2020年高考全国一卷文科数学试卷及答案

合集下载

2020年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2020年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2020年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x2﹣3x﹣4<0},B={﹣4,1,3,5},则A∩B=()A.{﹣4,1}B.{1,5}C.{3,5}D.{1,3}2.(5分)若z=1+2i+i3,则|z|=()A.0B.1C .D.23.(5分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A .B .C .D .4.(5分)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A .B .C .D .5.(5分)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+be x D.y=a+blnx 6.(5分)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.47.(5分)设函数f(x)=cos(ωx +)在[﹣π,π]的图象大致如图,则f(x)的最小正周期为()A .B .C .D .8.(5分)设a log34=2,则4﹣a=()A .B .C .D .9.(5分)执行如图的程序框图,则输出的n=()A.17B.19C.21D.2310.(5分)设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.3211.(5分)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A .B.3C .D.212.(5分)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC =AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π二、填空题:本题共4小题,每小题5分,共20分。

2020年全国卷Ⅰ高考文科数学试题及答案(完整版)

2020年全国卷Ⅰ高考文科数学试题及答案(完整版)

( 一)必考题:共60分. 17.( 12分)某厂接受了一项加工业务,加工出来 产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品 等级,整理如下: 甲分厂产品等级 频数分布表等级 A B C D 频数40202020乙分厂产品等级 频数分布表等级 A B C D 频数28173421( 1)分别估计甲、乙两分厂加工出来 一件产品为A 级品 概率;( 2)分别求甲、乙两分厂加工出来 100件产品 平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务? 18.( 12分)内角A ,B ,C 对边分别为a ,b ,c .已知B =150°.ABC △( 1)若a =c ,b =2,求 面积; 37ABC △( 2)若sin A +sin C =,求C . 32219.( 12分)如图,为圆锥 顶点,是圆锥底面 圆心,是底面 内接正三角形,为上一点, D O ABC △P DO ∠APC =90°.加油!你一定行!真题在手 何必模拟认真刷题 必过 加油由数据知乙分厂加工出来 100件产品利润 频数分布表为利润 70 30 0 −70 频数 28 17 3421因此乙分厂加工出来 100件产品 平均利润为.70283017034702110100⨯+⨯+⨯-⨯=比较甲乙两分厂加工 产品 平均利润,应选甲分厂承接加工业务. 18.解:( 1)由题设及余弦定理得,22228323cos150c c c =+-⨯⨯︒解得( 舍去),,从而.2c =-2c =23a = 面积为.ABC △1232sin15032⨯⨯⨯︒=( 2)在中,,所以ABC △18030A B C C =︒--=︒-,sin 3sin sin(30)3sin sin(30)A C C C C +=︒-+=︒+故. 2sin(30)2C ︒+=而,所以,故. 030C ︒<<︒3045C ︒+=︒15C =︒19.解:( 1)由题设可知,PA =PB = PC .由于△ABC 是正三角形,故可得△PAC ≌△PAB . △PAC ≌△PBC .又∠APC =90°,故∠APB =90°,∠BPC =90°.从而PB ⊥PA ,PB ⊥PC ,故PB ⊥平面PAC ,所以平面PAB ⊥平面PAC . ( 2)设圆锥 底面半径为r ,母线长为l . 由题设可得rl =,. 3222l r -=解得r =1,l =,3从而.由( 1)可得,故. 3AB =222PA PB AB +=62PA PB PC ===所以三棱锥P -ABC 体积为.3111166()323228PA PB PC ⨯⨯⨯⨯=⨯⨯=加油!你一定行!真题在手 何必模拟认真刷题 必过 加油所以 方程为.E 2219x y +=( 2)设.1122(,),(,),(6,)C x y D x y P t 若,设直线 方程为,由题意可知. 0t ≠CD x my n =+33n -<<由于直线 方程为,所以.PA (3)9ty x =+11(3)9t y x =+直线 方程为,所以.PB (3)3ty x =-22(3)3t y x =-可得.12213(3)(3)y x y x -=+由于,故,可得, 222219x y +=2222(3)(3)9x x y +-=-121227(3)(3)y y x x =-++即.①221212(27)(3)()(3)0m y y m n y y n ++++++=将代入得.x my n =+2219x y +=222(9)290m y mny n +++-=所以. 212122229,99mn n y y y y m m -+=-=-++代入①式得. 2222(27)(9)2(3)(3)(9)0m n m n mn n m +--++++=解得( 舍去),. 3n =-32n =故直线 方程为,即直线过定点. CD 32x my =+CD 3(,0)2若,则直线 方程为,过点.0t =CD 0y =3(,0)2综上,直线过定点.CD 3(,0)222.解:当k =1时,消去参数t 得,故曲线是圆心为坐标原点,半径为1 圆.1cos ,:sin ,x t C y t =⎧⎨=⎩221x y +=1C ( 2)当k =4时,消去参数t 得 直角坐标方程为. 414cos ,:sin ,x t C y t ⎧=⎪⎨=⎪⎩1C 1x y += 直角坐标方程为.2C 41630x y -+=由解得.1,41630x y x y ⎧+=⎪⎨-+=⎪⎩1414x y ⎧=⎪⎪⎨⎪=⎪⎩故与 公共点 直角坐标为.1C 2C 11(,)44加油!你一定行!真题在手 何必模拟认真刷题 必过 加油711全卷完1.考试顺利祝福语经典句子 1、相信自己吧!坚持就是胜利!祝考试顺利,榜上有名! 2、愿全国所有的考生都能以平常的心态参加考试,发挥自己的水平,考上理想的学校。

