现代控制理论习题及答案
《现代控制理论》刘豹著(第3版)课后习题答案(最完整版)

第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
图1-27系统方块结构图解:系统的模拟结构图如下:图1-30双输入--双输出系统模拟结构图系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===••••••令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡••••••654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
U图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L LR x x x 。
自动化专业06级《现代控制理论》试卷答案精选全文完整版

自动化专业06级《现代控制理论》试卷答案一、(10分,每小题1分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。
( √ )1. 相比于经典控制理论,现代控制理论的一个显著优点是可以用时域法直接进行系统的分析和设计。
( √ )2. 传递函数的状态空间实现不唯一的一个主要原因是状态变量选取不唯一。
( × )3. 状态变量是用于完全描述系统动态行为的一组变量,因此都是具有物理意义。
( × )4. 输出变量是状态变量的部分信息,因此一个系统状态能控意味着系统输出能控。
( √ )5. 等价的状态空间模型具有相同的传递函数。
( × )6. 互为对偶的状态空间模型具有相同的能控性。
( × )7. 一个系统的平衡状态可能有多个,因此系统的李雅普诺夫稳定性与系统受扰前所处的平衡位置无关。
( √ )8. 若一线性定常系统的平衡状态是渐近稳定的,则从系统的任意一个状态出发的状态轨迹随着时间的推移都将收敛到该平衡状态。
( × )9. 反馈控制可改变系统的稳定性、动态性能,但不改变系统的能控性和能观性。
( × )10. 如果一个系统的李雅普诺夫函数确实不存在,那么我们就可以断定该系统是不稳定的。
二、(15分)建立一个合理的系统模型是进行系统分析和设计的基础。
已知一单输入单输出线性定常系统的微分方程为:)(8)(6)()(3)(4)(t u t u t u t y t y t y++=++&&&&&& (1)采用串联分解方式,给出其状态空间模型,并画出对应的状态变量图;(7分+3分) (2)归纳总结上述的实现过程,试简述由一个系统的n 阶微分方程建立系统状态空间模型的思路。
(5分) 解:(1)方法一:由微分方程可得345213486)(222++++=++++=s s s s s s s s G令352113452)(21++⋅+=+++=s s s s s s s G 每一个环节的状态空间模型分别为:⎩⎨⎧=+−=1111x y u x x & 和 ⎩⎨⎧+−=+−=1212223u x y u x x&又因为11y u =, 所以⎩⎨⎧−=+−=212113x x x u x x&&, 212x x y −= 因此,采用串联分解方式可得系统的状态空间模型为:u x x x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡0131012121&& []u x x y +⎥⎦⎤⎢⎣⎡−=2112对应的状态变量图为:方法二: 由微分方程可得32143486)(22++⋅++=++++=s s s s s s s s s G 每一个环节的状态空间模型分别为:⎩⎨⎧+=+−=u x y u x x 11113& 和 ⎩⎨⎧+−=+−=121223u x y u x x&又因为11y u =, 所以⎩⎨⎧+−=+−=ux x x u x x2121133&&, u x x y +−=213 因此,采用串联分解方式可得系统的状态空间模型为:u x x x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡1133012121&& []u x x y +⎥⎦⎤⎢⎣⎡−=2113对应的状态变量图为(2)单输入单输出线性时不变系统传递函数的一般形式是1110111)(a s a sa sb s b s b s b s G n n nn n n n +++++++=−−−−L L若,则通过长除法,传递函数总可以转化成0≠n b )(s G d s a s c d a s a s a s c s c s c s G n n n n n +=++++++++=−−−−)()()(01110111L L 将传递函数c (s )/a (s )分解成若干低阶(1阶)传递函数的乘积,然后根据能控标准型或能观标准型写出这些低阶传递函数的状态空间实现,最后利用串联关系,写出原来系统的状态空间模型。
《现代控制理论》课后习题全部答案(最完整打印版)

