全国卷文数
2020年全国卷(3)文科数学

2020年全国卷(3)文科数学2020年普通高等学校招生全国统一考试全国卷(Ⅲ)文科数学适用地区:云南、贵州、四川、广西、西藏等一、选择题:1.已知集合 $A=\{1,2,3,5,7,11\}$,$B=\{x|3<x<15\}$,则$A \cap B$ 中元素的个数为 A。
2 B。
3 C。
4 D。
52.复数 $z\cdot(1+i)=1-i$,则 $z=$ A。
$1-i$ B。
$1+i$ C。
$-i$ D。
$i$3.设一组样本数据 $x_1,x_2,\dots,x_n$ 的方差为 0.01,则数据 $10x_1,10x_2,\dots,10x_n$ 的方差为 A。
0.01 B。
1 C。
100 D。
4.Logistic 模型是常用数学模型之一,可应用于流行病学领域。
有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数 $I(t)$($t$ 的单位:天)的 Logistic 模型$I(t)=\frac{K}{1+e^{-0.23(t-53)}}$,其中 $K$ 为最大确诊病例数。
当 $I(t^*)=0.95K$ 时,标志着已初步遏制疫情,则$t^*$ 约为($\ln 19 \approx 3$) A。
60 B。
63 C。
66 D。
695.若 $\sin\theta+\sin(\theta+\frac{\pi}{3})=1$,则$\sin(\theta+\frac{\pi}{3})=$ A。
$\frac{3}{4}$ B。
$\frac{1}{4}$ C。
$-\frac{1}{4}$ D。
$-\frac{3}{4}$6.在平面内,$A,B$ 是两个定点,$C$ 是动点,$AC\cdot BC=1$,则点 $C$ 的轨迹是 A。
圆 B。
椭圆 C。
抛物线 D。
直线7.设 $O$ 为坐标原点,直线 $x=2$ 与抛物线$C:y^2=2px(p>0)$ 交于 $D,E$ 两点,若 $OD\perp OE$,则$C$ 的焦点坐标为 A。
高考全国乙卷:2022年[文数]考试真题与答案解析
![高考全国乙卷:2022年[文数]考试真题与答案解析](https://img.taocdn.com/s3/m/0f6fcfe2ba4cf7ec4afe04a1b0717fd5360cb2d2.png)
高考全国乙卷:2022年[文科数学]考试真题与答案解析一、选择题本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 集合,则( ){}{}2,4,6,8,10,16M N x x ==-<<M N = A. B. C. D. {2,4}{2,4,6}{2,4,6,8}{2,4,6,8,10}答案:A解析:因为,,所以.故选:A.{}2,4,6,8,10M ={}|16N x x =-<<{}2,4M N = 2. 设,其中为实数,则( )(12i)2i a b ++=,a b A. B. C. D. 1,1a b ==-1,1a b ==1,1a b =-=1,1a b =-=-答案:A解析:因为R ,,所以,解得:.故选:A.,a b Î()2i 2i a b a ++=0,22a b a +==1,1a b ==-3. 已知向量,则( )(2,1)(2,4)a b ==-,a b -r r A. 2 B. 3C. 4D. 5答案:D解析:因为,所以。
故选:D ()()()2,12,44,3a b -=--=- 5-==a b 4. 分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h ),得如下茎叶图:则下列结论中错误的是( )A. 甲同学周课外体育运动时长的样本中位数为7.4B. 乙同学周课外体育运动时长的样本平均数大于8C. 甲同学周课外体育运动时长大于8的概率的估计值大于0.4D. 乙同学周课外体育运动时长大于8的概率的估计值大于0.6答案:C解析:对于A 选项,甲同学周课外体育运动时长的样本中位数为,A 选项结论7.37.57.42+=正确.对于B 选项,乙同学课外体育运动时长的样本平均数为:,6.37.47.68.18.28.28.58.68.68.68.69.09.29.39.810.18.50625816+++++++++++++++=>B 选项结论正确.对于C 选项,甲同学周课外体育运动时长大于的概率的估计值,860.3750.416=<C 选项结论错误。
2023年高考数学(全国甲卷)文科数学(含答案及详细解析)

2023年高考数学真题试卷(全国甲卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A.B.C.D.2.()A.B.1C.D.3.已知向量,则()A.B.C.D.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.B.C.D.5.记为等差数列的前项和.若,则()A.25B.22C.20D.156.执行下边的程序框图,则输出的()A.21B.34C.55D.897.设为椭圆的两个焦点,点在上,若,则()A.1B.2C.4D.58.曲线在点处的切线方程为()A.B.C.D.9.已知双曲线的离心率为,其中一条渐近线与圆交于A,B两点,则()A.B.C.D.10.在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.311.已知函数.记,则()A.B.C.D.12.函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记为等比数列的前项和.若,则的公比为.14.若为偶函数,则.15.若x,y满足约束条件,则的最大值为.16.在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.记的内角的对边分别为,已知.(1)求;(2)若,求面积.18.如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.841 6.63520.已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.21.已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.22.已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.23.已知.(1)求不等式的解集;(2)若曲线与轴所围成的图形的面积为2,求.答案解析部分1.【答案】A【解析】【解答】,故选:A【分析】先计算补集,再求并集即得答案.2.【答案】C【解析】【解答】,故选:C【分析】利用复数乘法运算计算由得出答案。
2023年全国统一高考数学试卷(文科)(乙卷)

2023年全国统一高考数学试卷(文科)(乙卷)A .1B .2D .5B .{0,1,4,6,8}C .{1,2,4,6,8}D .UA .24B .26C .28(2023•乙卷)|2+i 2+2i 3|=( )【答案】A【分析】直接利用集合的补集和并集运算求出结果.【解答】解:由于∁U N={2,4,8},所以M ∪∁U N={0,2,4,6,8}.故选:A .(2023•乙卷)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )【答案】D【分析】首先把三视图转换为几何体的直观图,进一步求出几何体的表面积.【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:【答案】C【分析】直接利用复数的模的运算求出结果.(江南博哥)【解答】解:由于|2+i 2+2i 3|=|1-2i|=√12+(−2)2=√5.故选:C .(2023•乙卷)设全集U={0,1,2,4,6,8},集合M={0,4,6},N={0,1,6},则M ∪∁U N=( )A.π10B.π5D.2π5 A.-2B.-1C.1故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.