现代控制理论试习题(详细答案

合集下载

现代控制理论考试题及答案

现代控制理论考试题及答案

答案及评分标准一,填空(3分每空,共15分)1.输出变量 2.变量的个数最少 3.⎥⎦⎤⎢⎣⎡2001 4. 其状态空间最小实现为u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100001100010 ; u x y 2102121+⎥⎦⎤⎢⎣⎡= 5. 0,021==x x二,选择题(3分每题,共12分) 1.B 2.D 3.B 4.C三,判断题(3分每题,共12分)1.2. √3.4. √四,简答题(共23分)1.(5分) 解 判定系统11221223x x x x x x =-+⎧⎨=--⎩在原点的稳定性。

解 2114523I A λλλλλ+--==+++,两个特征根均具有负实部,(3分) 系统大范围一致渐近稳定。

(2分) 无大范围扣一分,无一致渐近扣一分。

2. (5分)11b ab b -⎛⎫⎪--⎝⎭能控性矩阵为 (2分)1 rank 211det 1b ab b b ab b -⎛⎫= ⎪--⎝⎭-⎛⎫⇔ ⎪--⎝⎭210b ab =-+-≠ (5分)3.(8分)在零初始条件下进行拉式变换得:)()(2)()()(2)(3)(223S U S SU S U S S Y S SY S Y S S Y S ++=+++12312)()()(232+++++==∴S S S S S S U S Y S G (4分)[]XY U X X 121100321100010.=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∴ (8分)4.(5分)解:[]B CS G A SI --=1)( (2分)2342+--=S S S (5分) 五,计算题1. 1210c u ⎡⎤=⎢⎥⎣⎦,1112201c u -⎡⎤=⎢⎥-⎣⎦能控性矩阵满秩,所以系统能化成能控标准型。

(2分)[][][]1111221122010101c p u -⎡⎤===-⎢⎥-⎣⎦[][]11112122221100p p A ⎡⎤==-=⎢⎥⎣⎦11221112211,11P P --⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦(10分) 能控标准型为u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=101010..(12分) 2. 解:11][)(---==A SI L e t At φ (2分)⎥⎦⎤⎢⎣⎡+-+---=-==----------t t tt t t tt Ate e ee e e e e A SI L e t 3232323211326623][)(φ (8分) ∴系统零初态响应为 X(t)=0,34121)(32320)(≥⎥⎦⎤⎢⎣⎡-+-+-=-----⎰t e e e e d Bu et t t t t t A τττ (12分) 3. 解:因为能观性矩阵满秩,所以系统可观,可以设计状态观测器。

自动化专业06级《现代控制理论》试卷答案精选全文完整版

自动化专业06级《现代控制理论》试卷答案精选全文完整版

自动化专业06级《现代控制理论》试卷答案一、(10分,每小题1分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。

( √ )1. 相比于经典控制理论,现代控制理论的一个显著优点是可以用时域法直接进行系统的分析和设计。

( √ )2. 传递函数的状态空间实现不唯一的一个主要原因是状态变量选取不唯一。

( × )3. 状态变量是用于完全描述系统动态行为的一组变量,因此都是具有物理意义。

( × )4. 输出变量是状态变量的部分信息,因此一个系统状态能控意味着系统输出能控。

( √ )5. 等价的状态空间模型具有相同的传递函数。

( × )6. 互为对偶的状态空间模型具有相同的能控性。

( × )7. 一个系统的平衡状态可能有多个,因此系统的李雅普诺夫稳定性与系统受扰前所处的平衡位置无关。

( √ )8. 若一线性定常系统的平衡状态是渐近稳定的,则从系统的任意一个状态出发的状态轨迹随着时间的推移都将收敛到该平衡状态。

( × )9. 反馈控制可改变系统的稳定性、动态性能,但不改变系统的能控性和能观性。

( × )10. 如果一个系统的李雅普诺夫函数确实不存在,那么我们就可以断定该系统是不稳定的。

二、(15分)建立一个合理的系统模型是进行系统分析和设计的基础。

已知一单输入单输出线性定常系统的微分方程为:)(8)(6)()(3)(4)(t u t u t u t y t y t y++=++&&&&&& (1)采用串联分解方式,给出其状态空间模型,并画出对应的状态变量图;(7分+3分) (2)归纳总结上述的实现过程,试简述由一个系统的n 阶微分方程建立系统状态空间模型的思路。