第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙阿令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
现代控制理论课后题及答案

第2章 “控制系统的状态空间描述”习题解答2.1有电路如图P2.1所示,设输入为1u ,输出为2u ,试自选状态变量并列写出其状态空间表达式。
图P2.1解 此题可采样机理分析法,首先根据电路定律列写微分方程,再选择状态变量,求得相应的系统状态空间表达式。
也可以先由电路图求得系统传递函数,再由传递函数求得系统状态空间表达式。
这里采样机理分析法。
设1C 两端电压为1c u ,2C 两端的电压为2c u ,则212221c c c du u C R u u dt++= (1) 112121c c c du u duC C dt R dt+= (2) 选择状态变量为11c x u =,22c x u =,由式(1)和(2)得:1121121121212111c c c du R R C u u u dt R R C R C R C +=--+ 2121222222111c c c du u u u dt R C R C R C =--+ 状态空间表达式为:12111211212121212122222221111111R R C x x x u R R C R C R C x x x u R C R C R C y u u x +⎧=--+⎪⎪⎪=--+⎨⎪⎪==-⎪⎩即: 12121121211112222222211111R R C R C R R C R C x x u x x R C R C R C +⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--⎢⎥⎢⎥⎣⎦⎣⎦[]11210x y u x ⎡⎤=-+⎢⎥⎣⎦2.2 建立图P22所示系统的状态空间表达式。
1图P2.2解 这是一个物理系统,采用机理分析法求状态空间表达式会更为方便。
令()f t 为输入量,即u f =,1M ,2M 的位移量1y ,2y 为输出量, 选择状态变量1x =1y ,2x = 2y ,3x =1dy dt,24dyx dt =。
现代控制理论试习题(详细答案

现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是,能观测的状态变量个数是cvcvx 。
2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个) 解 12。
…..233118x x x x y x ==--=010080x ⎡⎢=⎢⎢-⎣分) 00⎣(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。
若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。
…..….…….(3分)2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分) [][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎤⎡⎤⎡110C 1分)0140x ⎡⎤=⎢⎥⎣⎦ ()⎥⎦⎢⎢⎢⎣-=-8181881C U ……..…………..…….…….(1分) 11188P ⎡⎤=-⎢⎥⎣⎦……..………….…..…….…….(1分) ⎦⎤⎢⎣⎡=43412P ……..………….…...…….…….(1分)1314881148P -⎡⎤-⎢⎥=⎢⎥--⎢⎥⎣⎦..………….…...…….…….(1分) 101105C A PAP -⎡⎤==⎢⎥-⎣⎦………….…...…….…….(1分) ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==1011 43418181Pb b C ……….…...…….…….(1分)1分) 解(3分) 3分)2分)(81分)11121112221222420261p p p p p ⎪-+=⎨⎪-=-⎩………...……....…….…….(1分) 112212743858p p p ⎧=⎪⎪=⎨⎪=⎪⎩………...…………....…….…….(1分)1112122275485388p p P p p ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦...…………....…….…….(1分) 111211122275717480 det det 05346488p p P p p ⎡⎤⎡⎤⎢⎥=>==>⎢⎥⎢⎥⎣⎦⎣⎦………...(1分) P 正定,因此系统在原点处是大范围渐近稳定的.