方程是y -04-0=x +12+1,即4x -3y +4=0,线段AB 的长度AB =(2+1)2+42=5.设C 点的坐标为(x ,y ),则12×5×|4x -3y +4|5=10,即4x -3y -16=0或4x -3y +24=0.6.已知△ABC ,A (-2,0),B (0,-2),第三个顶点C 在曲线y =3x 2-1上移动,则△ABC 的重心的轨迹方程是__________________. 答案 y =9x 2+12x +3解析 设△ABC 的重心为G (x ,y ),顶点C 的坐标为(x 1,y 1),由重心坐标公式得⎩⎨⎧x =-2+0+x13,y =0-2+y 13,∴⎩⎪⎨⎪⎧x 1=3x +2,y 1=3y +2. ∵点C (x 1,y 1)在曲线y =3x 2-1上, ∴3y +2=3(3x +2)2-1.∴y =9x 2+12x +3即为所求轨迹方程.7.等腰三角形ABC 中,若一腰的两个端点分别为A (4,2),B (-2,0),A 为顶点,求另一腰的一个端点C 的轨迹方程. 解 设点C 的坐标为(x ,y ),∵△ABC 为等腰三角形,且A 为顶点.∴AB =AC . 又∵AB =(4+2)2+22=210, ∴AC =(x -4)2+(y -2)2=210. ∴(x -4)2+(y -2)2=40.又∵点C 不能与B 重合,也不能使A 、B 、C 三点共线. ∴x ≠-2且x ≠10.∴点C 的轨迹方程为(x -4)2+(y -2)2=40 (x ≠-2且x ≠10). 二、能力提升8.以(5,0)和(0,5)为端点的线段的方程是____________. 答案 x +y -5=0(0≤x ≤5)解析 由截距式可得直线为x 5+y5=1,则线段方程为x +y -5=0(0≤x ≤5).9.已知两定点A (-2,0),B (1,0),如果动点P 满足P A =2PB ,则点P 的轨迹所包围的图形的面积等于________. 答案 4π解析 设P 点的坐标为(x ,y ),则(x +2)2+y 2=4[(x -1)2+y 2],即(x -2)2+y 2=4,所以点P 的轨迹所包围的图形的面积等于4π.10.设动直线l 垂直于x 轴,且与椭圆x 2+2y 2=4交于A 、B 两点,P 是l 上满足P A →·PB →=1的点,则点P 的轨迹方程是________________________. 答案 x 26+y 23=1(-2<x <2)解析 如图,设P 点的坐标为(x ,y ),则由方程x 2+2y 2=4得 2y 2=4-x 2, ∴y =±4-x 22, ∴A 、B 两点的坐标分别为⎝ ⎛⎭⎪⎫x , 4-x 22,⎝ ⎛⎭⎪⎫x ,- 4-x 22. 又P A →·PB →=1,∴⎝⎛⎭⎪⎫0, 4-x 22-y ·⎝ ⎛⎭⎪⎫0,- 4-x 22-y =1, 即y 2-4-x 22=1,∴x 26+y 23=1. 又直线l 与椭圆交于两点, ∴-2<x <2,∴点P 的轨迹方程为x 26+y 23=1(-2<x <2).11.若动点P 在y =2x 2+1上移动,则点P 与点Q (0,-1)连线的中点的轨迹方程是什么? 解 设PQ 的中点为M (x ,y ),P (x 0,y 0), 则⎩⎨⎧x =x 0+02,y =y 0-12,∴⎩⎪⎨⎪⎧x 0=2x ,y 0=2y +1, 又∵点P 在y =2x 2+1上,∴y 0=2x 20+1, 即2y +1=8x 2+1,即y =4x 2为所求的轨迹方程.12.如图,过点P (2,4)作两条互相垂直的直线l 1、l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程. 解 方法一 设点M 的坐标为(x ,y ). ∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y ). ∵l 1⊥l 2,且l 1、l 2过点P (2,4), ∴P A ⊥PB ,k P A ·k PB =-1. 而k P A =4-02-2x (x ≠1),k PB =4-2y 2-0,∴21-x ·2-y1=-1 (x ≠1).整理,得x +2y -5=0 (x ≠1). ∵当x =1时,A 、B 的坐标分别为(2,0)、(0,4), ∴线段AB 的中点坐标是(1,2),它满足方程x +2y -5=0. 综上所述,点M 的轨迹方程是x +2y -5=0.