数据结构的逻辑结构
数据结构的逻辑结构、存储结构及数据运算的含义及其相互关系

2007 C C C 语言的特点,简单的C 程序介绍,C 程序的上机步骤。
1 、算法的概念2、简单的算法举例3、算法的特性4、算法的表示(自然语言、流程图、N-S 图表示) 1 、 C 的数据类型、常量与变星、整型数据、实型数据、字符型数据、字符串常量。
2、 C 的运算符运算意义、优先级、结合方向。
3、算术运算符和算术表达式,各类数值型数据间的混合运算。
4、赋值运算符和赋值表达式。
5、逗号运算符和逗号表达式。
1 、程序的三种基本结构。
2、数据输入输出的概念及在C 语言中的实现。
字符数据的输入输出,格式输入与输出。
1 、关系运算符及其优先级,关系运算和关系表达式。
2、逻辑运算符及其优先级,逻辑运算符和逻辑表达式。
3、if语句。
if语句的三种形式,if语句的嵌套,条件运算符。
4、switch 语句. 1 、while 语句。
2、do/while 语句。
3、for 语句。
4、循环的嵌套。
5、break 语句和continue 语句。
1 、一维数组的定义和引用。
2、二维数组的定义和引用。
3、字符数组。
4、字符串与字符数组。
5、字符数组的输入输出。
6、字符串处理函数1 、函数的定义。
2、函数参数和函数的值,形式参数和实际参数。
3、函数的返回值。
4、函数调用的方式,函数的声明和函数原型。
5、函数的嵌套调用。
6、函数的递归调用。
7、数组作为函数参数。
8、局部变量、全局变量的作用域。
9、变量的存储类别,自动变星,静态变量。
1 、带参数的宏定义。
2、“文件包含”处理。
1 、地址和指针的概念。
2、变量的指针和指向变量的指针变量。
3、指针变量的定义和引用。
4、指针变量作为函数参数。
5、数组的指针和指向数组的指针变量。
6、指向数组元素的指针。
7、通过指针引用数组元素。
8、数组名作函数参数。
9、二维数组与指针。
1 0、指向字符串的指针变星。
字符串的指针表示形式,字符串指针作为函数参数。
11 、字符指针变量和字符数组的异同。
数据的逻辑结构的定义

数据的逻辑结构的定义数据的逻辑结构是指数据在计算机系统中的组织方式和关系。
它描述了数据元素之间的联系以及数据元素的存储方式,是实现数据处理和管理的基础。
数据的逻辑结构可以分为线性结构、树形结构和图形结构三种类型。
一、线性结构线性结构是最简单的数据结构,它的特点是数据元素之间存在一对一的关系。
线性结构包括线性表、栈和队列。
1. 线性表线性表是一种数据元素按照线性关系存储和操作的数据结构。
线性表的特点是元素之间存在顺序关系,可以插入、删除和查找元素。
线性表有顺序表和链表两种存储结构。
顺序表是用一段连续的存储单元存储线性表的元素,通过下标来访问元素。
顺序表的插入和删除操作需要移动大量元素,因此效率较低。
链表是通过指针将线性表的元素连接起来的数据结构,每个元素包含一个指向下一个元素的指针。
链表的插入和删除操作只需要修改指针,因此效率较高。
2. 栈栈是一种特殊的线性表,它的特点是只能在一端插入和删除元素。
栈的插入和删除操作遵循“先进后出”的原则,因此可以用来进行递归调用、表达式求值和括号匹配等操作。
3. 队列队列是一种特殊的线性表,它的特点是只能在一端插入元素,在另一端删除元素。
队列的插入操作在队尾进行,删除操作在队头进行,遵循“先进先出”的原则。
队列常用于实现消息传递和任务调度等场景。
二、树形结构树形结构是一种非线性的数据结构,它的特点是数据元素之间存在一对多的关系。
树形结构包括二叉树、二叉搜索树和平衡二叉树等。
1. 二叉树二叉树是一种特殊的树形结构,它的特点是每个节点最多有两个子节点。
二叉树的遍历方式包括前序遍历、中序遍历和后序遍历。
2. 二叉搜索树二叉搜索树是一种特殊的二叉树,它的特点是左子树的所有节点都小于根节点,右子树的所有节点都大于根节点。
二叉搜索树可以快速查找、插入和删除元素。
3. 平衡二叉树平衡二叉树是一种特殊的二叉搜索树,它的特点是任意节点的左右子树高度差不超过1。
平衡二叉树可以保持树的平衡,提高查找、插入和删除的效率。
试举一个数据结构的例子、叙述其逻辑结构、存储结构、运算三个方面的内容。