………(1分)八、给定系统的状态空间表达式为1010x --⎡⎢=-⎢⎢⎣2322213332223321(21)3313332(3)(26)64E E E E E E E E E E E λλλλλλλλλλ=+++++++++++++=+++++++++ -- 2分 又因为 *32()331f λλλλ=+++ ------- 1分列方程32123264126333E E E E E E +++=++=+= ----- 2分1232,0,3E k E =-==- ----------- 1分观测器为10312ˆˆ0110010113x x u y ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦------- 1分 方法 2λ⋅分 分分分10ˆ0110x -⎡⎢=-⎢⎢⎣九 分) 1200A tAt A t e e e ⎛⎫= ⎪⎝⎭1A t t e e =…………………………..……….(1分) 11210()12s sI A s ---⎛⎫-= ⎪--⎝⎭101111212s s s s ⎛⎫ ⎪-= ⎪ ⎪- ⎪---⎝⎭………..……….(1分)(){}2112220t A t t t t e e L sI A e ee --⎛⎫=-= ⎪-⎝⎭……….…(1分)()112200000t At tt tt e e L sI A e e e e --⎛⎫ ⎪⎡⎤=-= ⎪⎣⎦ ⎪-⎝⎭……….……….(2分) 222001000001t t tt t t t e e e e e e e ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭……………..……….(2分)一、(( × ( × ( √ ( √二、(的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。
《现代控制理论》课后习题答案1.pdf

《现代控制理论》第一章习题解答1.1 线性定常系统和线性时变系统的区别何在? 答:线性系统的状态空间模型为:xAx Bu y Cx Du=+=+线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A ,B ,C 和中的各分量均为常数,而对线性时变系统,其系数矩阵D A ,B ,C 和中有时变的元素。
线性定常系统在物理上代表结构和参数都不随时间变化的一类系统,而线性时变系统的参数则随时间的变化而变化。
D 1.2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别? 答: 传递函数模型与状态空间模型的主要区别如下:传递函数模型(经典控制理论)状态空间模型(现代控制理论) 仅适用于线性定常系统 适用于线性、非线性和时变系统用于系统的外部描述 用于系统的内部描述基于频域分析基于时域分析1.3 线性系统的状态空间模型有哪几种标准形式?它们分别具有什么特点?答: 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对角线标准型。
对于阶传递函数n 1212101110()n n n n n n n b s b s b s b G s d s a s a s a −−−−−−++++=+++++"",分别有[]012101210100000100000101n n n xx ua a a a yb b b b x du−−−⎧⎡⎤⎪⎢⎥⎪⎢⎥⎪⎢⎥=+⎪⎢⎥⎨⎢⎥⎪⎢⎥⎪−−−−⎣⎦⎪=+⎪⎩"" ###%##"""⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⑴ 能控标准型:[]0011221100010********001n n n b a b a xa x ub a b y xdu −−−⎧−⎡⎤⎡⎤⎪⎢⎥⎢⎥−⎪⎢⎥⎢⎥⎪⎢⎥⎢⎥=−+⎪⎢⎥⎢⎥⎨⎢⎥⎢⎥⎪⎢⎥⎢⎥⎪−⎣⎦⎣⎦⎪=+⎪⎩"" "######""⑵ 能观标准型:[]1212001001001n n p p x x up y c c c x du⎧⎡⎤⎡⎤⎪⎢⎥⎢⎥⎪⎢⎥⎢⎥=+⎪⎢⎥⎢⎥⎨⎢⎥⎢⎥⎪⎣⎦⎣⎦⎪⎪=+⎩"" ##%##""⑶ 对角线标准型: 式中的和可由下式给出,12,,,n p p p "12,,,n c c c "12121012111012()n n n n n n n n nb s b s b s bc c c G sd d s a s a s a s p s p s p −−−−−−++++=+=++++++−−−"""++能控标准型的特点:状态矩阵的最后一行由传递函数的分母多项式系数确定,其余部分具有特定结构,输出矩阵依赖于分子多项式系数,输入矩阵中的元素除了最后一个元素是1外,其余全为0。
现代控制理论试题与答案