方法二 设M 的坐标为(x ,y ),则A 、B 两点的坐标分别是(2x,0)、(0,2y ),连结PM .∵l 1⊥l 2,∴2PM =AB . 而PM =(x -2)2+(y -4)2, AB =(2x )2+(2y )2,∴2(x -2)2+(y -4)2=4x 2+4y 2,化简,得x +2y -5=0,即为所求轨迹方程. 方法三 ∵l 1⊥l 2,OA ⊥OB ,∴O 、A 、P 、B 四点共圆,且该圆的圆心为M , ∴MP =MO ,∴点M 的轨迹为线段OP 的垂直平分线. ∵k OP =4-02-0=2,OP 的中点坐标为(1,2), ∴点M 的轨迹方程是y -2=-12(x -1),即x +2y -5=0. 三、探究与创新13.如图所示,圆O 1和圆O 2的半径都等于1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 为切点),使得PM =2PN .试建立平面直角坐标系,并求动点P 的轨迹方程.解 以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴,建立如图所示的坐标系, 则O 1(-2,0),O 2(2,0). 由已知PM =2PN , ∴PM 2=2PN 2.又∵两圆的半径均为1,∴PO21-1=2(PO22-1).设P(x,y),则(x+2)2+y2-1=2[(x-2)2+y2-1],即(x-6)2+y2=33.∴所求动点P的轨迹方程为(x-6)2+y2=33 (或x2+y2-12x+3=0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线[学习目标] 1.了解圆锥曲线的实际背景.2.经历从具体情境中抽象出圆锥曲线的过程.3.掌握椭圆、抛物线的定义和几何图形.4.了解双曲线的定义和几何图形.[知识链接]1.若动点M到两个定点F1、F2距离之和满足MF1+MF2=F1F2,则动点M轨迹是椭圆吗?答:不是,是线段F1F2.2.若动点M到两个定点F1、F2距离之差满足MF1-MF2=2a(2a<F1F2),则动点M轨迹是什么?答:是双曲线一支.[预习导引]1.椭圆的定义平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点.两焦点间的距离叫做椭圆的焦距.2.双曲线的定义平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.3.抛物线的定义平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l叫做抛物线的准线.4.椭圆、双曲线、抛物线统称为圆锥曲线.要点一椭圆定义的应用例1在△ABC中,B(-6,0),C(0,8),且sin B,sin A,sin C成等差数列.(1)顶点A的轨迹是什么?(2)指出轨迹的焦点和焦距.解 (1)由sin B ,sin A ,sin C 成等差数列,得sin B +sin C =2sin A .由正弦定理可得AB +AC =2BC . 又BC =10,所以AB +AC =20,且20>BC ,所以点A 的轨迹是椭圆(除去直线BC 与椭圆的交点).(2)椭圆的焦点为B 、C ,焦距为10.规律方法 本题求解的关键是把已知条件转化为三角形边的关系,找到点A 满足的条件.注意A 、B 、C 三点要构成三角形,轨迹要除去两点.跟踪演练1 已知圆A :(x +3)2+y 2=100,圆A 内一定点B (3,0),动圆M 过B 点且与圆A 内切,求证:圆心M 的轨迹是椭圆.证明 设MB =r .∵圆M 与圆A 内切,圆A 的半径为10,∴两圆的圆心距MA =10-r ,即MA +MB =10(大于AB ).∴圆心M 的轨迹是以A 、B 两点为焦点的椭圆.要点二 双曲线定义的应用例2 已知圆C 1:(x +2)2+y 2=1和圆C 2:(x -2)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹.解 由已知得,圆C 1的圆心C 1(-2,0),半径r 1=1,圆C 2的圆心C 2(2,0),半径r 2=3.设动圆M 的半径为r .因为动圆M 与圆C 1相外切,所以MC 1=r +1.①又因为动圆M 与圆C 2相外切,所以MC 2=r +3.②②-①得MC 2-MC 1=2,且2<C 1C 2=4.所以动圆圆心M 的轨迹为双曲线的左支,且除去点(-1,0).