(5分) 解:(1)方法一:由微分方程可得345213486)(222++++=++++=s s s s s s s s G令352113452)(21++⋅+=+++=s s s s s s s G 每一个环节的状态空间模型分别为:⎩⎨⎧=+−=1111x y u x x & 和 ⎩⎨⎧+−=+−=1212223u x y u x x&又因为11y u =, 所以⎩⎨⎧−=+−=212113x x x u x x&&, 212x x y −= 因此,采用串联分解方式可得系统的状态空间模型为:u x x x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡0131012121&& []u x x y +⎥⎦⎤⎢⎣⎡−=2112对应的状态变量图为:方法二: 由微分方程可得32143486)(22++⋅++=++++=s s s s s s s s s G 每一个环节的状态空间模型分别为:⎩⎨⎧+=+−=u x y u x x 11113& 和 ⎩⎨⎧+−=+−=121223u x y u x x&又因为11y u =, 所以⎩⎨⎧+−=+−=ux x x u x x2121133&&, u x x y +−=213 因此,采用串联分解方式可得系统的状态空间模型为:u x x x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡1133012121&& []u x x y +⎥⎦⎤⎢⎣⎡−=2113对应的状态变量图为(2)单输入单输出线性时不变系统传递函数的一般形式是1110111)(a s a sa sb s b s b s b s G n n nn n n n +++++++=−−−−L L若,则通过长除法,传递函数总可以转化成0≠n b )(s G d s a s c d a s a s a s c s c s c s G n n n n n +=++++++++=−−−−)()()(01110111L L 将传递函数c (s )/a (s )分解成若干低阶(1阶)传递函数的乘积,然后根据能控标准型或能观标准型写出这些低阶传递函数的状态空间实现,最后利用串联关系,写出原来系统的状态空间模型。

现代控制理论试卷与答案

现代控制理论试卷与答案

一、名词解释与简答题(共3题,每小题5分,共15分)
1、经典控制理论与现代控制理论的区别
2、对偶原理的内容
3、李雅普诺夫稳定
二、分析与计算题(共8小题,其中4—10小题每题10分,第11小题15分,共85分)
4、电路如图所示,设输入为,输出为,试自选状态变量并列写出其状态空间表达式。

5
6
、试将下列状态方程化为对角标准型或者约当标准型。

7、已知系统状态空间表达式为,求系统的单位阶跃响应。

8、已知线性定常系统(A ,B ,C), ,试判断系统是否完全能观?若能观求其能观标准型,不能观则按照能观性进行分解.
9、利用李雅普诺夫方程判断系统是否为大范围渐近稳定,并求出其一个李雅普诺夫函数。

10、将状态方程化为能控标准型。

11、已知系统为,试确定线性状态反馈控制律,使闭环极点都是,并画出闭环系统的结构图。

《现代控制理论》课后习题全部答案(最完整打印版)

《现代控制理论》课后习题全部答案(最完整打印版)