2020年全国1卷 文科数学真题(解析版)-2020全国一文科数学

2020年全国1卷 文科数学真题(解析版)-2020全国一文科数学
,解得 , ,
在等腰直角三角形 中, ,
在 中, ,
三棱锥 的体积为 .
20.已知函数 .
(1)当 时,讨论 的单调性;
(2)若 有两个零点,求 的取值范围.
【答案】(1)减区间为 ,增区间为 ;(2) .
【详解】(1)当 时, , ,
令 ,解得 ,令 ,解得 ,
所以 的减区间为 ,增区间为 ;
(2)若 有两个零点,即 有两个解,
因为 ,解得 ,
所以输出的 .
故选:C
10.设 是等比数列,且 , ,则 ()
A.12B.24C.30D.32
【答案】D
【详解】设等比数列 的公比为 ,则 ,

因此, .
故选:D.
11.设 是双曲线 的两个焦点, 为坐标原点,点 在 上且 ,则 的面积为()
A. B.3C. D.2
【答案】B
【详解】由已知,不妨设 ,
从方程可知, 不成立,即 有两个解,
令 ,则有 ,
令 ,解得 ,令 ,解得 或 ,
所以函数 在 和 上单调递减,在 上单调递增,
且当 时, ,
而 时, ,当 时, ,
所以当 有两个解时,有 ,
所以满足条件的 的取值范围是: .
21.已知A、B分别为椭圆E: (a>1)的左、右顶点,G为E的上顶点, ,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
甲分厂产品等级的频数分布表
等级
A
B
C
D
频数
40
20
由正弦定理可得 ,
,根据圆截面性质 平面 ,

球 的表面积 .
故选:A
二、填空题:本题共4小题,每小题5分,共20分.

2020年全国统一高考数学试卷(文科)含答案

2020年全国统一高考数学试卷(文科)含答案

2020年全国统一高考数学试卷(文科)含答案一、选择题(共12小题).1.已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A.∅B.{﹣3,﹣2,2,3}C.{﹣2,0,2}D.{﹣2,2}2.(1﹣i)4=()A.﹣4B.4C.﹣4i D.4i3.如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位大三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名5.已知单位向量,的夹角为60°,则在下列向量中,与垂直的是()A.B.2+C.﹣2D.2﹣6.记S n为等比数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.执行如图的程序框图,若输入的k=0,a=0,则输出的k为()A.2B.3C.4D.58.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x﹣y﹣3=0的距离为()A.B.C.D.9.设O为坐标原点,直线x=a与双曲线C:﹣=1(a>0,b>0)的两条渐近线分别交于D,E两点.若△ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.3210.设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减11.已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.B.C.1D.12.若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<0二、填空题:本题共4小题,每小题5分,共20分。