规律方法 设动圆半径为r ,利用动圆M 同时与圆C 1及圆C 2相外切得两个等式,相减后消去r ,得到点M 的关系式.注意到MC 2-MC 1=2中没有绝对值,所以轨迹是双曲线的一支,又圆C 1与圆C 2相切于点(-1,0),所以M 的轨迹不过(-1,0).跟踪演练2 在△ABC 中,BC 固定,顶点A 移动.设BC =m ,且|sin C -sin B |=12sin A ,则顶点A的轨迹是什么?解因为|sin C-sin B|=12sin A,由正弦定理可得|AB-AC|=12BC=12m,且12m<BC,所以点A的轨迹是双曲线(除去双曲线与BC的两交点).要点三抛物线定义的应用例3已知动点M的坐标(x,y)满足方程2(x-1)2+2(y-1)2=(x+y+6)2,试确定动点M的轨迹.解方程可变形为(x-1)2+(y-1)2|x+y+6|2=1,∵(x-1)2+(y-1)2表示点M到点(1,1)的距离,|x+y+6|2表示点M到直线x+y+6=0的距离,又由(x-1)2+(y-1)2|x+y+6|2=1知点M到定点(1,1)的距离等于点M到直线x+y+6=0的距离.由抛物线的定义知点M的轨迹是抛物线.规律方法若将方程两边展开整理,然后通过方程的特点来判断,将很难得到结果,而利用方程中表达式的几何意义,再由抛物线定义,问题就变得非常简单.跟踪演练3点P到点F(4,0)的距离比它到直线l:x=-6的距离小2,则点P的轨迹为________.答案抛物线解析将直线l:x=-6向右平移2个单位,得直线l′:x=-4.依题意知,点P到F(4,0)的距离等于点P到l′:x=-4的距离,可见点P的轨迹是抛物线.1.设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件PF1+PF2=a(a>0),则动点P的轨迹是__________________.答案椭圆或线段或不存在解析当a<6时,轨迹不存在;当a=6时,轨迹为线段;当a>6时,轨迹为椭圆.2.已知△ABC的项点A(-5,0)、B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹是____________.答案以A、B为焦点的双曲线的右支解析如图,AD=AE==BE=2,CD=CF,所以CA-CB=8-2=6<AB=10.根据双曲线定义,所求轨迹是以A、B为焦点的双曲线的右支.3.如图,圆O的半径为定长r,A是圆O内一个定点,P是圆上任意一点.线段AP的垂直平分线l和半径OP相交于点Q,当点P在圆上运动时,点Q的轨迹是________________.答案以O、A为焦点的椭圆解析∵QA=QP,∴QO+QA=r>OA.∴点Q的轨迹是以O、A为焦点的椭圆.4.到定直线x=-2的距离比到定点(1,0)的距离大1的点的轨迹是________________.答案以(1,0)为焦点的抛物线解析到定点(1,0)和定直线x=-1的距离相等,所以点的轨迹是以(1,0)为焦点的抛物线.1.一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线;当平面不经过顶点与圆锥面的轴垂直时,截得的图形是一个圆.改变平面的位置,观察截得的图形变化情况,可得到三种重要的曲线,即椭圆、双曲线和抛物线,统称为圆锥曲线.2.椭圆定义中,常数>F1F2不可忽视,若常数<F1F2,则这样的点不存在;若常数=F1F2,则动点的轨迹是线段F1F2.3.双曲线定义中,若常数>F1F2,则这样的点不存在;若常数=F1F2,则动点的轨迹是以F1、F2为端点的两条射线.4.抛物线定义中F∉l,若F∈l,则点的轨迹是经过点F且垂直于l的直线.一、基础达标1.已知定点F1(-3,0)和F2(3,0),动点M满足MF1+MF2=10,则动点轨迹是________.答案椭圆解析因为MF1+MF2=10,且10>F1F2,所以动点M轨迹是椭圆.2.已知点M(x,y)的坐标满足(x-1)2+(y-1)2-(x+3)2+(y+3)2=±4,则动点M的轨迹是________.答案双曲线解析点(x,y)到(1,1)点及到(-3,-3)点的距离之差的绝对值为4,而(1,1)与(-3,-3)距离为42,由定义知动点M的轨迹是双曲线.3.到两定点F1(-3,0),F2(3,0)的距离之差的绝对值等于6的点M的轨迹是__________.答案两条射线解析MF1-MF2=±6,而F1F2=6,轨迹为两条射线.4.若点M到F(4,0)的距离比它到直线x+5=0的距离小1,则点M的轨迹表示的曲线是________.