数据结构复习笔记作者: 网络转载发布日期: 无数据就是指能够被计算机识别、存储和加工处理的信息的载体。
数据元素是数据的基本单位,有时一个数据元素可以由若干个数据项组成。
数据项是具有独立含义的最小标识单位。
如整数这个集合中,10这个数就可称是一个数据元素.又比如在一个数据库(关系式数据库)中,一个记录可称为一个数据元素,而这个元素中的某一字段就是一个数据项。
数据结构的定义虽然没有标准,但是它包括以下三方面内容:逻辑结构、存储结构、和对数据的操作。
这一段比较重要,我用自己的语言来说明一下,大家看看是不是这样。
比如一个表(数据库),我们就称它为一个数据结构,它由很多记录(数据元素)组成,每个元素又包括很多字段(数据项)组成。
那么这张表的逻辑结构是怎么样的呢? 我们分析数据结构都是从结点(其实也就是元素、记录、顶点,虽然在各种情况下所用名字不同,但说的是同一个东东)之间的关系来分析的,对于这个表中的任一个记录(结点),它只有一个直接前趋,只有一个直接后继(前趋后继就是前相邻后相邻的意思),整个表只有一个开始结点和一个终端结点,那我们知道了这些关系就能明白这个表的逻辑结构了。
而存储结构则是指用计算机语言如何表示结点之间的这种关系。
如上面的表,在计算机语言中描述为连续存放在一片内存单元中,还是随机的存放在内存中再用指针把它们链接在一起,这两种表示法就成为两种不同的存储结构。
(注意,在本课程里,我们只在高级语言的层次上讨论存储结构。
)第三个概念就是对数据的运算,比如一张表格,我们需要进行查找,增加,修改,删除记录等工作,而怎么样才能进行这样的操作呢? 这也就是数据的运算,它不仅仅是加减乘除这些算术运算了,在数据结构中,这些运算常常涉及算法问题。
弄清了以上三个问题,就可以弄清数据结构这个概念。
--------------------------------------------------------------------------------通常我们就将数据的逻辑结构简称为数据结构,数据的逻辑结构分两大类:线性结构和非线性结构(这两个很容易理解)数据的存储方法有四种:顺序存储方法、链接存储方法、索引存储方法和散列存储方法。
数据结构的四种基本逻辑结构

数据结构的四种基本逻辑结构数据结构是计算机科学中非常重要的一个概念,它是数据的组织、存储和管理的一种方式。
根据数据元素之间的关系,数据结构可以分为四种基本逻辑结构,包括线性结构、树形结构、图结构和集合结构。
下面将逐一介绍这四种基本逻辑结构。
一、线性结构:线性结构是最简单、最常见的数据结构之一,它的特点是数据元素之间存在一对一的关系。
线性结构有两种存储方式,分别是顺序存储和链式存储。
1. 顺序存储:顺序存储是将数据元素存储在一段连续的内存空间中,通过元素之间的物理位置来表示其之间的逻辑关系。
顺序存储的优点是访问速度快,缺点是插入和删除操作需要移动大量元素。
常见的线性结构有数组和字符串。
2. 链式存储:链式存储是通过指针将数据元素连接起来的存储方式,不要求元素在存储空间中的位置相邻。
链式存储的优点是插入和删除操作简单高效,缺点是访问速度相对较慢。
常见的线性结构有链表和栈。
二、树形结构:树形结构是一种层次化的数据结构,它的特点是每个节点可以有多个子节点,但每个节点只有一个父节点。
树形结构有很多种不同的实现方式,常见的有二叉树、平衡二叉树、B树等。
1. 二叉树:二叉树是树形结构中最基本的形式,每个节点最多只能有两个子节点。
二叉树可以为空树,也可以是非空的,非空二叉树又分为满二叉树、完全二叉树和搜索二叉树等。
二叉树的应用非常广泛,例如在排序、查找、哈夫曼编码等领域都有重要的作用。
2. 平衡二叉树:平衡二叉树是一种特殊的二叉查找树,它的左右子树的高度差不超过1。
平衡二叉树的设计可以有效提高查找和插入操作的效率,最常见的平衡二叉树就是AVL树。
3. B树:B树是一种多路搜索树,它的结构可以在节点中存储更多的关键字,从而减少树的层数,提高查找效率。
B树被广泛应用于数据库和文件系统等领域,例如MySQL的索引就是采用了B树的结构。
三、图结构:图结构由顶点(节点)和边(连接顶点的线段)组成,它的特点是顶点之间可以有多个连接关系。
期末数据结构复习总结