(2023•乙卷)在△ABC中,内角A,B,C的对边分别是a,b,c,若acosB-bcosA=c,且C=π5,则∠B=( )【答案】C【分析】利用正弦定理以及两角和差的三角公式进行转化求解即可.【解答】解:由acosB-bcosA=c得sinAcosB-sinBcosA=sinC,得sin(A-B)=sinC=sin(A+B),即sinAcosB-sinBcosA=sinAcosB+sinBcosA,即2sinBcosA=0,得sinBcosA=0,在△ABC中,sinB≠0,∴cosA=0,即A=π2,则B=π-A-C=π−π2−π5=3π10.故选:C.(2023•乙卷)已知f(x)=xexeax−1是偶函数,则a=( )【答案】D【分析】根据偶函数的性质,运算即可得解.【解答】解:∵f(x)=xexeax−1的定义域为{x|x≠0},又f(x)为偶函数,∴f(-x)=f(x),A.5C.25D.5 A.18B.16D.12∴−xe−xe−ax−1=xexeax−1,∴xeax−xeax−1=xexeax−1,∴ax-x=x,∴a=2.故选:D.(2023•乙卷)正方形ABCD的边长是2,E是AB的中点,则EC•ED=( )→→√√【答案】B【分析】由已知结合向量的线性表示及向量数量积的性质即可求解.【解答】解:正方形ABCD的边长是2,E是AB的中点,所以EB•EA=-1,EB⊥AD,EA⊥BC,BC•AD=2×2=4,则EC•ED=(EB+BC)•(EA+AD)=EB•EA+EB•AD+EA•BC+BC•AD=-1+0+0+4=3.故选:B.→→→→→→→→→→→→→→→→→→→→→→(2023•乙卷)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于π4的概率为( )【答案】C【分析】作出图形,根据几何概型的概率公式,即可求解.【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于π4的点A构成的区域为图中阴影部分,∴所求概率为28=14.故选:C.(2023•乙卷)函数f(x)=x3+ax+2存在3个零点,则a的取值范围是( )A.(-∞,-2)C.(-4,-1)D.(-3,0)B.23C.12D.13【答案】B【分析】求函数的导数,f(x)存在3个零点,等价为f′(x)=0有两个不同的根,且极大值大于0极小值小于0,求函数的极值,建立不等式关系即可.【解答】解:f′(x)=3x2+a,若函数f(x)=x3+ax+2存在3个零点,则f′(x)=3x2+a=0,有两个不同的根,且极大值大于0极小值小于0,即判别式Δ=0-12a>0,得a<0,由f′(x)>0得x>−a3或x<-−a3,此时f(x)单调递增,由f′(x)<0得-−a3<x<−a3,此时f(x)单调递减,即当x=-−a3时,函数f(x)取得极大值,当x=−a3时,f(x)取得极小值,则f(-−a3)>0,f(−a3)<0,即-−a3(-a3+a)+2>0,且−a3(-a3+a)+2<0,即-−a3×2a3+2>0,①,且−a3×2a3+2<0,②,则①恒成立,由−a3×2a3+2<0,2<-−a3×2a3,平方得4<- a3×4a29,即a3<-27,则a<-3,综上a<-3,即实数a的取值范围是(-∞,-3).故选:B.√√√√√√√√√√√√√√(2023•乙卷)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )【答案】A【分析】利用古典概型、排列组合等知识直接求解.【解答】解:某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,甲、乙两位参赛同学构成的基本事件总数n=6×6=36,其中甲、乙两位参赛同学抽到不同主题包含的基本事件个数m=A26=30,A.-32B.-12C.12A.1+322B.4D.7则甲、乙两位参赛同学抽到不同主题概率为P=mn=3036=56.故选:A.(2023•乙卷)已知函数f(x)=sin(ωx+φ)在区间(π6,2π3)单调递增,直线x=π6和x=2π3为函数y=f(x)的图像的两条对称轴,则f(-5π12)=( )√【答案】D【分析】先根据题意建立方程求出参数,再计算,即可得解.【解答】解:根据题意可知T2=2π3−π6=π2,∴T=π,取ω>0,∴ω=2πT=2,又根据“五点法“可得2×π6+φ=−π2+2kπ,k∈Z,∴φ=−5π6+2kπ,k∈Z,∴f(x)=sin(2x−5π6+2kπ)=sin(2x-5π6),∴f(-5π12)=sin(−5π6-5π6)=sin(-5π3)=sinπ3=32.故选:D.√(2023•乙卷)已知实数x,y满足x2+y2-4x-2y-4=0,则x-y的最大值是( )√【答案】C【分析】根据题意,设z=x-y,分析x2+y2-4x-2y-4=0和x-y-z=0,结合直线与圆的位置关系可得有|2−1−z|1+1≤3,解可得z的取值范围,即可得答案.√【解答】解:根据题意,x2+y2-4x-2y-4=0,即(x-2)2+(y-1)2=9,其几何意义是以(2,1)为圆心,半径为3的圆,设z=x-y,变形可得x-y-z=0,其几何意义为直线x-y-z=0,直线y=x-z与圆(x-2)2+(y-1)2=9有公共点,则有|2−1−z|1+1≤3,解可得1-32≤z≤1+32,故x-y的最大值为1+32.故选:C.√√√√A.(1,1)B.(-1,2)C.(1,3)(2023•乙卷)设A,B为双曲线x2-y29=1上两点,下列四个点中,可为线段AB中点的是( )【答案】D【分析】设AB中点为(x0,y0),利用点差法求得中点弦斜率,列不等式组求解即可.【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),V Y Y YY Y Y WY Y Y Y YY Xx12−y129=1①x22−y229=1②,①-②得k AB=y2−y1x2−x1=9×x1+x2y1+y2=9×x0y0,即-3<9×x0y0<3⇒−13<x0y0<13,即y0x0>3或y0x0<−3,故A、B、C错误,D正确.故选:D.(2023•乙卷)已知点A(1,5)在抛物线C:y2=2px上,则A到C的准线的距离为94.√【答案】94.【分析】根据已知条件,先求出p,再结合抛物线的定义,即可求解.【解答】解:点A(1,5)在抛物线C:y2=2px上,则5=2p,解得p=52,由抛物线的定义可知,A到C的准线的距离为x A+p2=1+54=94.故答案为:94.√(2023•乙卷)若θ∈(0,π2),tanθ=13,则sinθ-cosθ=-105.√【答案】-105.√【分析】根据三角函数的坐标定义,利用坐标法进行求解即可.【解答】解:∵θ∈(0,π2),tanθ=13=yx,∴令x=3,y=1,设θ终边上一点的坐标P (3,1),则r=|OP|=32+12=10,则sinθ-cosθ=110−310=-210=-105.故答案为:-105.√√√√√√√(2023•乙卷)若x,y 满足约束条件VY Y YW Y Y Y X x −3y ≤−1x +2y ≤93x +y ≥7,则z=2x-y 的最大值为 8.【答案】8.【分析】作出可行域,变形目标函数,平移直线y=2x,由截距的几何意义可得.【解答】解:作出不等式组表示的平面区域,如图所示:由z=2x-y 可得y=2x-z,则-z 表示直线y=2x-z 在y 轴上的截距,截距越小,z 越大,结合图形可知,当y=2x-z 经过点A 时,Z 最大,由V W X x −3y =−1x +2y =9可得y=2,x=5,即A (5,2),此时z 取得最大值8.故答案为:8.(2023•乙卷)已知点S ,A ,B ,C 均在半径为2的球面上,△ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA=2.【答案】2.【分析】先用正弦定理求底面外接圆半径,再结合直棱柱的外接球及球的性质能求出结果.