现代控制理论试题与答案现代控制理论1.经典-现代控制区别:经典控制理论中,对⼀个线性定常系统,可⽤常微分⽅程或传递函数加以描述,可将某个单变量作为输出,直接和输⼊联系起来;现代控制理论⽤状态空间法分析系统,系统的动态特性⽤状态变量构成的⼀阶微分⽅程组描述,不再局限于输⼊量,输出量,误差量,为提⾼系统性能提供了有⼒的⼯具.可以应⽤于⾮线性,时变系统,多输⼊-多输出系统以及随机过程.2.实现-描述由描述系统输⼊-输出动态关系的运动⽅程式或传递函数,建⽴系统的状态空间表达式,这样问题叫实现问题.实现是⾮唯⼀的.3.对偶原理系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观⼦系统为渐近稳定第⼀章控制系统的状态空间表达式1.状态⽅程:由系统状态变量构成的⼀阶微分⽅程组2.输出⽅程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态⽅程和输出⽅程总合,构成对⼀个系统完整动态描述4.友矩阵:主对⾓线上⽅元素均为1:最后⼀⾏元素可取任意值;其余元素均为05.⾮奇异变换:x=Tz,z=T-1x;z=T-1A Tz+T-1Bu,y=CTz+Du.T为任意⾮奇异阵(变换矩阵),空间表达式⾮唯⼀6.同⼀系统,经⾮奇异变换后,特征值不变;特征多项式的系数为系统的不变量第⼆章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φ(t)2.线性定常⾮齐次⽅程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ第三章线性控制系统的能控能观性1.能控:使系统由某⼀初始状态x(t0),转移到指定的任⼀终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态⽅程中系统矩阵A和控制矩阵b3.⼀般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后⼀⾏相对应的⼀⾏元素没有全为0.(2)T-1B中对于互异特征值部分,它的各⾏元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的⼀列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析⽅便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最⼩实现问题:根据给定传递函数阵求对应的状态空间表达式,其解⽆穷多,但其中维数最⼩的那个状态空间表达式是最常⽤的.第五章线性定常系统综合1.状态反馈:将系统的每⼀个状态变量乘以相应的反馈系数,然后反馈到输⼊端与参考输⼊相加形成控制律,作为受控系统的控制输⼊.K为r*n维状态反馈系数阵或状态反馈增益阵2.输出反馈:采⽤输出⽮量y构成线性反馈律H为输出反馈增益阵3.从输出到状态⽮量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引⼊⼀个动态⼦系统来改善系统性能5.(1)状态反馈不改变受控系统的能控性(2)输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平⾯上所期望的位置,以获得所希望的动态性能 (1)采⽤状态反馈对系统任意配置极点的充要条件是∑0完全能控(2)对完全能控的单输⼊-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件[1]∑0完全能控[2]动态补偿器的阶数为n-1(3)对系统⽤从输出到x 线性反馈实现闭环极点任意配置充要条件是完全能观 7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输⼊-单输出系统,不能采⽤输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常⼯作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定 (1)对系统采⽤状态反馈能镇定的充要条件是其不能控⼦系统渐近稳定(2)对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观⼦系统是输出反馈能镇定的,其余⼦系统是渐近稳定的(3)对系统采⽤输出到x 反馈实现镇定充要条件是其不能观⼦系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输⼊输出相互关联的多变量系统的实现每个输出仅受相应的⼀个输⼊所控制,每个输⼊也仅能控制相应的⼀个输出11.系统解耦⽅法:前馈补偿器解耦和状态反馈解耦 12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u u y y 222++=+ ,试求其状态空间最⼩实现。
现代控制理论课后习题答案