数据结构第一章1、数据是描述客观事物的数和字符的集合2、数据项:是具有独立含义的数据最小单位,也称为字段或域3、数据对象:指性质相同的数据元数的集合,是数据的一个子集4、数据结构:指所有数据元素以及数据元素之间的关系5、数据的逻辑结构:由数据元素之间的逻辑关系构成6、数据的存储结构:数据元素及其关系在计算机存储器中的存储表示,称为物理结构逻辑结构的表达方式:1、图表表示:采用表格或图形直接描述数据的逻辑关系。
2、二元组表示:通用的数据逻辑结构表示方式:R={r},r={<010,021>,<021,027>,<027,029>}逻辑结构的类型:1、集合:指数据元素之间除了“同属于一个集合”的关系以外别无其他关系。
2、线性结构:一对一关系,只有一个前驱和一个后继元素。
3、树形结构:多对多关系,除了开始元素以外,都只有一个前驱和多个后继元素。
什么是算法:是问题求解步骤的描述,是指令的有限序列。
1、有穷性:执行有穷步后结束2、确定性:不能有二义性3、可行性:算法可以通过有限次的操作完成其功能,能够被重复地执行4、有输入:一个算法有0个或多个输入5、有输出:一个算法有一个或多个输出算法设计的目标:正确性(算法能正确执行)、可使用性(方便地使用)、可读性(算法易于理解)、健壮性(有好的容错性,不会异常中断或死机)、高效率与低存储量需求(算法的执行时间和存储空间)算法时间性分析方法:事后统计法(缺点:必须执行、存在很多因素掩盖算法本质)、事前估算法(仅考虑算法本身的效率高低、只依赖于问题的规模)第二章线性表:具有相同特性的数据元素的一个有限序列有序表:指线性表中的所有元素按递增或剃减方式有序排列顺序表:线性表的顺序存储结构简称为顺序表(下标从0开始),从逻辑上相邻的元素对应的物理存储位置也相邻,当进行插入或删除的操作时要平均移动半个表的元素,相当费时。
链表:线性表的链式存储结构称为链表,拥有唯一的标识头指针(head pointer),相应的指向开始结点(first pointer),指向尾结点的称为尾指针(tail pointer)。
数据结构

数据结构是指同一数据元素类中各数据元素之间存在的关系。
数据结构分别为逻辑结构、存储结构(物理结构)和数据的运算。
数据的逻辑结构是对数据之间关系的描述,有时就把逻辑结构简称为数据结构。
逻辑结构形式地定义为(K,R)(或(D,S)),其中,K是数据元素的有限集,R是K上的关系的有限集。
数据元素相互之间的关系称为结构。
有四类基本结构:集合、线性结构、树形结构、图状结构(网状结构)。
树形结构和图形结构全称为非线性结构。
集合结构中的数据元素除了同属于一种类型外,别无其它关系。
线性结构中元素之间存在一对一关系,树形结构中元素之间存在一对多关系,图形结构中元素之间存在多对多关系。
在图形结构中每个结点的前驱结点数和后续结点数可以任意多个。
数据结构在计算机中的表示(映像)称为数据的物理(存储)结构。
它包括数据元素的表示和关系的表示。
数据元素之间的关系有两种不同的表示方法:顺序映象和非顺序映象,并由此得到两种不同的存储结构:顺序存储结构和链式存储结构。
顺序存储方法:它是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现,由此得到的存储表示称为顺序存储结构。
顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。
链接存储方法:它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。
由此得到的存储表示称为链式存储结构,链式存储结构通常借助于程序设计语言中的指针类型来实现。
索引存储方法:除建立存储结点信息外,还建立附加的索引表来标识结点的地址。
散列存储方法:就是根据结点的关键字直接计算出该结点的存储地址。
数据结构中,逻辑上(逻辑结构:数据元素之间的逻辑关系)可以把数据结构分成线性结构和非线性结构。
线性结构的顺序存储结构是一种随机存取的存储结构,线性表的链式存储结构是一种顺序存取的存储结构。
线性表若采用链式存储表示时所有结点之间的存储单元地址可连续可不连续。
数据结构的逻辑结构