【解答】解:设△ABC 的外接圆圆心为O 1,半径为r,则2r=ABsin ∠ACB =332=23,解得r=3,设三棱锥S-ABC 的外接球球心为O ,连接OA ,OO 1,√√√则OA=2,OO1=12SA,∵OA2=OO12+O1A2,∴4=3+14SA2,解得SA=2.故答案为:2.(2023•乙卷)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为x i,y i(i=1,2,…10).试验结果如下:试验序号i12345678910伸缩率x i545533551522575544541568596548伸缩率y i536527543530560533522550576536记z i=x i-y i(i=1,2,⋯,10),记z1,z2,⋯,z10的样本平均数为z,样本方差为s2.(1)求z,s2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高.(如果z≥2 s210,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)√【答案】(1)z=11,s2=61.(2)z≥2s 210,有显著提高.√【分析】(1)根据表中数据,计算z i=x i-y i(i=1,2,…,10),求平均数z和方差s2.(2)根据z和2s 210,比较大小即可得出结论.√【解答】解:(1)根据表中数据,计算z i=x i-y i(i=1,2,…,10),填表如下:试验序号i 12345678910伸缩率x i 545533551522575544541568596548伸缩率y i 536527543530560533522550576536z i =x i -y i968-8151119182012计算平均数为z =11010i =1z i =110×(9+6+8-8+15+11+19+18+20+12)=11,方差为s 2=11010i =1(z i −z )2=110×[(-2)2+(-5)2+(-3)2+(-19)2+42+02+82+72+92+12]=61.(2)由(1)知,z =11,2s 210=26.1<2 6.25=5,所以z ≥2s 210,认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.√√√√(2023•乙卷)记S n 为等差数列{a n }的前n 项和,已知a 2=11,S 10=40.(1)求{a n }的通项公式;(2)求数列{|a n |}的前n 项和T n .【答案】(1)a n =-2n+15(n ∈N •).(2)当1≤n≤7时,T n =-n 2+14n ,当n≥8时,T n =n 2-14n+98.【分析】(1)建立方程组求出首项和公差即可.(2)求出|a n |的表达式,讨论n 的取值,然后进行求解即可.【解答】解:(1)在等差数列中,∵a 2=11,S 10=40.∴V Y Y Y W Y Y Y X a 1+d =1110a 1+10×92d =40,即V Y Y Y W Y Y Y X a 1+d =11a 1+92d =4,得a 1=13,d=-2,则a n =13-2(n-1)=-2n+15(n ∈N •).(2)|a n |=|-2n+15|=V W X −2n +15,1≤n ≤72n −15,n ≥8,即1≤n≤7时,|a n |=a n ,当n≥8时,|a n |=-a n ,当1≤n≤7时,数列{|a n |}的前n 项和T n =a 1+⋯+a n =13n+n (n −1)2×(−2)=-n 2+14n,当n≥8时,数列{|a n |}的前n 项和T n =a 1+⋯+a 7-⋯-a n =-S n +2(a 1+⋯+a 7)=-[13n+n (n −1)2×(−2)]+2×13+12×7=n 2-14n+98.(2023•乙卷)如图,在三棱锥P-ABC 中,AB ⊥BC ,AB=2,BC=22,PB=PC=6,BP ,AP ,BC 的中点分别为D ,E ,O ,点F 在AC 上,BF ⊥AO .(1)求证:EF ∥平面ADO ;(2)若∠POF=120°,求三棱锥P-ABC的体积.√√【答案】(1)证明见解析;(2)263.√【分析】(1)作FH ⊥AB ,垂足为H ,设AH=x,利用Rt △AHF ∽Rt △ABC 得出HF ,利用Rt △BHF ∽Rt △OBA 列方程求出x=1,判断H 是AB 的中点,利用中位线定理得出EF ∥PC ,DO ∥PC ,证明EF ∥DO ,得出EF ∥平面ADO ;(2)过P 作PM 垂直FO 的延长线交于点M ,求出BO ,PO ,计算PM ,再求△ABC 的面积和三棱锥P-ABC的体积.【解答】 (1)证明:在Rt △ABC 中,作FH ⊥AB ,垂足为H ,设AH=x,则HB=2-x,因为FH ∥CB ,所以Rt △AHF ∽Rt △ABC ,所以AH AB =HF BC ,即x 2=HF22,解得HF=2x,又因为∠BFH=∠FBO ,所以∠AOB=∠FBH ,且∠BHF=∠OBA=90°,所以Rt △BHF ∽Rt △OBA ,所以HF BH =AB BO ,即2x 2−x =22,解得x=1,即AH=1,所以H 是AB 的中点,F 是AC 的中点,又因为E 是PA 的中点,所以EF ∥PC ,同理,DO ∥PC ,所以EF ∥DO ,又因为EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ∥平面ADO ;(2)解:过P 作PM 垂直FO 的延长线交于点M ,因为PB=PC ,O 是BC 中点,所以PO ⊥BC ,在Rt △PBO 中,PB=6,BO=12BC=2,所以PO =PB 2−OB 2=6−2=2,因为AB ⊥BC ,OF ∥AB ,所以OF ⊥BC ,又PO∩OF=O ,PO ,OF ⊂平面POF ,所以BC ⊥平面POF ,又PM ⊂平面POF ,所以BC ⊥PM ,又BC∩FM=O ,BC ,FM ⊂平面ABC ,所以PM ⊥平面ABC ,即三棱锥P-ABC 的高为PM ,因为∠POF=120°,所以∠POM=60°,所以PM =POsin 60°=2×32=3,√√√√√√√√√√△ABC的面积为S△ABC=12×AB×BC=12×2×22=22,所以三棱锥P-ABC的体积为V三棱锥P-ABC=13×22×3=26 3.√√√√√(2023•乙卷)已知函数f(x)=(1x+a)ln(1+x).(1)当a=-1时,求曲线y=f(x)在点(1,f(x))处的切线方程;(2)若函数f(x)在(0,+∞)单调递增,求a的取值范围.【答案】(1)(ln2)x+y-ln2=0;(2)[12,+∞).【分析】(1)根据已知条件,先对f(x)求导,再结合导数的几何意义,即可求解;(2)先对f(x)求导,推得(−1x2)ln(x+1)+(1x+a)•1x+1≥0,构造函数g(x)=ax2+x-(x+1)ln(x+1)(x>0),通过多次利用求导,研究函数的单调性,并对a分类讨论,即可求解.【解答】解:(1)当a=-1时,则f(x)=(1x-1)ln(1+x),求导可得,f'(x)=−1x2ln(1+x)+(1x−1)•1x+1,当x=1时,f(1)=0,当x=-1时,f'(1)=-ln2,故曲线y=f(x)在点(1,f(x))处的切线方程为:y-0=-ln2(x-1),即(ln2)x+y-ln2=0;(2)f(x)=(1x+a)ln(1+x),则f'(x)=(−1x2)ln(x+1)+(1x+a)•1x+1(x>−1),函数f(x)在(0,+∞)单调递增,则(−1x2)ln(x+1)+(1x+a)•1x+1≥0,化简整理可得,-(x+1)ln(x+1)+x+ax2≥0,令g(x)=ax2+x-(x+1)ln(x+1)(x>0),求导可得,g'(x)=2ax-ln(x+1),当a≤0时,则2ax≤0,ln(x+1)>0,故g'(x)<0,即g(x)在区间(0,+∞)上单调递减,g(x)<g(0)=0,不符合题意,令m(x)=g'(x)=2ax-ln(x+1),则m'(x)=2a-1x+1,当a ≥12,即2a≥1时,1x +1<1,m'(x )>0,故m (x )在区间(0,+∞)上单调递增,即g'(x )在区间(0,+∞)上单调递增,所以g'(x )>g'(0)=0,g (x )在区间(0,+∞)上单调递增,g (x )>g (0)=0,符合题意,当0<a <12时,令m'(x )=2a −1x +1=0,解得x=12a−1,当x ∈(0,12a −1)时,m'(x )<0,m (x )在区间(0,12a−1)上单调递减,即g'(x )单调递减,g'(0)=0,当x ∈(0,12a−1)时,g'(x )<g'(0)=0,g (x )单调递减,∵g (0)=0,∴当x ∈(0,12a−1)时,g (x )<g (0)=0,不符合题意,综上所述,a 的取值范围为[12,+∞).