2020年高考文科数学全国卷1及答案(A4打印版)

2020年高考文科数学全国卷1及答案(A4打印版)

绝密★启用前2020年普通高等学校招生全国统一考试·全国Ⅰ卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}2340A x x x =--<,{}4135B =-,,,,则A B = ()A .{}41-,B .{}15,C .{}35,D .{}13,2.若312i i z =++,则z =()A .0B .1C .2D .23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A .514-B .512-C .514+D .512+4.设O 为正方形ABCD 的中心,在O A B C D ,,,,中任取3点,则取到的3点共线的概率为()A .15B .25C .12D .455.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据()()1220i i x y i =⋅⋅⋅,,,,得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是()A .y a bx=+B .2y a bx =+C .xy a be =+D .ln y a b x=+6.已知圆2260x y x +-=,过点()12,的直线被该圆所截得的弦的长度的最小值为()A .1B .2C .3D .47.设函数()cos(6f x x πω=+在[]ππ-,的图像大致如下图,则()f x 的最小正周期为()A .109πB .76πC .43πD .32π8.设3a log 42=,则4a -=()A .116B .19C .18D .169.执行右面的程序框图,则输出的n =()A .17B .19C .21D .2310.设{}n a 是等比数列,且123+1a a a +=,2342a a a ++=,则678+a a a +=()A .12B .24C .30D .3211.设1F ,2F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且=2OP ,则12PF F △的面积为()A .72B .3C .52D .212.已知A ,B ,C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆.若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A .64πB .48πC .36πD .32π二、填空题:本题共4小题,每小题5分,共20分。

2020年普通高等学校招全国生统一考试文科数学(全国卷Ⅰ)(含答案)

2020年普通高等学校招全国生统一考试文科数学(全国卷Ⅰ)(含答案)
(1)若A在直线x+y=0上,求⊙M的半径;
(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
22.[选修4−4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为 (t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 .
A.165 cmB.175 cmC.185 cmD.190cm
5.函数f(x)= 在[-π,π]的图像大致为
A. B.
C. D.
6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是
A.8号学生B.200号学生C.616号学生D.815号学生
7.tan255°=
A.-2- B.-2+ C.2- D.2+
8.已知非零向量a,b满足 =2 ,且(a-b) b,则a与b的夹角为
A. B. C. D.
9.如图是求 的程序框图,图中空白框中应填入
A.A= B.A= C.A= D.A=
10.双曲线C: 的一条渐近线的倾斜角为130°,则C的离心率为
所以 在 存在唯一零点.
(2)由题设知 ,可得a≤0.
由(1)知, 在 只有一个零点,设为 ,且当 时, ;当 时, ,所以 在 单调递增,在 单调递减.
又 ,所以,当 时, .
又当 时,ax≤0,故 .
因此,a的取值范围是 .
21.解:(1)因为 过点 ,所以圆心M在AB的垂直平分线上.由已知A在直线 上,且 关于坐标原点O对称,所以M在直线 上,故可设 .

2020年全国统一高考数学试卷(文科)