数据结构的逻辑结构数据结构是计算机科学中的重要概念,它指的是数据元素之间的关系和组织方式。
逻辑结构是数据结构中的一种重要分类,它描述了数据元素之间的逻辑关系,而不涉及具体的存储方式和实现细节。
本文将以数据结构的逻辑结构为标题,介绍几种常见的逻辑结构。
1. 线性结构线性结构是最基本也是最常见的数据结构之一,它的特点是数据元素之间存在一对一的关系。
线性结构有两种基本形式:线性表和线性链表。
线性表是一种有序的数据元素序列,可以用顺序存储结构或链式存储结构来实现;线性链表是一种由节点组成的链式结构,节点中存储数据元素和指向下一个节点的指针。
2. 非线性结构非线性结构是指数据元素之间存在一对多或多对多的关系。
常见的非线性结构有树和图。
树是一种由节点组成的层次结构,每个节点可以有零个或多个子节点;图是由节点和边组成的集合,节点表示数据元素,边表示节点之间的关系。
3. 集合结构集合结构是指数据元素之间不存在任何关系,它们之间是相互独立的。
集合结构常用于描述离散的事物,如数学中的集合。
集合结构可以用数组、链表等方式来实现。
4. 文件结构文件结构是指数据元素之间存在一对一或一对多的关系,数据元素可以按照某种逻辑顺序进行存储和访问。
常见的文件结构有顺序文件、索引文件和散列文件。
顺序文件是按照一定顺序存储的文件,可以进行顺序查找;索引文件是通过索引表来实现的,可以进行快速查找;散列文件是通过散列函数来计算存储位置的,可以实现快速的插入和查找。
5. 网状结构网状结构是指数据元素之间存在多对多的关系,每个数据元素都可以与其他元素直接或间接地相连。
网状结构常用于描述复杂的关系,如社交网络中的好友关系。
以上是数据结构中常见的几种逻辑结构,它们在实际应用中各有优劣。
选择合适的逻辑结构可以提高算法的效率和程序的可读性。
在实际问题中,可以根据数据之间的关系和操作需求来选择适合的逻辑结构。
同时,不同的逻辑结构也可以相互转化,例如可以将线性结构转化为树结构或图结构,以满足特定的需求。
数据结构复习要点(整理版)

第一章数据结构概述基本概念与术语1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。
2。
数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。
(补充:一个数据元素可由若干个数据项组成。
数据项是数据的不可分割的最小单位。
)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
(有时候也叫做属性。
)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。
数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。
依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系.2.线性结构:结构中的数据元素之间存在“一对一“的关系。
若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。
3。
树形结构:结构中的数据元素之间存在“一对多“的关系.若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。
4.图状结构:结构中的数据元素存在“多对多"的关系.若结构为非空集,折每个数据可有多个(或零个)直接后继.(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。
想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。
逻辑结构可以映射为以下两种存储结构:1.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系.2.链式存储结构:借助指针表达数据元素之间的逻辑关系。
不要求逻辑上相邻的数据元素物理位置上也相邻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构的逻辑结构
数据结构是计算机科学中的一个重要概念,用于组织和存储数据以便有效地访问和操作。
数据结构可以分为两个主要方面:逻辑结构和物理结构。
逻辑结构描述了数据之间的逻辑关系,而物理结构描述了数据在计算机内存中的存储方式。
本文将重点探讨数据结构的逻辑结构。
一、线性结构
线性结构是最基本的逻辑结构之一,数据元素之间存在一对一的关系。
线性结构包括线性表、栈、队列和串。
1. 线性表
线性表是由n个数据元素组成的有限序列,其中元素之间存在顺序关系。
常见的线性表有顺序表和链表。
顺序表使用连续的内存空间存储元素,而链表使用节点和指针的方式存储元素。
2. 栈
栈是一种特殊的线性表,遵循先进后出(LIFO)的原则。
栈具有两个主要操作:push和pop,分别用于入栈和出栈操作。
常见的应用场景包括函数调用、表达式求值和后缀表达式转换等。
3. 队列
队列也是一种特殊的线性表,遵循先进先出(FIFO)的原则。
队列
具有两个主要操作:enqueue和dequeue,分别用于入队和出队操作。
常见的应用场景包括任务调度、消息传递和广度优先搜索等。
4. 串
串是由零个或多个字符组成的有限序列,可以看作是特殊的线性表。
串与线性表的区别在于对元素的操作不同,串主要进行字符匹配、模
式识别和字符串处理等操作。
二、非线性结构
非线性结构是指数据元素之间存在一对多或多对多的关系,包括树
和图两种结构。
1. 树
树是一种类似于自然界中树的结构,由n个节点组成。
树的节点之
间存在父子关系,每个节点可以有多个子节点,但只能有一个父节点。
树的应用广泛,如二叉树用于拼写检查和数据库索引等。
2. 图
图是由n个顶点和m条边组成的集合,顶点之间可以存在多个边。
图可以分为有向图和无向图,根据边是否有方向来判断。
图的应用包
括社交网络、路由算法和最短路径等。
三、集合结构
集合结构是指数据元素之间没有任何特定关系,每个元素都是独立的。
集合结构常用于数据库系统中的集合操作,如并、交和差等。
四、索引结构
索引结构用于提高数据的检索效率,常用的索引结构包括线性索引、二叉树索引和哈希索引。
索引结构的选择取决于数据的特点和查询操
作的频率。
综上所述,数据结构的逻辑结构包括线性结构、非线性结构、集合
结构和索引结构。
不同的逻辑结构适用于不同的应用场景,选择合适
的逻辑结构可以提高数据的处理和访问效率。
对于程序员来说,了解
和掌握不同的逻辑结构对于设计和实现高效的算法和数据结构非常重要。