第一章习题答案1-1试求图1-27系统的模拟结构图,并建立其状态空间表达式。

解:系统的模拟结构图如下:系统的状态方程如下:阿令,则所以,系统的状态空间表达式及输出方程表达式为状态变量的状态方程,和以电阻上的电压作为输出量的输出方程。

解:由图,令,输出量有电路原理可知:既得写成矢量矩阵形式为:1-4两输入,,两输出,的系统,其模拟结构图如图1-30所示,试求其状态空间表达式和传递函数阵。

解:系统的状态空间表达式如下所示:1-5系统的动态特性由下列微分方程描述列写其相应的状态空间表达式,并画出相应的模拟结构图。

解:令,则有相应的模拟结构图如下:1-6(2)已知系统传递函数,试求出系统的约旦标准型的实现,并画出相应的模拟结构图解:1-7给定下列状态空间表达式(1)画出其模拟结构图(2)求系统的传递函数解:(2)1-8求下列矩阵的特征矢量(3)解:A的特征方程解之得:当时,解得:令得(或令,得)当时,解得:令得(或令,得)当时,解得:令得1-9将下列状态空间表达式化成约旦标准型(并联分解)(2)解:A的特征方程当时,解之得令得当时,解之得令得当时,解之得令得约旦标准型1-10已知两系统的传递函数分别为W1(s)和W2(s)试求两子系统串联联结和并联连接时,系统的传递函数阵,并讨论所得结果解:(1)串联联结(2)并联联结1-11(第3版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-11(第2版教材)已知如图1-22所示的系统,其中子系统1、2的传递函数阵分别为求系统的闭环传递函数解:1-12已知差分方程为试将其用离散状态空间表达式表示,并使驱动函数u的系数b(即控制列阵)为(1)解法1:解法2:求T,使得得所以所以,状态空间表达式为第二章习题答案2-4用三种方法计算以下矩阵指数函数。

(2)A=解:第一种方法:令则,即。

求解得到,当时,特征矢量由,得即,可令当时,特征矢量由,得即,可令则,第二种方法,即拉氏反变换法:第三种方法,即凯莱—哈密顿定理由第一种方法可知,2-5下列矩阵是否满足状态转移矩阵的条件,如果满足,试求与之对应的A阵。

现代控制理论试题(详细答案)

现代控制理论试题(详细答案)

现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是cvcvx ,能观测的状态变量个数是。

2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个)解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。

状态变量个数是2。

…..(4分)2.选取状态变量1x y =,2x y =,3x y =,可得 …..….…….(1分)12233131835x x x x x x x u y x ===--+= …..….…….(1分)写成010*********x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦…..….…….(1分)[]100y x = …..….…….(1分)二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。

(3分)2已知系统[]210 020,011003x x y x ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。

若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。

…..….…….(3分) 2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分)[][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….…….(2分)三、已知系统1、2的传递函数分别为2122211(),()3232s s g s g s s s s s -+==++-+求两系统串联后系统的最小实现。

现代控制理论试卷及答案

现代控制理论试卷及答案

现代控制理论试卷一、简答题(对或错,10分)(1)描述系统的状态方程不是唯一的。

(2)用独立变量描述的系统状态向量的维数不是唯一的。

(3)对单输入单输出系统,如果1()C sI A B --存在零极点对消,则系统一定不可控或者不可观测。

(4)对多输入多数出系统,如果1()sI A B --存在零极点对消,则系统一定不可控。

(5)李雅普诺夫直接法的四个判定定理中所述的条件都是充分条件。

(6)李雅普诺夫函数是正定函数,李雅普诺夫稳定性是关于系统平衡状态的稳定性。

(8)线性定常系统经过非奇异线性变换后,系统的可控性不变。

(9)用状态反馈进行系统极点配置可能会改变系统的可观测性。

(10)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时可控和可观测。

对一个线性定常的单输入单输出5阶系统,假定系统可控可观测,通过设计输出至输入的反馈矩阵H 的参数能任意配置系统的闭环极点。

二、试求下述系统的状态转移矩阵()t Φ和系统状态方程的解x 1(t)和x 2(t)。

(15分)1122()()012()()()230x t x t u t x t x t ⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦12(0)0,(),0(0)1tx u t e t x -⎡⎤⎡⎤==≥⎢⎥⎢⎥⎣⎦⎣⎦ 三、设系统的传递函数为()10()(1)(2)y s u s s s s =++。