2020年全国统一高考数学试卷(文科)
【答案】B
【详解】因为直线 与抛物线 交于 两点,且 ,
根据抛物线的对称性可以确定 ,所以 ,
代入抛物线方程 ,求得 ,所以其焦点坐标为 ,
故选:B.
8.点(0,﹣1)到直线 距离的最大值为()
A. 1B. C. D. 2
【答案】B
【详解】由 可知直线过定点 ,设 ,
当直线 与 垂直时,点 到直线 距离最大,
【答案】D
【解析】
【详解】因为 ,所以 .
故选:D
3.设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为()
A. 0.01B. 0.1C. 1D. 10
【答案】C
【详解】因为数据 的方差是数据 的方差的 倍,
所以所求数据方差为
故选:C
4.Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型: ,其中K为最大确诊病例数.当I( )=0.95K时,标志着已初步遏制疫情,则 约为().
【答案】A
【详解】因为 , ,
所以 .
故选:A.
11.在△ABC中,cosC= ,AC=4,BC=3,则tanB=()
A. B. 2 C. 4 D. 8
【答案】C
【详解】设
故选:C
12.已知函数f(x)=sinx+ ,则()
A.f(x)的最小值为2B.f(x)的图像关于y轴对称
因为 ,所以 ,易知截距 越大,则 越大,
平移直线 ,当 经过A点时截距最大,此时z最大,
由 ,得 , ,
所以 .
故答案为:7.
14.设双曲线C: (a>0,b>0)的一条渐近线为y= x,则C的离心率为_________.

2020年高考文科数学全国1卷(word版,含答案)

2020年高考文科数学全国1卷(word版,含答案)

1.【ID:4005071】已知集合,,则()A.B.C.D.【答案】D【解析】解:集合,,则,故选:D.2.【ID:4005072】若,则()A.B.C.D.【答案】C【解析】解:,.故选:C.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4005073】设为正方形的中心,在,,,,中任取点,则取到的点共线的概率为()A.B.C.D.【答案】A【解析】解:,,,,中任取点,共有种,其中共线为,,和,,两种,故取到的点共线的概率为,故选:A.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4005074】已知圆,过点的直线被该圆所截得的弦的长度的最小值为()A.B.C.D.【答案】B【解析】解:由圆的方程可得圆心坐标,半径;设圆心到直线的距离为,则过的直线与圆的相交弦长|AB|=2,当最大时弦长|AB|最小,当直线与所在的直线垂直时最大,这时,所以最小的弦长,故选:B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4005075】设,则()A.B.C.D.【答案】B【解析】解:因为,则,则,则,故选:B.9.【ID:4005076】执行右面的程序框图,则输出的()A.B.C.D.【答案】C【解析】解:,,第一次执行循环体后,,不满足退出循环的条件,;第二次执行循环体后,,不满足退出循环的条件,;第三次执行循环体后,,不满足退出循环的条件,;第四次执行循环体后,,不满足退出循环的条件,;第五次执行循环体后,,不满足退出循环的条件,;第六次执行循环体后,,不满足退出循环的条件,;第七次执行循环体后,,不满足退出循环的条件,;第八次执行循环体后,,不满足退出循环的条件,;第九次执行循环体后,,不满足退出循环的条件,;第十次执行循环体后,,不满足退出循环的条件,;第十一次执行循环体后,,满足退出循环的条件,故输出值为,故选:C.10.【ID:4005077】设是等比数列,且,,则()A.B.C.D.【答案】D【解析】解:是等比数列,且,则,即,,故选:D.11.