(2023•乙卷)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率为53,点A (-2,0)在C 上.(1)求C 的方程;(2)过点(-2,3)的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.√【答案】(1)椭圆C 的方程为y 29+x 24=1;(2)MN 的中点为定点(0,3),证明过程见解析.【分析】(1)由题意列关于a,b,c 的方程组,求得a,b,c 的值,可得椭圆C 的方程;(2)设PQ :y-3=k (x+2),即y=kx+2k+3,k <0,P (x 1,y 1),Q (x 2,y 2),联立直线方程与椭圆方程,化为关于x 的一元二次方程,利用根与系数的关系求得x 1+x 2与x 1x 2的值,写出直线AP 、AQ 的方程,求得M 与N 的坐标,再由中点坐标公式即可证明MN 的中点为定点.【解答】解:(1)由题意,V Y Y Y Y Y Y W Y Y Y Y Y Y X c a =53b =2a 2=b 2+c2,解得V Y Y Y Y W Y Y Y Y X a =3b =2c =5.∴椭圆C 的方程为y 29+x 24=1;证明:(2)如图,√√要使过点(-2,3)的直线交C 于点P ,Q 两点,则PQ 的斜率存在且小于0,设PQ :y-3=k (x+2),即y=kx+2k+3,k <0,P (x 1,y 1),Q (x 2,y 2),联立V Y Y Y W Y Y Y X y =kx +2k +3y 29+x 24=1,得(4k 2+9)x 2+8k (2k+3)x+16k (k+3)=0.Δ=[8k (2k+3)]2-4(4k 2+9)•16k (k+3)=-1728k >0.x 1+x 2=−8k (2k +3)4k 2+9,x 1x 2=16k (k +3)4k 2+9,直线AP :y=y 1x 1+2(x +2),取x=0,得M (0,2y 1x 1+2);直线AQ :y =y 2x 2+2(x +2),取x=0,得N (0,2y 2x 2+2).∴2y 1x 1+2+2y 2x 2+2=2y 1(x 2+2)+2y 2(x 1+2)(x 1+2)(x 2+2)=2(kx 1+2k +3)(x 2+2)(kx 2+2k +3)(x 1+2)x 1x 2+2(x 1+x 2)+4=22kx 1x 2+(4k +3)(x 1+x 2)+4(2k +3)x 1x 2+2(x 1+x 2)+4=22k •16k (k +3)4k 2+9+(4k +3)•−8k (2k +3)4k 2+9+4(2k +3)16k (k +3)4k 2+9+2•−8k (2k +3)4k 2+9+4=232k 3+96k 2−64k 3−96k 2−48k 2−72k +32k 3+72k +48k 2+10816k 2+48k −32k 2−48k +16k 2+36=2×10836=6.∴MN 的中点为(0,3),为定点.(2023•乙卷)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ=2sinθ(π4≤θ≤π2),曲线C 2:V W X x =2cosαy =2sinα(α为参数,π2<α<π).(1)写出C 1的直角坐标方程;(2)若直线y=x+m 既与C 1没有公共点,也与C 2没有公共点、求m 的取值范围.【答案】(1)x 2+(y-1)2=1,(x ∈[0,1],y ∈[1,2]);(2)(−∞,0)∪(22,+∞).√【分析】(1)直接利用转换关系,在参数方程和直角坐标坐标方程之间进行转换;(2)利用直线与圆的位置关系和点到直线的距离公式求出实数m 的取值范围.【解答】解:(1)曲线C 1的极坐标方程为ρ=2sinθ(π4≤θ≤π2),根据V Y Y Y Y W Y Y Y Y X x =ρcosθy =ρsinθx 2+y 2=ρ2转换为直角坐标方程为x 2+(y-1)2=1,因为π4≤θ≤π2,π2≤2θ≤π,x=ρcosθ=2sinθcosθ=sin2θ∈[0,1],y=ρsinθ=2sin 2θ=1-cos2θ∈[1,2],所以C 1的直角坐标方程为x 2+(y-1)2=1,x ∈[0,1],y ∈[1,2];(2)由于曲线C 1的方程为x 2+(y-1)2=1,(0≤x≤1,1≤y≤2),曲线C 2:V W X x =2cosαy =2sinα(α为参数,π2<α<π),转换为直角坐标方程为x 2+y 2=4,(-2<x <0,0<y <2);如图所示:由于y=x 与圆C 1相交于点(1,1),即m=0,当m <0时,直线y=x+m 与曲线C 1没有公共点;当曲线C 2与直线y=x+m 相切时,圆心C 2(0,0)到直线y=x+m 的距离d=|m |2=2,解得m=22(负值舍去),由于直线y=x+m 与曲线C 2没有公共点,所以m >22,故直线y=x+m 既与C 1没有公共点,也与C 2没有公共点、实数m 的取值范围为(−∞,0)∪(22,+∞).√√√√(2023•乙卷)已知f (x )=2|x|+|x-2|.(1)求不等式f (x )≤6-x 的解集;(2)在直角坐标系xOy 中,求不等式组V W X f (x )≤y x +y −6≤0所确定的平面区域的面积.【答案】(1)不等式的解集为[-2,2].(2)8.【分析】(1)根据绝对值的意义,表示成分段函数,然后解不等式即可.(2)作出不等式组对应的平面区域,求出交点坐标,根据三角形的面积公式进行求解即可.【解答】解:(1)当x≥2时,f (x )=2x+x-2=3x-2,当0<x <2时,f (x )=2x-x+2=x+2,当x≤0时,f (x )=-2x-x+2=-3x+2,则当x≥2时,由f (x )≤6-x 得3x-2≤6-x,得4x≤8,即x≤2,此时x=2.当0<x <2时,由f (x )≤6-x 得x+2≤6-x,得2x <4,即x <2,此时0<x <2.当x≤0时,由f (x )≤6-x 得-3x+2≤6-x,得2x≥-4,即x≥-2,此时-2≤x≤0.综上-2≤x≤2,即不等式的解集为[-2,2].(2)不等式组V W X f (x )≤y x +y −6≤0等价为V W X y ≥2|x |+|x −2|x +y −6≤0,作出不等式组对应的平面区域如图:则B (0,2),D (0,6),由V W X x +y −6=0y =x +2,得V W Xx =2y =4,即C (2,4),由V W X x +y −6=0y =−3x +2,得V W X x =−2y =8,即A (-2,8),则阴影部分的面积S=S △ABD +S △BCD =12×(6-2)×2+12×(6-2)×2=4+4=8.。
2020年高考文科数学全国卷1附答案解析版

1| 2
PF1 ||
PF2 | 中计算即可.
由已知,不妨设 F1 2,0,F2 2,0,
则a
1,c
2 ,因为| OP | 1
1| 2
F
1F2
|,
所以点 P 在以 F1F2为直径的圆上, 即 △F1F2P 是以 P 为直角顶点的直角三角形,
【解析】根据已知条件求得q 的值,再由a 6 a 7 a 8 q a5 1a 2 a3 可求得结果. 设等比数列an的公比为q ,则 a 1 a2 a3 a1 1 q q 2 1 , a2 a3 a4 a1q a1q 2 a1q3 a1q 1 q q 2 q 2 , 因此, a6 a7 a8 a1 q5 a1 q6 a1 q7 a1 q5 1 q q 2 q5 32 .