答案抛物线解析由题意知M到F的距离与到x=-4的距离相等,由抛物线定义知,M点的轨迹是抛物线.5.下列说法中正确的有________(填序号).①已知F1(-6,0)、F2(6,0),到F1、F2两点的距离之和等于12的点的轨迹是椭圆;②已知F1(-6,0)、F2(6,0),到F1、F2两点的距离之和等于8的点的轨迹是椭圆;③到点F1(-6,0)、F2(6,0)两点的距离之和等于点M(10,0)到F1、F2的距离之和的点的轨迹是椭圆;④到点F1(-6,0)、F2(6,0)距离相等的点的轨迹是椭圆.答案③解析椭圆是到两个定点F1、F2的距离之和等于常数(大于F1F2)的点的轨迹,应特别注意椭圆的定义的应用.①中F1F2=12,故到F1、F2两点的距离之和为常数12的点的轨迹是线段F1F2.②中点到F1、F2两点的距离之和8小于F1F2,故这样的点不存在.③中点M(10,0)到F1、F2两点的距离之和为(10+6)2+02+(10-6)2+02=20>F1F2=12,故③中点的轨迹是椭圆.④中点的轨迹是线段F1F2的垂直平分线.故正确的是③.6.△ABC中,若B,C的坐标分别是(-2,0),(2,0),中线AD的长度为3,则A点的轨迹方程是________________________________________________________________________.答案x2+y2=9(y≠0)解析 ∵B (-2,0),C (2,0),∴BC 的中点为D (0,0).设A (x ,y ),又∵AD =3,∴x 2+y 2=3(y ≠0),∴A 点的轨迹方程是x 2+y 2=9(y ≠0).7.已知动圆M 过定点A (-3,0),并且在定圆B :(x -3)2+y 2=64的内部与其相内切,判断动圆圆心M 的轨迹.解 设动圆M 的半径为r .因为动圆M 与定圆B 内切,所以MB =8-r .又动圆M 过定点A ,MA =r ,所以MA +MB =8>AB =6,故动圆圆心M 的轨迹是椭圆. 二、能力提升8.已知动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是__________. 答案 抛物线解析 把轨迹方程5x 2+y 2=|3x +4y -12|写成x 2+y 2=|3x +4y -12|5.∴动点M 到原点的距离与到直线3x +4y -12=0的距离相等.∴点M 的轨迹是以原点为焦点,直线3x +4y -12=0为准线的抛物线.9.在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点.若点P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹是__________.答案 抛物线的一部分解析 点P 到直线C 1D 1的距离就是点P 到点C 1的距离,所以动点P 的轨迹就是动点到直线BC 与到点C 1的距离相等的点的轨迹,是抛物线的一部分.10.已知点A (-1,0)、B (1,0).曲线C 上任意一点P 满足P A →2-PB →2=4(|P A →|-|PB →|)≠0.则曲线C的轨迹是______.答案 椭圆解析 由P A →2-PB →2=4(|P A →|-|PB →|)≠0,得|P A →|+|PB →|=4,且4>AB .故曲线C 的轨迹是椭圆.11.已知动圆与圆C :(x +2)2+y 2=2相内切,且过点A (2,0),求动圆圆心M 的轨迹. 解 设动圆M 的半径为r ,∵圆C 与圆M 内切,点A 在圆C 外,∴MC=r-2,MA=r,∴MA-MC=2,又∵AC=4>2,∴点M的轨迹是以C、A为焦点的双曲线的左支.12.如图所示,已知点P为圆R:(x+c)2+y2=4a2上一动点,Q(c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.解由题意,得MP=MQ,RP=2a.MR-MQ=MR-MP=RP=2a<RQ=2c.∴点M的轨迹是以R、Q为两焦点,实轴长为2a的双曲线的右支.三、探究与创新13.设Q是圆x2+y2=4上的动点,点A(3,0),线段AQ的垂直平分线交半径OQ于点P.当Q点在圆周上运动时,求点P的轨迹.解因为线段AQ的垂直平分线交半径OQ于点P,所以P A=PQ.而半径OQ=OP+PQ,所以OP+P A=2,且2>3=OA,故点P的轨迹为椭圆(除去与x轴相交的两点).。

相关文档
最新文档