【ID:4005078】设,是双曲线:的两个焦点,为坐标原点,点在上且,则的面积为()A.B.C.D.【答案】B【解析】解:由题意可得,,,,,,为直角三角形,,,,,,的面积为,故选:B.12.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4005079】设向量,,若,则________.【答案】【解析】解:向量,,若,则,则,故答案为:.15.【ID:4005080】曲线的一条切线的斜率为,则该切线的方程为________.【答案】【解析】解:的导数为,设切点为,可得,解得,即有切点,则切线的方程为,即,故答案为:.16.【ID:4005081】数列满足,前项和为,则________.【答案】【解析】解:由,当为奇数时,有,可得,,累加可得;当为偶数时,,可得,,,.可得..,,即.故答案为:.17. 某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为,,,四个等级,加工业务约定:对于级品、级品、级品,厂家每件分别收取加工费元,元,元;对于级品,厂家每件要赔偿原料损失费元.该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为元/件,乙分厂加工成本费为元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了件这种产品,并统计了这些产品的等级,整理如下:(1)【ID:4005082】分别估计甲、乙两分厂加工出来的一件产品为级品的概率.【答案】;【解析】解:由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为级品的概率的估计值为;乙分厂加工出来的一件产品为级品的概率的估计值为.(2)【ID:4005083】分别求甲、乙两分厂加工出来的件产品的平均利润,以平均利润为依据厂家应选哪个分厂承接加工业务?【答案】甲分厂【解析】解:由数据知甲分厂加工出来的件产品利润的频数分布表为因此甲分厂加工出来的件产品的平均利润为.由数据知乙分厂加工出来的件产品利润的频数分布表为因此乙分厂加工出来的件产品的平均利润为.比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.18. 的内角,,的对边分别为,,.已知.(1)【ID:4005084】若,,求的面积.【答案】【解析】解:由题设及余弦定理得,解得(含去),,从而.的面积为.(2)【ID:4005085】若,求.【答案】【解析】解:在中,,所以,故.而,所以,故.19. 如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,.(1)【ID:4005086】证明:平面平面.【答案】见解析【解析】证明:由题设可知,.由于是正三角形,故可得,.又,故,.从而,,故平面,所以平面平面.(2)【ID:4005087】设,圆锥的侧面积为,求三棱锥的体积.【答案】【解析】解:设圆锥的底面半径为,母线长为.由题设可得,.解得,.从而.由可得,故.所以三棱锥的体积为.20. 已知函数.(1)【ID:4008459】当时,讨论的单调性.【答案】在上单调递减,在上单调递增.【解析】解:由题意,的定义域为,且.当时,,令,解得.∴当时,,单调递减,当时,,单调递增.在上单调递减,在上单调递增.(2)【ID:4008481】若有两个零点,求的取值范围.【答案】【解析】①当时,恒成立,在上单调递增,不合题意;②当时,令,解得,当时,,单调递减,当时,,单调递增.的极小值也是最小值为.又当时,,当时,.要使有两个零点,只要即可,则,可得.综上,若有两个零点,则的取值范围是.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考全国一卷文科数学试卷及答