数学试卷 第 6 页(共 6 页)
2020年普通高等学校招生全国统一考试·全国I卷
文科数学答案解析
一、选择题 1.【答案】D 【解析】首先解一元二次不等式求得集合 A,之后利用交集中元素的特征求得 A 由 x2 3x 4<0 解得1<x<4,
所以 A x | 1<x<4, 又因为 B 4,1,3,5,所以 A B 1,3,
xi,yi i 1,2,,20得到下面的散点图:
由此散点图,在10℃ 至 40℃之间,下面四个回归方程类型中最适宜作为发芽率 y 和
温度 x 的回归方程类型的是
()
A. y a bx
B. y a bx2
C. y a bex
D. y a b ln x
6.已知圆 x2 y2 6x 0 ,过点1,2的直线被该圆所截得的弦的长度的最小值为
数学试卷 第 4 页(共 6 页)
毕业学校
姓名
考生号
2023年高考数学试题全国卷2(文)全解全析

2023年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己地姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出解析后,用铅笔把答题卡上对应题目地解析标号涂黑.如需改动,用橡皮擦干净后,再选涂其它解析标号.不能答在试卷卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.参考公式:如果事件A B ,互斥,那么 球地表面积公式()()()P A B P A P B +=+ 24πS R=如果事件A B ,相互独立,那么 其中R 表示球地半径()()()P A B P A P B = 球地体积公式如果事件A 在一次试验中发生地概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次地概率 其中R 表示球地半径()(1)(012)k kn k k n P k C p p k n -=-= ,,,,一、选择题1.若sin 0α<且tan 0α>是,则α是( )A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角【解析】C【解析】sin 0α<,α在三、四象限;tan 0α>,α在一、三象限,∴选C2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,, C .{}012,,D .{}1012-,,,【解析】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合地运算,整数集地符号识别3.原点到直线052=-+y x 地距离为( )A .1B .3C .2D .5【解析】D 【解析】52152=+-=d 【高考考点】点到直线地距离公式4.函数1()f x x x=-地图像关于( )A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称【解析】C 【解析】1()f x x x=-是奇函数,所以图象关于原点对称【高考考点】函数奇偶性地性质5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( )A .a <b <c B .c <a <bC . b <a <cD . b <c <a【解析】C【解析】由0ln 111<<-⇒<<-x x e ,令x t ln =且取21-=t 知b <a <c 6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=地最小值为( )A .2-B .4-C .6-D .8-【解析】D【解析】如图作出可行域,知可行域地顶点是A (-2,2)、B(32,32)及C(-2,-2) 于是8)(min -=A z 7.设曲线2ax y =在点(1,a )处地切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-【解析】A【解析】ax y 2'=,于是切线地斜率a y k x 2'1===,∴有122=⇒=a a 8.正四棱锥地侧棱长为32,侧棱与底面所成地角为︒60,则该棱锥地体积为( )A .3 B .6C .9D .18【解析】B【解析】高360sin 32=︒=h ,又因底面正方形地对角线等于32,∴底面积为 6332212=⨯⨯⨯=S ,∴体积63631=⨯⨯=V 【备考提示】在底面积地计算时,要注意多思则少算9.44)1()1(x x +-地展开式中x 地系数是( )A .4-B .3- C .3D .4【解析】A【解析】41666141404242404-=-+=-+C C C C C C 【易错提醒】容易漏掉1414C C 项或该项地负号10.函数x x x f cos sin )(-=地最大值为( )A .1 B . 2C .3D .2【解析】B【解析】4sin(2cos sin )(π-=-=x x x x f ,所以最大值是2【高考考点】三角函数中化为一个角地三角函数问题【备考提示】三角函数中化为一个角地三角函数问题是三角函数在高考中地热点问题11.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 地双曲线地离心率为( )A .221+B .231+C . 21+D .31+【解析】B【解析】由题意BC c =2,所以c c AC 3260sin 220=⨯⨯=,由双曲线地定义,有c a c c BC AC a )13(2322-=⇒-=-=,∴231131+=-==a c e 【高考考点】双曲线地有关性质,双曲线第一定义地应用12.已知球地半径为2,相互垂直地两个平面分别截球面得两个圆.若两圆地公共弦长为2,则两圆地圆心距等于( )A .1 B .2C .3D .2【解析】C【解析】设两圆地圆心分别为1O 、2O ,球心为O ,公共弦为AB,其中点为E,则21EO OO 为矩形,于是对角线OE O O =21,而3122222=-=-=AE OA OE ,∴321=O O 【高考考点】球地有关概念,两平面垂直地性质2023年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把解析填在题中横线上.13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ .【解析】 2【解析】λ+a b =)32,2(++λλ则向量λ+a b 与向量(47)=--,c 共线274322=⇒--=++⇔λλλ14.从10名男同学,6名女同学中选3名参加体能测试,则选到地3名同学中既有男同学又有女同学地不同选法共有 种(用数字作答)【解析】 420【解析】4202701501621026110=+=+C C C C 15.已知F 是抛物线24C y x =:地焦点,A B ,是C 上地两个点,线段AB 地中点为(22)M ,,则ABF △地面积等于 .【解析】 2【解析】设过M 地直线方程为)2(2-=-x k y ,由0)1(444)2(22222=-+-⇒⎩⎨⎧=-=-k kx x k xy x k y ∴k x x 421=+,2221)1(4kk x x -=,由题意144=⇒=k k ,于是直线方程为x y = 421=+x x ,021=x x ,∴24=AB ,焦点F (1,0)到直线x y =地距离21=d ∴ABF △地面积是216.平面内地一个四边形为平行四边形地充要条件有多个,如两组对边分别平行,类似地,写出空间中地一个四棱柱为平行六面体地两个充要条件:充要条件① ;充要条件② .(写出你认为正确地两个充要条件)【解析】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确解析,同样给分.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在ABC △中,5cos 13A =-,3cos 5B =. (Ⅰ)求sinC 地值;(Ⅱ)设5BC =,求ABC △地面积.18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项地和20S .19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环地概率分别为0.6,0.3,0.1,乙击中8环,9环,10环地概率分别为0.4,0.4,0.2.设甲、乙地射击相互独立.(Ⅰ)求在一轮比赛中甲击中地环数多于乙击中环数地概率;(Ⅱ)求在独立地三轮比赛中,至少有两轮甲击中地环数多于乙击中环数地概率.20.(本小题满分12分)如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=.(Ⅰ)证明:1A C ⊥平面BED ;(Ⅱ)求二面角1A DE B --地大小.21.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =地极值点,求a 地值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 地取值范围.ABC D EA 1B 1C 1D 122.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它地两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 地值;(Ⅱ)求四边形AEBF 面积地最大值.2023年普通高等学校招生全国统一考试文科数学试卷(必修+选修Ⅰ)参考解析和评分参考评分说明:∙∙∙1.本解答给出了一种或几种解法供参考,如果考生地解法与本解答不同,可根据试卷地主要考查内容比照评分参考制订相应地评分细则.∙∙∙2.对计算题,当考生地解答在某一步出现错误时,如果后继部分地解答未改变该题地内容和难度,可视影响地程度决定后继部分地给分,但不得超过该部分正确解答应得分数地一半;如果后继部分地解答有较严重地错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得地累加分数.4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C 二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确解析,同样给分.三、解答题17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =,由3cos 5B =,得4sin 5B =.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分所以ABC △地面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分18.解:设数列{}n a 地公差为d ,则3410a a d d =-=-,642102a a d d =+=+,1046106a a d d =+=+.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+,整理得210100d d -=,解得0d =或1d =.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分当0d =时,20420200S a ==.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分当1d =时,14310317a a d =-=-⨯=,于是2012019202S a d ⨯=+207190330=⨯+=.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中地环数多于乙击中地环数,B 表示在三轮比赛中至少有两轮甲击中地环数多于乙击中地环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中地环数.(Ⅰ)112122A A B A B A B =++ ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++ 112122()()()()()()P A P B P A P B P A P B =++ 0.30.40.10.40.10.40.2=⨯+⨯+⨯=.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分(Ⅱ)12B C C =+,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=,332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分20.解法一:依题设,2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD A C ⊥.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分在平面1A CA 内,连结EF 交1A C 于点G ,由于1AA ACFC CE==,故1Rt Rt A AC FCE △∽△,1AA C CFE ∠=∠,CFE ∠与1FCA ∠互余.