试用状态反馈方法,将闭环极点配置在-2,-1+j ,-1-j 处,并写出闭环系统的动态方程和传递函数。

(15分) 四、已知系统传递函数2()2()43Y s s U s s s +=++,试求系统可观标准型和对角标准型,并画出系统可观标准型的状态变量图。

(15分)五、已知系统的动态方程为[]211010a x x uy b x ⎧⎡⎤⎡⎤=+⎪⎢⎥⎢⎥⎨⎣⎦⎣⎦⎪=⎩,试确定a ,b 值,使系统完全可控、完全可观。

现代控制理论试卷答案3套

现代控制理论试卷答案3套

现代控制理论试卷 1一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打×(1)用独立变量描述的系统状态向量的维数是唯一。

()(2)线性定常系统经过非奇异线性变换后,系统的能观性不变。

()(3)若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的。

()(4)状态反馈不改变被控系统的能控性和能观测性。

()(5)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时能控和能观的。

()二、(12分)已知系统1001010,(0)00121x x x⎛⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,求()x t.三、(12分) 考虑由下式确定的系统:2s+2(s)=43Ws s++,求其状态空间实现的能控标准型和对角线标准型。

四、(9分)已知系统[]210020,011003x x y⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?五、(17分) 判断下列系统的能控性、能观性;叙述李亚普诺夫稳定性的充要条件并分析下面系统的稳定性.[]xy u x x 11103211=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=六、(17分)已知子系统1∑ 111121011x x u -⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦,[]1110y x = 2∑ []22222110,01011x x u y x -⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦求出串联后系统的状态模型和传递函数.七、(15分)确定使系统2001020240021a x x u b -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦为完全能控时,待定参数的取值范围。

八、(8分)已知非线性系统 ⎩⎨⎧--=+-=2112211sin 2x a x xx x x试求系统的平衡点,并确定出可以保证系统大范围渐近稳定的1a 的范围。

现代控制理论 试卷 1参考答案一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打× (1) 用独立变量描述的系统状态向量的维数是唯一。