2020年普通高等学校招生全国统一考试文科数学
注意事项:
1.在答题卡上填写姓名和准考证号。

2.选择题用铅笔在答题卡上涂黑对应的选项,非选择题在答题卡上作答。

3.考试结束后将试卷和答题卡一并交回。

一、选择题:共12小题,每小题5分,共60分。

1.已知集合A={x|x-3x-4<0},B={-4,1,3,5},则2∈哪个集合?
A。

{-4,1}
B。

{1,5}
C。

{3,5}
D。

{1,3}
2.若z=1+2i+i3,则|z|等于多少?
A。

1
B。

2
C。

3
D。

2
3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状为正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则侧面三角形底边上的高与底面正方形的边长的比值为多少?
4.设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为多少?
A。

1
B。

2
C。

1/2
D。

45/525
5.某校一个课外研究小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行
种子发芽实验,由实验数据(xi,yi)(i=1,2,…,20)得到下面的散点图:根据散点图,选择在10℃至40℃之间最适宜作为发芽率y和温度x的回归方程类型。

A。

y=a+bx
B。

y=a+bx^2
C。

y=a+be^x
D。

y=a+blnx
6.已知圆的直线被圆所截得的弦的长度最小值为x2+y2-6x=0,过点(1,2),则最小值等于多少?
A。

1
B。

2
C。

3
D。

4
8.若alog3 4=2,则4的值为多少?
A。

-a
B。

1/2
C。

1/4
D。

1/
9.执行右侧程序框图后,输出的n等于多少?
A。

17
B。

19
C。

21
D。

23
10.设{an}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8等于多少?
A。

12
B。

24
C。

30
D。

32
11.A、B、C为球O的球面上的三个点,O1为△ABC的外接圆,则若O1的面积为4π,且AB=BC=AC=OO1,求球O 的半径。

则球O的表面积为多少?
A。

64π
B。

48π
C。

36π
D。

32π
答案:缺少题干,无法回答。

若x,y满足约束条件2x+y-2≤0,x-y-1≥0,y+1≤0.且
z=x+7y的最大值为3,则x,y的取值范围为多少?
答案:缺少题干,无法回答。

设向量a=(1,-1),b=(m+1,2m-4),则m=a⊥b,求m的值。

答案:当a⊥b时,有a·b=0,即1(m+1)+(-1)(2m-4)=0,
解得m=3.
曲线y=lnx+x+1的一条切线的斜率为2,求该切线的方程。

答案:对y=lnx+x+1求导得到斜率为1/x+1.令1/x+1=2,
解得x=1/2,代入原方程得到点(1/2.ln(1/2)+3/2)。

所以该切线
方程为y-3/2=2(x-1/2),即y=2x+2.
17.某厂接受了一项加工业务,加工起来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对
于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲,乙两个分厂可承接加工业务.甲分厂加工成本费25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪
个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
答案:题干完整,不需要修改。

18.△ABC的内角A,B,C的对边分别为a,b,c,已
知B=150°。

1)若a=3c,b=2,求△ABC的面积;
2)若sinA+3sinC=√3,求C。

答案:(1)根据正弦定理,c/sinC=2/sin150°,解得c=2sinC,a/sinA=3c/sin150°,代入c=2sinC化简得a=6sinA。

根据面积公式S=1/2ab sinC,代入已知数据得到S=6√3.(2)根据已知条件sinA=c/a,sinC=√(1-sin²A),代入sinA+3sinC=√3化简得
sinA+3√(1-sin²A)=√3,解得sinA=1/2,sinC=√3/2,代入正弦
定理解得C=60°。

19.如图,D为圆锥的顶点,O为圆锥底面的圆心,
△ABC的底面的内接正三角形,P为DO上一点,ABC=90°。

1)证明:平面PAB⊥平面PAC;
2)设DO=3,圆锥的侧面积为3π,求三棱锥P-ABC的体积。

答案:(1)连接OP,证明AP=CP。

由于△ABC为内接正
三角形,所以AB=BC=AC,又因为OD=OA=OB=OC,所以
△OAB≅△OCD,所以AP=CP。

又因为XXX,所以平面
PAB⊥平面PAC。

(2)根据勾股定理得到AB=AC=2√2,BC=4,所以△ABC的面积为4√3.根据圆锥侧面积公式S=πrL,其中r
为底面半径,L为母线长,代入已知数据得到r=1,L=3,所
以圆锥的高为3.根据三棱锥体积公式V=1/3Sh,其中S为底面积,h为高,代入已知数据得到V=4√3.
20.已知函数f(x)=e^(-a(x+2))。

1)当a=1时,讨论f(x)的单调性;
2)若f(x)有两个零点,求a的取值范围。

答案:(1)当a=1时,f(x)=e^(-x-2),f'(x)=-e^(-x-2)-2-ln2时,f(x)的符号与f(-∞)相同;当-2+ln21/(-2+ln2)或a<1/(-2-ln2)。

21.已知A,B分别为椭圆E:(x/2a)^2+y^2=1(a>1)的左、右顶点,G为E的上顶点,AG·GB=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D。

1)求E的方程;
2)证明:直线CD过定点。

答案:(1)设E的中心为O,由于A、B为顶点,所以
AE=BE=a,又因为G为顶点,所以OG=a/√3,所以O的坐标
为(0,a/√3)。

设P的坐标为(6,y),代入E的方程得到
(y/a)^2+(3/2)^2=1,化简得到y=a/√3.所以E的方程为
(x/2a)^2+y^2=1.(2)由于C、D在椭圆上,所以AC=BD,所以CD平分线段AB。

由于AB的中垂线过O,所以CD过定点O。

22.在直角坐标系中,曲线C1的参数方程为x=cos(t),
y=sin(t),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为4ρcos(θ)-16ρsin(θ)+3=0.当k=1时,
C1是单位圆。

当k=4时,C1与C2的公共点的直角坐标为(0,-1)。

23.已知函数f(x)=3x+1-2x-1.
1)f(x)的图像为一条斜率为1的直线,截距为1.
2)将f(x)和f(x+1)化简,得到f(x)-f(x+1)=-2.因此,
f(x)>f(x+1)的不等式成立。

相关文档
最新文档