于是1A C EF ⊥.1A C 与平面BED 内两条相交直线BD EF ,都垂直,所以1A C ⊥平面BED .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分(Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --地平面角.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分EF ==,CE CF CG EF ⨯==,EG ==13EG EF =,13EF FD GH DE ⨯=⨯=又1A C ==,11A G A C CG =-=.11tan A GA HG HG∠==所以二面角1A DE B --地大小为arctan .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分 解法二:以D 为坐标原点,射线DA 为x 轴地正半轴,建立如下图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.AB CDE A 1B 1C 1D 1FH G(021)(220)DE DB ==,,,,,,11(224)(204)A C DA =--= ,,,,,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙3分(Ⅰ)因为10A C DB = ,10A C DE =,故1A C BD ⊥,1A C DE ⊥.又DB DE D = ,所以1A C ⊥平面DBE .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分(Ⅱ)设向量()x y z =,,n 是平面1DA E 地法向量,则DE ⊥ n ,1DA ⊥ n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分1A C <> ,n 等于二面角1A DE B --地平面角,111cos A C A C A C<>==,n n n .所以二面角1A DE B --地大小为∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =地极值点,所以(2)0f '=,即6(22)0a -=,因此1a =.经验证,当1a =时,2x =是函数()y f x =地极值点.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分(Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+.当()g x 在区间[02],上地最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分反之,当65a ≤时,对任意[02]x ∈,,26()(3)3(2)5g x x x x x +-+≤23(210)5xx x =+-3(25)(2)5xx x =+-0≤,而(0)0g =,故()g x 在区间[02],上地最大值为(0)g .综上,a 地取值范围为65⎛⎤-∞ ⎥⎝⎦,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分22.(Ⅰ)解:依题设得椭圆地方程为2214x y +=,直线AB EF ,地方程分别为22x y +=,(0)y kx k =>.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <,且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF = 知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+,化简得2242560k k -+=,解得23k =或38k =.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分(Ⅱ)解法一:根据点到直线地距离公式和①式知,点E F ,到AB 地距离分别为1h 2h .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分11又AB ==,所以四边形AEBF 地面积为121()2S AB h h =+12===≤当21k =,即当12k =时,上式取等号.所以S地最大值为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->,故四边形AEBF 地面积为BEF AEFS S S =+△△222x y =+∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分===,当222x y =时,上式取等号.所以S 地最大值为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分。
2020普通高等高等学校统一招生(新课标I)(文数)(含详细答案及解析)(全国1卷高考数学真题)

绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A. {4,1}-B. {1,5}C. {3,5}D. {1,3}【答案】D 【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.2.若312i i z =++,则||=z ( ) A. 0 B. 1C.2D. 2【答案】C 【解析】【分析】先根据21i =-将z 化简,再根据向量的模的计算公式即可求出. 【详解】因为31+21+21z i i i i i =+=-=+,所以22112z =+=.故选:C .【点睛】本题主要考查向量的模的计算公式的应用,属于容易题.3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.514- B.512- C.514+ D.512+ 【答案】C 【解析】【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案. 【详解】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得154b a +=(负值舍去).故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 4.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A. 15B.25 C.12D. 45【答案】A 【解析】【分析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从O A B C D ,,,,5个点中任取3个有{,,},{,,},{,,},{,,}O A B O A C O A D O B C {,,},{,,},{,,},{,,}O B D O C D A B C A B D {,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为21105=.故选:A【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题. 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A. y a bx =+ B. 2y a bx =+C. e x y a b =+D. ln y a b x =+【答案】D 【解析】【分析】根据散点图的分布可选择合适的函数模型. 【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近, 因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D 【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.6.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A. 1B. 2C. 3D. 4【答案】B 【解析】【分析】当直线和圆心与点(1,2)的连线垂直时,所求的弦长最短,即可得出结论.【详解】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3,设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此时22||(31)(2)22CP =-+-=根据弦长公式得最小值为229||2982CP -=-=.故选:B.【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.7.设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A.10π9 B. 7π6 C. 4π3D. 3π2【答案】C 【解析】【分析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解.【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C 【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 8.设3log 42a =,则4a -=( )A.116B.19C.18D.16【答案】B 【解析】【分析】根据已知等式,利用指数对数运算性质即可得解【详解】由3log 42a =可得3log 42a =,所以49a =,所以有149a-=,故选:B .【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.9.执行下面的程序框图,则输出的n =( )A. 17B. 19C. 21D. 23【答案】C 【解析】【分析】根据程序框图的算法功能可知,要计算满足135100n ++++>的最小正奇数n ,根据等差数列求和公式即可求出.【详解】依据程序框图的算法功能可知,输出的n 是满足135100n ++++>的最小正奇数,因为()()211112135110024n n n n -⎛⎫+⨯+ ⎪⎝⎭++++==+>,解得19n >,所以输出的21n =.故选:C. 【点睛】本题主要考查程序框图的算法功能的理解,以及等差数列前n 项和公式的应用,属于基础题. 10.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A. 12B. 24C. 30D. 32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a qa a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q qq ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.11.设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为( )A.72B. 3C.52D. 2【答案】B 【解析】 【分析】由12F F P 是以P 为直角直角三角形得到2212||||16PF PF +=,再利用双曲线的定义得到12||||2PF PF -=,联立即可得到12||||PF PF ,代入12F F P S =△121||||2PF PF 中计算即可. 【详解】由已知,不妨设12(2,0),(2,0)F F -,则1,2a c ==,因为121||1||2OP F F ==, 所以点P 在以12F F 为直径的圆上,即12F F P 是以P 为直角顶点的直角三角形, 故2221212||||||PF PF F F +=,即2212||||16PF PF +=,又12||||22PF PF a -==,所以2124||||PF PF =-=2212||||2PF PF +-12||||162PF PF =-12||||PF PF ,解得12||||6PF PF =,所以12F F P S =△121||||32PF PF = 故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.12.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【答案】A 【解析】 【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意, 得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 6023AB r =︒=,123OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=, ∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z =x +7y 的最大值为______________.