现代控制理论试题与答案

现代控制理论试题与答案

现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1A1,B1,C1和=∑2A2,B2,C2是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的完全能观的,则∑2是状态完全能观的完全能控的.对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=A,B,C,状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+为任意非奇异阵变换矩阵,空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φt2.线性定常非齐次方程的解:xt=Φtx0+∫t0Φt-τBuτdτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态xt0,转移到指定的任一终端状态xtf,称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:1在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.2T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为rn维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.1状态反馈不改变受控系统的能控性2输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能1采用状态反馈对系统任意配置极点的充要条件是∑0完全能控2对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件1∑0完全能控2动态补偿器的阶数为n-13对系统用从输出到x线性反馈实现闭环极点任意配置充要条件是完全能观7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定1对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定2对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的3对系统采用输出到x反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出 11.系统解耦方法:前馈补偿器解耦和状态反馈解耦 12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u uy y 222++=+ ,试求其状态空间最小实现;5分 ②设系统的状态方程及输出方程为11000101;0111x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦[]001y x =试判定系统的能控性;5分2 已知系统的状态空间表达式为00001⎛⎫⎡⎤=+ ⎪⎢⎥⎝⎭⎣⎦x x u t ;[]x y 01=; ⎥⎦⎤⎢⎣⎡=11)0(x 试求当0;≥=t t u 时,系统的输出)(t y ;10分 3给定系统的状态空间表达式为u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100100110100013 ,211021y x -⎡⎤=⎢⎥⎣⎦ 试确定该系统能否状态反馈解耦,若能,则将其解耦10分 4 给定系统的状态空间表达式为设计一个具有特征值为 1 1 1---,,的全维状态观测器10分 5 ①已知非线性系统 ⎩⎨⎧--=+-=2112211sin 2x a x xx x x试求系统的平衡点,并确定出可以保证系统大范围渐近稳定的1a 的范围;5分② 判定系统11221223x x x x x x =-+⎧⎨=--⎩在原点的稳定性;5分6 已知系统 u x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=110011 试将其化为能控标准型;10分 7 已知子系统1∑ 111121011x x u -⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦,[]1110y x = 求出串联后系统现代控制理论试题1 ① 取拉氏变换知 )()2()()22(33s u s s s y s ++=+21121)1(21)(2213++-=+++=s s s s s g 3分其状态空间最小实现为u x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=101110 ; 21021+⎥⎦⎤⎢⎣⎡=x y 2分② 1n c u B ABA B -⎡⎤=⎣⎦012111101⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,秩为2,系统状态不完全能控; 2 解 02210(,)0.50.51⎛⎫Φ= ⎪-⎝⎭t t t t , 0()(,0)(0)(,)()tx t t x t B d τττ=Φ+Φ⎰ 1y = 3解 [][]100211101101c B ⎡⎤⎢⎥=-=-⎢⎥⎢⎥⎣⎦, [][]200021102101c B ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦所以120d d ==,121121E E E -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦; 1111213--⎡⎤=⎢⎥⎣⎦E 又因为E 非奇异,所以能用实现解耦控制; 2分12630011c A F c A ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦1分 求出u kx Lv =-+4 解 令122E E E E ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 代入系统得()123120()011100101sE sI A EC sE s E --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--=---⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭理想特征多项式为*332()(1)331f x s s s s =-=+++ 列方程,比较系数求得 001E ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 全维状态观测器为[]ˆˆx A EC x Bu Ey =-++ 12020ˆ01100,00111x u y --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦5 解 ①显然原点为一个平衡点,根据克拉索夫斯基方法,可知 因为 02<-;所以,当0)cos 21(42cos 21cos 212211111>--=----x a a x x时,该系统在原点大范围渐近稳定;解上述不等式知,491>a 时,不等式恒成立; 即491>a 时,系统在原点大范围渐近稳定; ② 解 2114523I A λλλλλ+--==+++,两个特征根均具有负实部,系统大范围一致渐近稳定;2分6 解 1210c u ⎡⎤=⎢⎥⎣⎦,1112201c u -⎡⎤=⎢⎥-⎣⎦ [][][]1111221122010101c p u -⎡⎤===-⎢⎥-⎣⎦[][]11112122221100p p A ⎡⎤==-=⎢⎥⎣⎦11221112211,11P P --⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦能控标准型为u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=101010 7 解 组合系统状态空间表达式为[]1200101001,00010011010010x x u y x -⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+=⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦5分组合系统传递函数为21()()()G s G s G s = 2分21331(1)(1)(1)(1)s s s s s s s ++=⨯=+-+-+ 3分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是,能观测的状态变量个数是cvcvx 。

2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个) 解 12。

…..233118x x x x y x ==--=010080x ⎡⎢=⎢⎢-⎣分) 00⎣(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。