现代控制理论课后习题答案第⼀章习题1.2求下列多项式矩阵()s D 和()s N 的两个不同的gcrd:()2223(),()1232s s s s s s s s s ??++== ? ?+-??D N 解:()()22232321s s s s s s s++ =++ ? ?D S N S ; ()3r 2,1,2E -:223381s s s s s s ??++ ?-- ? ???;()3r 2,3,3E :223051s s s s s ??++ ?- ? ???;()3r 1,3,2E s --:01051s s ?? ?- ? ;()3r 2,1,5E s -:01001s ?? ?;()3r 3,1,1E -:01000s ?? ? ? ???;()1r 2,3E :01000s ?? ? ? ???;()1r 1,2E :00100s ?? ?;所以⼀个gcrd 为001s ??;取任⼀单模矩阵预制相乘即可得另⼀个gcrd 。
1.9 求转移矩阵t A e (1)已知1141??=A ,根据拉⽒反变换求解转移矩阵tA e 。
(2) 已知412102113-?? ?= ? ?-??A ,根据C-H 有限项展开法求解转移矩阵t A e 。
解:(1)11()41s s s --??-= ?--??I A1110.50.50.250.2511(3)(1)(3)(1)13131()4141110.50.5(3)(1)(3)(1)(3)(1)3131s s s s s s s s s s s s s s s s s s s s s s s --+---+-+??-+-+ ? ?-=== ? ?---+ ?-+ ? ?-+-+-+-+?I A 3311330.5e 0.5e 0.25e 0.25e e ()e e 0.5e 0.5e t t t t t t tt t s ------??+-??=-= ??? ?-+?A L I A (2)由2412()12(1)(3)0113λλλλλλ--?? ?=--=--= ? ?--??A I -,得1,233,1λλ== 对1,23λ=,可以计算1,2()2rank λ=A I -,所以该特征值的⼏何重数为1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代控制理论习题及答案
现代控制理论习题及答案
现代控制理论是控制工程领域的重要分支,它研究如何设计和分析控制系统,以实现对动态系统的稳定性、响应速度、精度等方面的要求。
在学习现代控制理论过程中,习题是一个非常重要的环节,通过解答习题可以帮助我们巩固理论知识,提高问题解决能力。
本文将介绍一些常见的现代控制理论习题及其答案,希望对读者有所帮助。
1. 题目:给定一个开环传递函数 G(s) = 10/(s+5),求其闭环传递函数 T(s) 和稳定性判断。
解答:闭环传递函数 T(s) 可以通过公式 T(s) = G(s) / (1 + G(s)) 计算得到。
代入G(s) 的表达式,得到 T(s) = 10/(s+15)。
稳定性判断可以通过判断开环传递函数G(s) 的极点是否在左半平面来进行。
由于 G(s) 的极点为 -5,位于左半平面,因此系统是稳定的。
2. 题目:给定一个系统的状态空间表达式为 dx/dt = Ax + Bu,其中 A = [[-1, 2], [0, -3]],B = [[1], [1]],求系统的传递函数表达式。
解答:系统的传递函数表达式可以通过状态空间表达式进行求解。
首先,计算系统的特征值,即矩阵 A 的特征值。
通过求解 det(sI - A) = 0,可以得到系统的特征值为 -1 和 -3。
然后,将特征值代入传递函数表达式的分母,得到传递函数的分母为 (s+1)(s+3)。
接下来,计算传递函数的分子,可以通过求解 C = D(sI - A)^(-1)B 得到,其中 C 和 D 分别为输出矩阵和输入矩阵。
代入给定的 A、B 矩阵,计算得到 C = [1, 0] 和 D = [0]。
因此,系统的传递函数表达式为 G(s) = C(sI - A)^(-1)B = [1, 0] * [(s+1)^(-1), -2(s+3)^(-1); 0, (s+3)^(-1)] * [1; 1] =
(s+1)^(-1) + 2(s+3)^(-1)。
3. 题目:给定一个二阶系统的传递函数 G(s) = 1/(s^2 + 4s + 5),求系统的阻尼比、自然频率和峰值时间。
解答:系统的传递函数可以表示为G(s) = ωn^2 / (s^2 + 2ζωns + ωn^2),其中
ωn 为自然频率,ζ 为阻尼比。
通过比较传递函数的形式,可以得到ωn^2 = 5
和2ζωn = 4。
解方程组可以得到ωn = √5 和ζ = 1/√5。
阻尼比小于1时,系
统为欠阻尼系统。
峰值时间可以通过公式tp = π / (ωd(1 - ζ^2)^(1/2)) 计算得到,其中ωd 为阻尼系统的峰值频率。
代入已知的参数,可以计算得到tp = π /
(√5(1 - 1/5)^(1/2)) = π / √20。
通过以上的习题解答,我们可以看到现代控制理论的应用广泛而深入。
掌握现
代控制理论的基本概念和方法,能够帮助我们更好地设计和分析控制系统,提
高系统的性能和稳定性。
在学习过程中,多做习题并理解其解答过程,可以加
深对理论知识的理解和应用能力的培养。
希望本文对读者在现代控制理论学习
中有所帮助。