【答案】1 【解析】【分析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值. 【详解】绘制不等式组表示的平面区域如图所示,目标函数7z x y =+即:1177y x z =-+, 其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大, 据此结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:22010x y x y +-=⎧⎨--=⎩,可得点A 的坐标为:1,0A ,据此可知目标函数的最大值为:max 1701z =+⨯=. 故答案为:1.【点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.14.设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________. 【答案】5 【解析】 【分析】根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果. 【详解】由a b ⊥可得0a b ⋅=, 又因为(1,1),(1,24)a b m m =-=+-,所以1(1)(1)(24)0a b m m ⋅=⋅++-⋅-=, 即5m =, 故答案为:5.【点睛】本题考查有关向量运算问题,涉及到的知识点有向量垂直的坐标表示,属于基础题目. 15.曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________.【答案】2y x = 【解析】 【分析】设切线的切点坐标为00(,)x y ,对函数求导,利用0|2x y '=,求出0x ,代入曲线方程求出0y ,得到切线的点斜式方程,化简即可.【详解】设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+, 00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2), 所求的切线方程为22(1)y x -=-,即2y x =. 故答案为:2y x =.【点睛】本题考查导数的几何意义,属于基础题.16.数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = ______________.【答案】7 【解析】 【分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++13515241416()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=, 17a ∴=故答案为:7.【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务? 【答案】(1)甲分厂加工出来的A 级品的概率为0.4,乙分厂加工出来的A 级品的概率为0.28;(2)选甲分厂,理由见解析.【解析】 【分析】(1)根据两个频数分布表即可求出;(2)根据题意分别求出甲乙两厂加工100件产品的总利润,即可求出平均利润,由此作出选择. 【详解】(1)由表可知,甲厂加工出来的一件产品为A 级品的概率为400.4100=,乙厂加工出来的一件产品为A 级品的概率为280.28100=; (2)甲分厂加工100件产品的总利润为()()()()4090252050252020252050251500⨯-+⨯-+⨯--⨯+=元, 所以甲分厂加工100件产品的平均利润为15元每件;乙分厂加工100件产品的总利润为()()()()2890201750203420202150201000⨯-+⨯-+⨯--⨯+=元,所以乙分厂加工100件产品的平均利润为10元每件.故厂家选择甲分厂承接加工任务.【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出决策,属于基础题. 18.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°. (1)若a =3c ,b =27,求ABC 的面积; (2)若sin A +3sin C =2,求C . 【答案】(1)3;(2)15︒. 【解析】 【分析】(1)已知角B 和b 边,结合,a c 关系,由余弦定理建立c 的方程,求解得出,a c ,利用面积公式,即可得出结论; (2)将30A C =︒-代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【详解】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,23,c a ABC ∴==∴△的面积1sin 32S ac B ==; (2)30A C +=︒,sin 3sin sin(30)3sin A C C C ∴+=︒-+132cos sin sin(30)2C C C =+=+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒, 3045,15C C ∴+︒=︒∴=︒.【点睛】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题. 19.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO 23π,求三棱锥P −ABC 的体积. 【答案】(1)证明见解析;(26. 【解析】 【分析】(1)根据已知可得PA PB PC ==,进而有PAC ≌PBC ,可得90APC BPC ∠=∠=,即PB PC ⊥,从而证得PC ⊥平面PAB ,即可证得结论;(2)将已知条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形ABC 边长,在等腰直角三角形APC 中求出AP ,在Rt APO 中,求出PO ,即可求出结论.【详解】(1)连接,,OA OB OC ,D 为圆锥顶点,O 为底面圆心,OD ∴⊥平面ABC ,P 在DO 上,,OA OB OC PA PB PC ==∴==,ABC 是圆内接正三角形,AC BC ∴=,PAC ≌PBC ,90APC BPC ∴∠=∠=︒,即,PB PC PA PC ⊥⊥,,PA PB P PC =∴⊥平面,PAB PC ⊂平面PAC ,∴平面PAB ⊥平面PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为3,3rl rl ππ==2222OD l r =-=,解得1,3r l ==2sin 603AC r ==,在等腰直角三角形APC 中,2622AP AC ==, 在Rt PAO 中,2262142PO AP OA =-=-=, ∴三棱锥P ABC -的体积为112363332P ABC ABC V PO S -=⋅=⨯=△.【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.20.已知函数()(2)xf x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】 【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,将其转化为2x e a x =+有两个解,令()(2)2x eh x x x =≠-+,求导研究函数图象的走向,从而求得结果.【详解】(1)当1a =时,()(2)xf x e x =-+,'()1x f x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞; (2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,从方程可知,2x =-不成立,即2xe a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++,令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-,所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线xy e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线xy e =的切线斜率,结合图形求得结果.21.已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程; (2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析.【解析】 【分析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解.(2)设()06,P y ,可得直线AP方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,当203y ≠时,可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭即可知直线过定点3,02⎛⎫ ⎪⎝⎭,当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭,命题得证. 【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a +=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =- ∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)证明:设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+ 联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭. 当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭. 故直线CD 过定点3,02⎛⎫⎪⎝⎭. 【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.(二)选考题:共10分。
2023年全国乙卷文科高考数学试题+答案解析

绝密★启用前2023年普通高等学校招生全国统一考试(全国乙卷∙文科)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2+i 2+2i 3 =()A.1B.2C.5D.5【答案】C【解析】∵2+i 2+2i 3=2-2i -1=1-2i ,∴|2+i 2+2i 3|=1-2i =12+(-2)2=5,选C 。
2.设全集U ={0,1,2,4,6,8},集合M ={0,4,6},N ={0,1,6},则M ⋃C U N =()A.{0,2,4,6,8} B.{0,1,4,6,8}C.{1,2,4,6,8}D.U【答案】A【解析】∵N ={2,4,8},∴M ⋃C U N ={0,2,4,6,8},选A.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D【解析】如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=3,点H ,I ,J ,K 为所在棱上靠近点B 1,C 1,D 1,A 1的三等分点,O ,L ,M ,N 为所在棱的中点,则三视图所对应的几何体为长方体ABCD -A 1B 1C 1D 1去掉长方体ONIC 1-LMHB 1之后所得的几何体,该几何体表面积为:2×(2×2)+4×(2×3)-2×(1×1)=30,选D 。