若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。

…..….…….(3分)2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分) [][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎤⎡⎤⎡110C 1分)0140x ⎡⎤=⎢⎥⎣⎦ ()⎥⎦⎢⎢⎢⎣-=-8181881C U ……..…………..…….…….(1分) 11188P ⎡⎤=-⎢⎥⎣⎦……..………….…..…….…….(1分) ⎦⎤⎢⎣⎡=43412P ……..………….…...…….…….(1分)1314881148P -⎡⎤-⎢⎥=⎢⎥--⎢⎥⎣⎦..………….…...…….…….(1分) 101105C A PAP -⎡⎤==⎢⎥-⎣⎦………….…...…….…….(1分) ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==1011 43418181Pb b C ……….…...…….…….(1分)1分) 解(3分) 3分)2分)(81分)11121112221222420261p p p p p ⎪-+=⎨⎪-=-⎩………...……....…….…….(1分) 112212743858p p p ⎧=⎪⎪=⎨⎪=⎪⎩………...…………....…….…….(1分)1112122275485388p p P p p ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦...…………....…….…….(1分) 111211122275717480 det det 05346488p p P p p ⎡⎤⎡⎤⎢⎥=>==>⎢⎥⎢⎥⎣⎦⎣⎦………...(1分) P 正定,因此系统在原点处是大范围渐近稳定的.………(1分)八、给定系统的状态空间表达式为1010x --⎡⎢=-⎢⎢⎣2322213332223321(21)3313332(3)(26)64E E E E E E E E E E E λλλλλλλλλλ=+++++++++++++=+++++++++ -- 2分 又因为 *32()331f λλλλ=+++ ------- 1分列方程32123264126333E E E E E E +++=++=+= ----- 2分1232,0,3E k E =-==- ----------- 1分观测器为10312ˆˆ0110010113x x u y ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦------- 1分 方法 2λ⋅分 分分分10ˆ0110x -⎡⎢=-⎢⎢⎣九 分) 1200A tAt A t e e e ⎛⎫= ⎪⎝⎭1A t t e e =…………………………..……….(1分) 11210()12s sI A s ---⎛⎫-= ⎪--⎝⎭101111212s s s s ⎛⎫ ⎪-= ⎪ ⎪- ⎪---⎝⎭………..……….(1分)(){}2112220t A t t t t e e L sI A e ee --⎛⎫=-= ⎪-⎝⎭……….…(1分)()112200000t At tt tt e e L sI A e e e e --⎛⎫ ⎪⎡⎤=-= ⎪⎣⎦ ⎪-⎝⎭……….……….(2分) 222001000001t t tt t t t e e e e e e e ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭……………..……….(2分)一、(( × ( × ( √ ( √二、(的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。

解: 能控标准形为能观测标准形为对角标准形为三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。

对系统求其状态转移矩阵。

解:解法1。

容易得到系统状态矩阵A 的两个特征值是2,121-=-=λλ,它们是不相同的,故系统) 因此, ⎥⎦⎢⎣+-+-=+==Φ----t t t t At e e e e A t a I t a e t 2210222)()()( 四、(15分)已知对象的状态空间模型Cx y Bu Ax x =+=, ,是完全能观的,请画出观测器设计的框图,并据此给出观测器方程,观测器设计方法。

解 观测器设计的框图:观测器方程:其中:x ~是观测器的维状态,L 是一个n ×p 维的待定观测器增益矩阵。

观测器设计方法:由于 )](det[])(det[)](det[T T T T L C A I LC A I LC A I --=--=--λλλ因此,可以利用极点配置的方法来确定矩阵L ,使得T T T L C A -具有给定的观测器极点。

具体的方法有:直接法、变换法、爱克曼公式。

五、(P 。

I PA -=⎥⎦⎤⎣⎦⎣12/12212p p 根据塞尔维斯特方法,可得 045det 02321>==∆>=∆P 故矩阵P 是正定的。

因此,系统在原点处的平衡状态是大范围渐近稳定的。

六、(10分)已知被控系统的传递函数是试设计一个状态反馈控制律,使得闭环系统的极点为-1 ± j 。

解 系统的状态空间模型是将控制器 []x k k u 10-= 代入到所考虑系统的状态方程中,得到闭环系统状态方程该闭环系统的特征方程是 )2()3()det(012k k A I c ++++=-λλλ期望的闭环特征方程是 22)1)(1(2++=++-+λλλλj j通过 22)2()3(2012++=++++λλλλk kT 八、( 解: 极点配置可以改善系统的动态性能,如调节时间、峰值时间、振荡幅度。

极点配置也有一些负面的影响,特别的,可能使得一个开环无静差的系统通过极点配置后,其闭环系统产生稳态误差,从而使得系统的稳态性能变差。

改善的方法:针对阶跃输入的系统,通过引进一个积分器来消除跟踪误差,其结构图是构建增广系统,通过极点配置方法来设计增广系统的状态反馈控制器,从而使得闭环系统不仅保持期望的动态性能,而且避免了稳态误差的出现。

《现代控制理论》复习题2一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。

( ×( √ ( × ( × ( √ 二、((1)(2) 答:(1⎩⎨⎧=+-=11113x y u x x 和⎩⎨⎧+-=+-=1212255u x y u x x ? 由于11u y =,故可得给定传递函数的状态空间实现是:将其写成矩阵向量的形式,可得:对应的状态变量图为:串连分解所得状态空间实现的状态变量图(2)将G (s )写成以下形式: 它可以看成是两个环节35.0+-s 和55.2+s 的并联,每一个环节的状态空间模型分别为: 和由此可得原传递函数的状态空间实现:三、(方法一方法二方法三方法四根据凯莱-哈密尔顿定理和,可导出At e 具有以下形式:其中的)(),(),(120t t t n -ααα 均是时间 t 的标量函数。

根据矩阵A 有n 个不同特征值和有重特征值的情况,可以分别确定这些系数。

举例:利用拉普拉斯变换法计算由状态矩阵所确定的自治系统的状态转移矩阵。

由于故四、(10分)解释状态能观性的含义,给出能观性的判别条件,并举例说明之。

答:状态能观性的含义:状态能观性反映了通过系统的输出对系统状态的识别能力,对一个零输入的系统,若它是能观的,则可以通过一段时间内的测量输出来估计之前某个时刻的系统状态。

1.2.举例:的秩为五、((1)(2)简单叙述两种极点配置状态反馈控制器的设计方法;(3)试通过数值例子说明极点配置状态反馈控制器的设计。

答:(1)能够通过状态反馈实现任意极点配置的条件:系统是能控的。

(2)极点配置状态反馈控制器的设计方法有直接法、变换法、爱克曼公式法。

①直接法验证系统的能控性,若系统能控,则进行以下设计。

设状态反馈控制器u =?Kx ,相应的闭环矩阵是A ?BK ,闭环系统的特征多项式为 由期望极点n λλ,,1 可得期望的闭环特征多项式通过让以上两个特征多项式相等,可以列出一组以控制器参数为变量的线性方程组,由这组线性方程可以求出极点配置状态反馈的增益矩阵K 。

②(3) 其特征多项式为由期望的闭环极点? 2和?3,可得闭环特征多项式通过可得由此方程组得到因此,要设计的极点配置状态反馈控制器六、(20分)给定系统状态空间模型Axx=(1)试问如何判断该系统在李雅普诺夫意义下的稳定性?(2)试通过一个例子说明您给出的方法;(3)给出李雅普诺夫稳定性定理的物理解释。

答:(1A T+P解矩阵(2将矩阵即(3)李雅普诺夫稳定性定理的物理意义:针对一个动态系统和确定的平衡状态,通过分析该系统运动过程中能量的变化来判断系统的稳定性。

具体地说,就是构造一个反映系统运动过程中能量变化的虚拟能量函数,沿系统的运动轨迹,通过该能量函数关于时间导数的取值来判断系统能量在运动过程中是否减少,若该导数值都是小于零的,则表明系统能量随着时间的增长是减少的,直至消耗殆尽,表明在系统运动上,就是系统运动逐步趋向平缓,直至在平衡状态处稳定下来,这就是李雅普诺夫意义下的稳定性《现代控制理论》复习题3一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。

( ×( × ( × ( √ ( √ 器。

二、((2解:(1)单输入单输出线性时不变系统传递函数的一般形式是若0≠n b ,则通过长除法,传递函数)(s G 总可以转化成将分解成等效的两个特殊环节的串联:可得一个状态空间实现串联法 其思想是将一个n 阶的传递函数分解成若干低阶传递函数的乘积,然后写出这些低阶传递函数的状态空间实现,最后利用串联关系,写出原来系统的状态空间模型。

相关文档
最新文档