4.在△BC 中,内角A,B,C 的对边分别是a,b,c,若acosB -bcosA =c,且C =π5,则∠B =()A.π10B.π5C.3π10D.2π5【答案】C【解析】∵sinAcosB -sinBcosA =sinC,即sinAcosB -sinBcosA =sin (A +B )=sinAcosBsinBcosA,∴sinBcosA =0,∵B ∈(0,π),∴sinB >0,∴cosA =0,A =π2,∴B =π-A -C =3π10,选C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016·全国卷Ⅱ(文科数学)1.A1[2016·全国卷Ⅱ] 已知集合A ={1,2,3},B ={x |x 2<9},则A ∩B =( ) A .{-2,-1,0,1,2,3} B .{-2,-1,0,1,2} C .{1,2,3} D .{1,2}1.D [解析] ∵x 2<9,∴-3<x <3,∴B ={x |-3<x <3},∴A ∩B ={1,2}.2.L4[2016·全国卷Ⅱ] 设复数z 满足z +i =3-i ,则=( )A .-1+2iB .1-2iC .3+2iD .3-2i2.C [解析] 由z +i =3-i ,得z =3-2i ,故=3+2i.3.C4[2016·全国卷Ⅱ] 函数y =A sin(ωx +φ)的部分图像如图1-1所示,则( )图1-1 A .y =2sin (2x -π6) B .y =2sin (2x -π3)C .y =2sin (x +π6)D .y =2sin (x +π3)3.A [解析] 由图知,A =2,最小正周期T =π,所以ω=2ππ=2,所以y =2sin(2x+φ).又因为图像过点(π3,2),所以2sin (2×π3+φ)=2,即2π3+φ=2k π+π2(k ∈Z ),当k =0时,得φ=-π6,所以y =2sin (2x -π6).4.G8[2016·全国卷Ⅱ] 体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A .12π B.323πC .8πD .4π4.A [解析] 因为正方体的体积为8,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球的表面积为4π·(3)2=12π.5.H7[2016·全国卷Ⅱ] 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A.12 B .1 C.32D .2 5.D [解析] 易知F (1,0),因为曲线y =k x(k >0)与抛物线C 交于点P ,且PF ⊥x 轴,所以k1=2,所以k =2.6.H4[2016·全国卷Ⅱ] 圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C. 3 D .26.A [解析] 由题意可知,圆心为(1,4),所以圆心到直线的距离d =|a +4-1|a 2+12=1,解得a =-43.7.G2[2016·全国卷Ⅱ] 如图1-2是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )图1-2A .20πB .24πC .28πD .32π7.C [解析] 几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得l =22+(23)2=4,故S 表=πr 2+ch +πrl =4π+16π+8π=28π.8.K3[2016·全国卷Ⅱ] 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.3108.B [解析] 至少需要等待15秒才出现绿灯的概率为40-1540=58. 9.L1[2016·全国卷Ⅱ] 中国古代有计算多项式值的秦九韶算法,如图1-3是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =( )图1-3A .7B .12C .17D .349.C [解析] 第一次运算,a =2,s =2,k =1,不满足k >n ; 第二次运算,a =2,s =2×2+2=6,k =2,不满足k >n ;第三次运算,a =5,s =6×2+5=17,k =3,满足k >n ,输出s =17.10.B1[2016·全国卷Ⅱ] 下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x10.D [解析] y =10lg x=x ,定义域与值域均为(0,+∞),只有选项D 满足题意.11.C6[2016·全国卷Ⅱ] 函数f (x )=cos 2x +6cos π2-x 的最大值为( )A .4B .5C .6D .711.B [解析] 由已知得f (x )=-2sin x -322+112,而sin x ∈[-1,1],所以当sin x=1时,f (x )取得最大值5.12.B8[2016·全国卷Ⅱ] 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则( )A .0B .mC .2mD .4m当m 为奇数时,=2×m -12+1=m.13.F2[2016·全国卷Ⅱ] 已知向量a =(m ,4),b =(3,-2),且a∥b ,则m =________. 13.-6 [解析] 因为a∥b ,所以-2m -4×3=0,解得m =-6.14.E5[2016·全国卷Ⅱ] 若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.14.-5 [解析] 由⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0画出可行域(图中阴影部分所示),则z =x -2y 在B处取得最小值.由⎩⎪⎨⎪⎧x -y +1=0,x -3=0,得B (3,4),所以z min =3-8=-5.15.C8[2016·全国卷Ⅱ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.15.2113 [解析] 因为cos A =45,cos C =513,且A ,C 为三角形的内角,所以sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365.又因为a sin A =bsin B,所以b =a sin B sin A =2113.16.M1[2016·全国卷Ⅱ] 有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.16.1和3 [解析] 由题意可知丙不拿2和3.若丙拿1和2,则乙拿2和3,甲拿1和3,满足题意; 若丙拿1和3,则乙拿2和3,甲拿1和2,不满足题意. 故甲的卡片上的数字是1和3.17.D2[2016·全国卷Ⅱ] 等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.17.解:(1)设数列{a n }的公差为d ,由题意有2a 1+5d =4,a 1+5d =3,解得a 1=1,d =25. 所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =[2n +35].当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2<2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4<2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.18.K1,K6,K8[2016·全国卷Ⅱ] 某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)记A (2)记B 为事件“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度平均保费的估计值.18.解:(1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3. (3)由所给数据得调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .因此,续保人本年度平均保费的估计值为1.192 5a .19.G5[2016·全国卷Ⅱ] 如图1-4,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.图1-419.解:(1)证明:由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CF CD,故AC ∥EF . 由此得EF ⊥HD ,EF ⊥HD ′,所以AC ⊥HD ′.(2)由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2,故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H ,所以AC ⊥平面BHD ′,于是AC ⊥OD ′. 又OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC .由EF AC =DH DO 得EF =92. 五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′- ABCFE 的体积V =13×694×22=2322.20.B12[2016·全国卷Ⅱ] 已知函数f (x )=(x +1)ln x -a (x -1).(1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 20.解:(1)f (x )的定义域为(0,+∞).当a =4时,f (x )=(x +1)ln x -4(x -1),f ′(x )=ln x +1x-3,f ′(1)=-2,f (1)=0.故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0. (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0.设g (x )=ln x -a (x -1)x +1,则g ′(x )=1x -2a (x +1)2=x 2+2(1-a )x +1x (x +1)2,g (1)=0.(i)当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)上单调递增,因此g (x )>0.(ii)当a >2时,令g ′(x )=0,得x 1=a -1-(a -1)2-1,x 2=a -1+(a -1)2-1. 由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)上单调递减,因此g (x )<0.综上,a 的取值范围是(-∞,2].21.H8[2016·全国卷Ⅱ] 已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当|AM |=|AN |时,求△AMN 的面积;(2)当2|AM |=|AN |时,证明:3<k <2.21.解:(1)设M (x 1,y 1),则由题意知y 1>0. 由已知及椭圆的对称性知,直线AM 的倾斜角为π4.又A (-2,0),因此直线AM 的方程为y =x +2. 将x =y -2代入x 24+y 23=1,得7y 2-12y =0.解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明:将直线AM 的方程y =k (x +2)(k >0)代入x 24+y 23=1,得(3+4k 2)x 2+16k 2x +16k2-12=0.由x 1·(-2)=16k 2-123+4k 2,得x 1=2(3-4k 2)3+4k 2, 故|AM |=|x 1+2|1+k 2=121+k23+4k2.由题设,直线AN 的方程为y =-1k(x +2).故同理可得|AN |=12k 1+k23k 2+4. 由2|AM |=|AN |得23+4k 2=k 3k 2+4,即4k 3-6k 2+3k -8=0. 设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点.f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)上单调递增.又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)上有唯一的零点,且零点k 在(3,2)内,所以3<k <2.22.N1[2016·全国卷Ⅱ] 选修4-1:几何证明选讲如图1-5,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F .(1)证明:B ,C ,G ,F 四点共圆;(2)若AB =1,E 为DA 的中点,求四边形BCGF 的面积.图1-522.解:(1)证明:因为DF ⊥EC ,所以△DEF ∽△CDF ,则有∠GDF =∠DEF =∠FCB ,DF CF=DE CD =DG CB, 所以△DGF ∽△CBF ,由此可得∠DGF =∠CBF .因此∠CGF +∠CBF =180°,所以B ,C ,G ,F 四点共圆. (2)由B ,C ,G ,F 四点共圆,CG ⊥CB 知FG ⊥FB .连接GB .由G 为Rt △DFC 斜边CD 的中点,知GF =GC ,故Rt △BCG ≌Rt △BFG ,因此,四边形BCGF 的面积S 是△GCB 面积S △GCB 的2倍,即S =2S △GCB =2×12×12×1=12.23.N3[2016·全国卷Ⅱ] 选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.23.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2.将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,则tan α=±153. 所以l 的斜率为153或-153. 24.N4[2016·全国卷Ⅱ] 选修4-5:不等式选讲已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.24.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,因此|a +b |<|1+ab |.。